network

Online Social Networks and Media
Slides and References

 

Home

Homework


Slides & References

Reading Material

Resources

 

Lecture 1: Introduction

Introduction to main problems about networks. Basic mathematics concepts

Material:

 

Lecture slides (pptx, pdf).
Introduction to Graph Theory (pptx, pdf) (slides from
Social Media Mining)
Tutorials on Python Libraries for Data Science (from the Data Mining class)


Lecture 2: Network Measurements and Models

Degree distributions. Measuring power-laws. Clustering Coefficient, Effective Diameter, Bow-tie structure, Homophily.
Erdos-Renyi
 graphs. Configuration Model. Preferential Attachment. Small-world models. Forrest-Fire model.

Material:

 

Lecture slides (pptx, pdf)


Lecture 3: Link Analysis Ranking

Web search, PageRank, HITS. SALSA. Random walks on graphs.

Material:


Lecture slides: (pptx, pdf)


Lecture 4: Community Detection

Communities in Social Networks, Clustering, Betweeness, Modularity

Material:

 

Lecture slides: (pptx, pdf)


Lecture 5: Graph Partitioning, Densest Subgraph - Signed Networks

Graph Partitioning, Spectral Clustering. The Densest Subgraph problem.

Material:

 

Lecture slides: (pptx, pdf)

Signed networks with positive and negative edges. Structural Balance

Lecture slides: (pptx, pdf)


Lecture 6: Epidemics. Influence Maximization.


Models for epidemic spread.

Material:


Lecture slides: (pptx, pdf)

Lecture 7: Opinion Formation models, Absorbing Random Walks. Strong and Weak ties.

Selecting influencers to maximize spread. Opinion formation models. DeGroot and Friedkin-Jonhsen model. Absorbing Random Walks. Opinion maximization. 

Material:


Lecture slides: (pptx, pdf)

Strong and Weak ties. Strong Triadic Closure.

Material:


Lecture slides: 
(pptx, pdf)