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ABSTRACT
In the past few years there has been an explosion of social
networks in the online world. Users flock these networks,
creating profiles and linking themselves to other individuals.
Connecting online has a small cost compared to the physi-
cal world, leading to a proliferation of connections, many of
which carry little value or importance. Understanding the
strength and nature of these relationships is paramount to
anyone interesting in making use of the online social net-
work data. In this paper, we use the principle of Strong
Triadic Closure to characterize the strength of relationships
in social networks. The Strong Triadic Closure principle
stipulates that it is not possible for two individuals to have
a strong relationship with a common friend and not know
each other. We consider the problem of labeling the ties
of a social network as strong or weak so as to enforce the
Strong Triadic Closure property. We formulate the prob-
lem as a novel combinatorial optimization problem, and we
study it theoretically. Although the problem is NP-hard,
we are able to identify cases where there exist efficient al-
gorithms with provable approximation guarantees. We per-
form experiments on real data, and we show that there is
a correlation between the labeling we obtain and empirical
metrics of tie strength, and that weak edges act as bridges
between different communities in the network. Finally, we
study extensions and variations of our problem both theo-
retically and experimentally.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sci-
ences; H.2.8 [Database Applications]: Data Mining; H.4
[Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
The past few years have been marked by the emergence

and explosive growth of online social networks. Facebook,
LinkedIn, and Twitter are three prominent examples of such
online networks, which have become extremely popular, en-
gaging hundreds of millions of users all over the world. On-
line social networks grow much faster than physical social
networks since the “cost” of creating and maintaining con-
nections is much lower. The average user in Facebook has a
few hundreds of friends, and a sizeable fraction of the net-
work has more than a thousands friends [20]. The social cir-
cle of the average user contains connections with true friends,
but also with forgotten high-school classmates, distant rel-
atives, and acquaintances made through brief encounters.
Many of the online connections correspond to weak, or no
relationships in the physical world.

Understanding the strength and nature of online relation-
ships is paramount to anyone interested in extracting some
utility out of the online social network data. For moneti-
zation purposes, knowing which relationships correspond to
true friendships is of critical importance to advertisers who
want to profile users based of their social circle and initiate
viral marketing campaigns. For sociologists, knowing the
relative importance of online relationships can have a signif-
icant effect on the way they model and interpret dynamics
and norms in the social network. For friendship suggestion
algorithms, knowing which friends matter more can have an
important impact on the produced link recommendations.

The problem of understanding the strength and nature
of social ties has been studied in the past [12, 7, 6, 22].
Previous approaches rely on user characteristics in order to
estimate the true affinity between two users. In this work we
use solely the graph structure in order to derive the charac-
terization of the ties within a social network. To this end we
make use of the Strong Triadic Closure (STC) principle [4].
The STC principle has its roots into early works in Psychol-
ogy [3, 15, 8], and it has been used in the study of social
networks [4, 8]. Informally, the STC principle assumes that
there are two types of ties, strong and weak, and it stip-
ulates that it is not possible for two individuals to have a
strong relationship with a common friend and not know each
other. That is, it is not possible to have an open triangle
in the network graph where both edges of the triangle are
labeled strong.

We use the STC property to characterize the ties of a so-
cial network by asking for a labeling of the edges of the social
graph into strong and weak such that the STC property is



satisfied. There is a trivial solution to this problem which is
to label all edges weak. However, we believe that creating
strong relationships is the main motivation for users to join,
and actively engage with a social network, online or other-
wise. Therefore, we look for a labeling that also maximizes
the number of strong ties (or minimizes the number of weak
ties).

We thus obtain the following two problems: the maxSTC
problem where we ask for a labeling of the graph such that
the STC property holds and the number of strong edges is
maximized, and the minSTC problem where we seek to min-
imize the number of weak edges. These are two novel com-
binatorial optimization problems that are of independent
theoretical interest. Both problems are NP-hard, and we
thus look for efficient algorithms with approximation guar-
antees. We show that this is not possible for the maxSTC
problem. For the minSTC problem, we show that it can be
expressed as a graph vertex cover problem on an appropri-
ately defined graph, a problem known to have a constant
factor approximation algorithm.

We also extend our formulation to capture more complex
problems where new edges may be added to the graph, or
ties in the network may be of different types. Of particular
interest is the minMultiSTC problem where we seek to en-
force a variant of the STC property in the presence of multi-
ple types of strong edges. The problem of understanding the
“type” of an edge is something that arises naturally in prac-
tice. Although there are specialized online social networks
catering to different needs of the users (social, professional,
informational), the boundaries between these different cir-
cles are not always clear. It is often the case that there are
multiple types of relationships in a single network. There-
fore, it is important to be able to not only distinguish be-
tween strong and weak ties, but also to differentiate between
different types of relationships and social circles.

We test our algorithms experimentally on real datasets.
Our experiments demonstrate that the labeling we obtain
based on the structural graph property of Strong Triadic
Closure correlates well with empirical measures of tie strength.
Furthermore, our labeling agrees with the celebrated“strength
of weak ties” observation [8]. The edges between different
communities in the social network are usually labeled weak,
while the strong edges concentrate among the nodes of the
communities.

In summary, in this work we make the following contribu-
tions.

• We formulate the problem of characterizing the edges
of a social network as a novel optimization problem
where we seek to enforce the Strong Triadic Closure
property while maximizing the number of strong edges
in the graph (or minimizing the number of weak edges).

• We show that our optimization problem is NP-hard.
For the minimization problem there exists an efficient
approximation algorithm with constant approximation
ratio, while there is no good approximation algorithm
for the maximization problem.

• We propose and study two extensions to our problem.
The first allows the addition of new edges in the graph
in order to enforce the STC property. The second al-
lows for multiple types of strong edges.

• We study our algorithms experimentally on real datasets.
We show that there is a correlation between the label of
an edge and naturally defined notions of tie strength,
and that the weak edges act like bridges between dif-
ferent communities in the network.

The rest of the paper is structured as follows. In Section 2
we review some of the related work. In Section 3 we formally
define the problems we will study. In Section 4 we study the
complexity of our problem, and in Section 5 we consider
approximation algorithms. Section 6 considers extensions
to the basic problem. Section 7 contains the experimental
evaluation, and Section 8 concludes the paper.

2. RELATED WORK
In this paper we build upon the Strong Triadic Closure

principle from Psychology. Strong Triadic Closure was first
defined by Granovetter [8] in his seminal paper“The Strength
of Weak Ties”. Previously, Davis [3] and Newcomb [15] dis-
cuss some evidence that this property exists in social net-
works. The Strong Triadic Closure is discussed in detail in
the book of Easley and Kleinberg [4]. They discuss the effect
of the property on the structure of the network, and possible
relaxations, but they do not consider the problem of labeling
the edges of the graph to enforce the property. In the dis-
cussion they also consider recent experiments [10, 16] which
demonstrate a correlation between structural properties of
an edge and a notion of strength measured in practice. We
perform similar experiments in Section 7 where we study the
correlation between the label of an edge and the empirical
tie strength.

Recent work has considered the problem of assessing the
link strength in a social network, using data from e-mails [14],
phone calls [16], and social media [7]. Kahanda and Neville [12]
develop a supervised learning approach to predict link strength
from transactional information (communication, file trans-
fers, etc) and differentiate between strong and weak rela-
tionships in large-scale social networks. Gilbert and Kara-
halios [7] develop a model for characterizing ties in a social
network using features about the similarity and interaction
between users. They validate their model on small-scale
data collected with questionnaires. In a follow-up work,
Gilbert [6] explores how well a tie-strength model developed
for one social medium adapts to another in order to find
relationships which transcend a particular medium. In ad-
dition, Xiang et al. [22] develop an unsupervised model to
estimate relationship strength from interaction activity and
user similarity. They also handle heterogenous relationship
strength (e.g. acquaintances, best friends). Their work is
motivated by the theory of homophily from sociology, which
postulates that people tend to form ties with other people
who have similar characteristics. Jones et al. [11] found
that the frequency of online interaction is a good predictor
of strong ties.

Another direction of related research focuses on charac-
terizing the type of a relationship between users. Tang, et
al. [19] use user and link characteristics to build a genera-
tive model which assigns the most likely type to a specific
relationship. In a follow-up work, Tang et al. [18] extend
their model for classifying the type of social relationships by
learning across heterogenous networks. Their model incor-
porates ideas from social theories such as structural balance
and social status. Backstrom et al. [1] use only the structure



of the Facebook graph to identify the romantic partner of
a user. They propose dispersion as a new network measure
for estimating tie strength.

Our work is similar to this line of research in the sense that
we are also trying to characterize the strength and type of
social ties. However, prior work relies heavily on user and
link characteristics to derive this characterization. In our
case we only make use of the graph structure. We use the
Strong Triadic Closure principle to formulate our labeling
problem as a discrete optimization problem.

3. PROBLEM DEFINITION
Let G = (V,E) be an undirected graph that represents

a social network, where the set of vertices V corresponds
to individuals, and the set of edges E corresponds to the
connections (ties) between these individuals. The goal is to
produce a labeling of the ties in the social network as either
strong or weak. We will denote this labeling as a function
LG : E → {W,S}, which maps each edge e ∈ E to a label
W (Weak), or S (Strong). Abusing the notation, we will
sometimes use LE to refer to the labeling of the set of edges
in E.

The goal is to find a labeling that satisfies the Strong
Triadic Closure (STC) property, which is defined as follows.

Definition 1 (Strong Triadic Closure). Given
a graph G, a labeling LG of the graph satisfies the Strong Tri-
adic Closure (STC) property, if there exists no pair of edges
(u, v) and (u,w), such that LG(u, v) = S and L(u,w) = S,
and (v, w) 6∈ E.

Informally, the STC property requires that for every node
u, it is never the case that u has strong ties with both v and
w, yet there is no tie between v and w.

We want to label the edges of the graph into strong or
weak, such that the labeling satisfies the STC property. It
is easy to see that a trivial solution to this problem is to label
all edges in the network as weak. However, we believe that
people build social networks with the goal to create strong
ties with other people, therefore, we ask for a labeling that
satisfies the STC property while maximizing the number
of strong ties. Equivalently, we can ask to minimize the
number of weak ties in the network, while satisfying the
STC property. Let S(LG) and W (LG) denote the number
of strong and weak ties respectively produced by the labeling
LG. We are interested in the following two problems.

Problem 1 (Maximum Strength STC (maxSTC)).
Given a graph G, find a labeling LG that satisfies the STC
property and maximizes S(LG).

Problem 2 (Minimum Weakness STC (minSTC)).
Given a graph G, find a labeling LG that satisfies the STC
property and minimizes W (LG).

In the following we show that the problems are NP-hard,
and we consider approximation algorithms.

4. COMPLEXITY ANALYSIS
To establish hardness it is sufficient to consider one of the

two variants. We will show that the maxSTC problem is
NP-hard, since the proof is easier.

Before going into the hardness proof, we introduce some
notation and provide some intuition about the problem. Let
(u, v), (u,w) ∈ E denote pair of edges in the graph G that
share a common endpoint u. We say that the edges define
an open triangle 〈(u, v), (u,w)〉 incident on u, if (v, w) 6∈ E.
The first observation is that, according to the definition of
the STC property, a labeling LG violates the STC prop-
erty if and only if there exists at least one open triangle
〈(u, v), (u,w)〉 such that both (u, v) and (u,w) are labeled
strong. In this case, we say that the open triangle violates
the STC property; otherwise, we say that the open triangle
satisfies the STC property. It is clear that a labeling LG
satisfies the STC property, if there is no open triangle that
violates the STC property. Furthermore, it is also clear an
edge (u, v) that does not belong to any open triangle should
be labeled strong. The labeling of (u, v) does not affect the
labeling of the remaining edges, since it cannot cause the
STC property to be violated. Thus, when looking for the
optimal solution, we only need to consider edges that par-
ticipate in at least one open triangle.

For our reduction we will consider a special type of net-
work: the ego-network Gu of a user u. Assuming an under-
lying social network G, consider a single user u ∈ V of the
network, and let Nu be the friends of u. Let Eu denote the
set of edges from u to the nodes in Nu, and EN the set of
edges between the nodes in Nu. The ego-network of a user
u is defined as Gu = ({u} ∪Nu, Eu ∪ EN ).

We will now define a simpler variant of the maxSTC prob-
lem, which we will show that it is as hard as the maxSTC
problem. In our new problem, given an ego-network Gu we
ask for a labeling of just the edges Eu incident on the node
u such that the STC property is not violated. That is, there
is no open triangle incident on u that has both edges labeled
as strong.

Problem 3 (maxEgoSTC). Given the ego-graph Gu
of user u, find a labeling LEu of the edges incident on node
u that satisfies the STC property and maximizes S(LEu).

It is easy to show that the maxSTC problem is at least
as hard as the maxEgoSTC problem.

Lemma 1. There is a polynomial-time reduction from the
maxEgoSTC problem to the maxSTC problem.

Proof. Let Gu be the ego-network of node u that is
given as input to the maxEgoSTC problem. The reduction
is straightforward: we create an instance of the maxSTC
problem, using the the graph Gu as input and asking for
a labeling LE that maximizes the number of strong edges.
The key observation is that whether or not the labeling LEu

of the edges in Eu satisfies the STC property is indepen-
dent of the labeling LEN of the edges in EN . This follows
from the fact that there exists no open triangle in Gu that
contains an edge from Eu and an edge from EN . Such a tri-
angle would have to be of the form 〈(u, v), (v, w)〉, missing
the edge (u,w). However this is not possible, since by con-
struction (u,w) ∈ Eu. Therefore, all open triangles in Gu
contain either two edges from Eu, or two edges from EN .
Thus, we can label the edges Eu and EN independently.
Finding a labeling LE that maximizes the number of strong
edges in Gu while respecting the STC property requires to
find labelings LEu and LEN that maximize the number of
strong edges in Eu and EN respectively. The labeling LEu



is a solution of the maxEgoSTC problem. Note also that
finding a labeling LEN that maximizes the number of strong
edges in EN is an instance of the maxSTC problem, with
the graph GN = (Nu, EN ) as input

More formally, consider the decision problem for the max-
EgoSTC problem, where given a graph Gu, we ask if there
is a labeling LEu that has S(LEu) ≥ k. Consider also the de-
cision version of the maxSTC problem, where given a graph
G, we ask if there is a labeling LG that has S(LG) ≥ `.
Given the graph Gu we create the graph GN and using bi-
nary search on the value of ` we find the labeling L∗GN

that
maximizes S(LGN ). Let S(L∗GN

) = µ. Now we give the
graph Gu as input to the maxSTC problem and we ask if
there is a labeling LGu such that S(LGu) ≥ k+µ. Since the
labeling of Eu and EN are independent, there is a labeling
LEu with S(LEu) ≥ k, if and only if there is a labeling LGu

with S(LGu) ≥ k + µ.

Lemma 2. The maxEgoSTC problem is NP-hard.

Proof. We will now show that the maxEgoSTC prob-
lem is NP-hard by reducing the maxClique problem to it.
Given an input graph G = (V,E) and a value k, the deci-
sion version of the maxClique problem asks if there exists
a subset Vc ⊆ V of vertices of size at least k, such that
the induced subgraph Gc = (Vc, Ec) forms a clique, where
Ec = {(u, v) ∈ E : u ∈ Vc, v ∈ Vc}.

Given the input graph G = (V,E) to the maxClique
problem, we create an instance of the maxEgoSTC prob-
lem, by creating an ego-network Gu consisting of an addi-
tional node u and edges Eu that connect node u to all the
nodes V of G. That is, Gu = ({u} ∪ V,Eu ∪ E). We ask
if there is a solution of the maxEgoSTC problem of size at
least k.

Let S ⊆ Eu be the subset of edges in Eu that are labeled
strong according to a labeling LEu . Each edge (u, v) ∈ S in
the ego-network defines a unique vertex v ∈ V . Let VS ⊆ V
denote the set of vertices defined by the set of edges S. The
labeling LEu satisfies the STC property, if and only if the
set of vertices VS defines a clique in the graph G. If the
labeling of the edges in S satisfies the STC property, then
no pairwise combination of edges from S can create an open
triangle. Therefore, for every pair of edges (u, v), (u,w) ∈ S,
we have that (v, w) ∈ E, and thus VS defines a clique. On
the other hand, if the labeling of the edges in S does not
satisfy the STC property, then there must exist at least one
pair of edges (u, v), (u,w) ∈ S that define an open triangle.
Therefore, the edge (v, w) 6∈ E and hence the set VS does
not define a clique.

Therefore, there exists a labeling LEu for the maxEgoSTC
problem such that S(LEu) ≥ k, if and only if, there exists a
clique of size at least k in graph G.

5. APPROXIMATING MIN-STC
Given that the two problems we consider are NP-hard,

we look for approximation algorithms. The reduction from
maxClique to maxEgoSTC preserves the approximation,
so, following the result in [9] we cannot approximate the
maxEgoSTC solution within a factor better than O(n1−ε).
Fortunately, we can do better for the case of the minSTC
problem.

Theorem 1. There exists a 2-approximation algorithm
for the minSTC problem.

Proof. Recall that a labeling LG satisfies the STC prop-
erty, if there exists no open triangle that violates the STC
property. That is, there is no open triangle 〈(u, v), (u,w)〉
such that both (u, v) and (u,w) are labeled strong. There-
fore, for every open triangle, at least one of the edges of the
open triangle must be labeled weak. We say that this edge
covers the open triangle. The goal is to find the minimum
set of edges that cover all open triangles in the graph.

Using this intuition we will show how the minSTC prob-
lem can be mapped to the Minimum Vertex Cover (minVer-
texCover) problem. Given a graph G = (V,E), a subset of
vertices C ⊆ V is a vertex cover of the graph G, if for every
edge (u, v) ∈ E, u ∈ C or v ∈ C. The minVertexCover
problem, given a graph G looks for a vertex cover of G with
the smallest number of vertices.

The mapping from minSTC to minVertexCover pro-
ceeds as follows. Given a graph G = (V,E) that is input
to the minSTC problem, let T denote the set of all open
triangles in G. We create a dual graph GT = (VE , ET ) that
is input to minVertexCover as follows. For every edge
e ∈ E we create a vertex ve ∈ VE . For every open triangle
〈e1, e2〉 ∈ T , we create an edge (ve1 , ve2) ∈ ET .

Given a labeling LG we define the set C to be the set of
vertices ve ∈ VE such that the corresponding edge e ∈ E
is labeled weak. If LG satisfies the STC property, then for
every triangle 〈e1, e2〉 ∈ T at least one of the edges e1, or e2
must be labeled weak. Therefore, for every edge (ve1 , ve2) ∈
ET at least one of the two endpoints is included in the set
C, and hence C is a vertex cover for the graph GT .

Furthermore, given a minimum vertex cover C ⊆ VE of the
graph GT we can create a labeling LG by labeling as weak
every edge e ∈ E, such that ve ∈ C, and the remaining edges
as strong. Since C is a vertex cover for GT , by construction
of GT it follows that every open triangle in G is covered
by at least one edge labeled weak. Therefore, the labeling
LG respects the STC property. If C is the minimum vertex
cover, then LG is the labeling with the minimum number
of weak edges. If C is an α-approximate solution for the
minimum vertex cover, then LG is an α-approximation of the
minimum number of weak edges. It is well known that there
is a 2-approximation algorithm for the minVertexCover
problem [21, 2], which implies a 2-approximation algorithm
for the minSTC problem.

In our experiments we consider two different approxima-
tion algorithms for the minSTC problem: A 2-approximation
algorithm that relies on finding a maximal matching for the
dual graph GT ; A greedy O(logn)-approximation algorithm
that constructs a vertex cover of GT by always selecting the
node that covers the most uncovered edges. We discuss the
details of the algorithms in Section 7.

6. EXTENSIONS AND VARIATIONS
We will now discuss some extensions and variations to the

basic minSTC problem.

6.1 STC with edge additions
Consider the case that the graph G that we want to label

consists of a full clique of n nodes, missing a single edge
(u, v). Then, the best labeling we can obtain has n−2 weak
edges (all the edges incident to either u or v). However, we
could obtain a labeling with all the edges labeled strong if we
simply added the missing edge (u, v). Thus, we consider a



new minimization problem, where, in order to guarantee the
STC property, except for labeling existing edges as weak, we
can also add new edges to the graph. The goal is to minimize
the number edges added to the graph, and the number of
edges in the original graph that are labeled weak. We refer
to this problem as minSTC+.

Problem 4 (minSTC+). Given a graph G = (V,E),
identify a set of additional edges E′ ⊆ V × V \ E and a
labeling LG′ of the graph G′ = (V,E ∪ E′) that satisfies the
STC property such that W (LE) + |E′| is minimized.

The minSTC+ problem is also NP-hard. However, we
can again view it as a coverage problem, and exploit the
fact that there is a known approximation algorithm.

Lemma 3. There is a O(logn)-approximation algorithm
for the minSTC+ problem.

Proof. We will show that our problem can be modelled
as an instance of the Minimum Hitting Set (minHitSet)
problem. The minimum hitting set problem is defined as
follows. Given a universe of elements U and a collection of
subsets of U , S = {S1, ..., Sn}, we want to find a subset C ⊆
U of minimum size, such that for each Si ∈ S, Si ∩ C 6= ∅,
that is, each set Si ∈ S is hit by C.

We can transform an instance of the minSTC+ prob-
lem to an instance minHitSet problem using a construc-
tion very similar to the one we used for transforming min-
STC to the minVertexCover problem. Given the graph
G = (V,E) the universe U is defined as the set of all pairs
of the form (u, v) where u, v ∈ V . For every open tri-
angle t = 〈(u, v), (u,w)〉 of the graph G, we create a set
St = {(u, v), (u,w), (v, w)}. The goal is to find the small-
est subset C of pairs in U such that we hit all the sets St.
Given a hitting set, we define the set E′ as the set of pairs
(w, u) ∈ C such that (w, u) 6∈ E. The remaining pairs in
C correspond to edges in E and are labeled weak. The la-
beling of graph G′ satisfies the STC property since every
open triangle in G is either covered by a weak edge, or it is
closed by an edge in E′. We can assume that the additional
edges are labeled weak, therefore, they do not create any
new violating open triangles.

Given a solution to the minSTC+ problem, we can define
a hitting set, by adding to the set C the pairs in E′, and the
edges in E that are labeled weak. Since all open triangles
in G are covered, this defines a hitting set.

The minHitSet problem is NP-hard, but the simple greedy
algorithm that always selects the element that hits most sets
that are not already hit is known to have a O(logn) approx-
imation ratio. Therefore, there exists a O(logn) approxima-
tion algorithm for the minSTC+ problem.

6.2 STC with multiple relationship types
In the minSTC (or maxSTC) problem, there are only two

types of edges: strong and weak. We assume that the weak
edges are the “less important” ones, and we want to produce
a labeling that maximizes the strong ones. We now consider
the scenario where there are multiple types of strong ties.
For example, when considering the social network of a spe-
cific individual it would be useful to understand which links
correspond to strong family ties, strong work ties, or strong
friendship ties. In this case we want to identify the strong
edges of each type.

We model this problem using a natural extension of the
STC property. Similar to before, the goal is to have as many
strong edges as possible, such that there is no violating open
triangle with both edges labeled strong. The difference is
that with multiple types of strong edges, an open triangle
is violating if both its edges are labeled strong and they are
both of the same type. That is, it is ok for a user u to
have strong relationships with users v, w and v, w to not be
connected, as long as the type of relationship of (u, v) and
(u,w) is different.

More formally, we assume a fixed number k of strong
relationship types. We can view these types as k labels
{S1, ..., Sk}. We also have the additional label W for the
weak edges. Given graph G = (V,E), we want to produce a
labeling LE : E → {W,S1, ..., Sk} of the edges of a graph G.
The labeling must satisfy the multi-Strong Triadic Closure
property (multi-STC) which is defined as follows.

Definition 2 (multi-Strong Triadic Closure). Gi-
ven a graph G, a labeling LE : E → {W,S1, ..., Sk} satis-
fies the multi-Strong Triadic Closure (multi-STC) property,
if there exists no pair of edges (u, v) and (u,w), such that
(v, w) 6∈ E and L(u, v) = L(u,w) = Si, for some i ∈ [1, k].

Similar to the STC property, we can trivially satisfy the
multi-STC property by labeling all edges as weak. Our goal
is again to maximize the number of edges labeled strong (of
any type), or minimize the number of edges labeled weak.
The maximization problem runs again into the problem of
finding the maximum clique, so we study the minimization
problem.

Problem 5 (minMultiSTC). Given a graph G, and k
strong edge types, find a labeling LE that satisfies the multi-
STC property and minimizes W (LE).

We can now prove the following theorem.

Theorem 2. The minMultiSTC problem is NP-hard for
any k ≥ 2. There is a O(logn)-approximation algorithm for
k = 2. The problem is hard to approximate for k ≥ 3, unless
P = NP.

Proof. For the proof, we will make use of the dual graph
GT that we constructed in Section 5. We can model our
problem as a coloring problem on the dual graph GT , where
we want to color the nodes of GT with k + 1 colors. There
are k “strong” colors {S1, ..., Sk}, one for each strong label,
plus an additional “white” color W for the weak label. We
want a legal coloring of the nodes of the graph GT , where
no two adjacent nodes can be colored with the same strong
color. It is ok if we have two adjacent nodes having a white
color. We want a legal coloring that minimizes the number
of white nodes.

For k = 2 our problem is equivalent to the odd-cycle
traversal problem [17], which given a graph asks for the min-
imum number of vertices to be removed, so that the result-
ing graph becomes bipartite. This problem is also known
to be NP-hard, but there is a O(logn)-approximation algo-
rithm [5].

For k ≥ 3 we can show that the problem is not only NP-
hard, but also hard to approximate unless P = NP . The
proof follows easily by observing that for a k-colorable graph,
the optimal solution to the minMultiSTC problem has cost
zero, that is, we do not need to use the white color. This



implies that if there was an algorithm with bounded ap-
proximation ratio, then for an input instance for which the
optimal algorithm has cost zero, the algorithm would be able
to produce a solution with zero cost as well; otherwise the
approximation ratio is infinite. However, for k ≥ 3, finding
a k-coloring of a k-colorable graph is NP-hard. Therefore,
it is hard to decide if there is a solution to the minMulti-
STC problem that has cost greater than zero. Therefore,
the problem is hard to approximate, unless P = NP .

We note that for k = 2, the O(logn)-approximation al-
gorithm makes use of linear programming for deriving the
solution. We propose a simpler heuristic in Section 7.

7. EXPERIMENTS
The goal of the experiments is to study if the labeling

we obtain by enforcing the STC property correlates with an
intuitive measure of tie strength in practice. We perform a
variety of experiments towards this end. Our experiments
are on real data, and demonstrate the practical utility of our
formulation and of the proposed algorithms.

7.1 Datasets
We use five different datsets in our experiments: Actors,

Authors, Les Miserables, Karate Club and Amazon Books.
Table 1 shows some statistics about our datasets. The col-
umn “Weights” indicates whether we can compute weights
for the edges of the graph. The weight of an edge corre-
sponds to the empirical strength of the connection. The col-
umn “Community Structure” indicates whether there exists
a known community structure in the graph.

Table 1: Datasets Statistics.

Dataset Nodes Edges Weights
Community

structure
Actors 1,986 103,121 Yes No
Authors 3,418 9,908 Yes No

Les Miserables 77 254 Yes No
Karate Club 34 78 No Yes

Amazon Books 105 441 No Yes

We now describe the datasets in detail.
The Actors dataset: We create a graph from a movie

dataset collected from IMDB1, consisting of 3,125 movies
made from 1945 to 2010, and 2,171 actors that participate
in these movies. The actor graph contains a node for each
actor in the data, and there is an edge between two actors
if they have collaborated in at least one movie. For each
node of the graph we also have information about the set of
movies in which the actor has played. We prune actors who
participated in less than 5 movies since we do not consider
them to be significant members of the network.

The Authors dataset: This dataset was obtained from
data downloaded from the DBLP site2. It consists of a col-
lection of authors that have published papers in one of the
major Data Mining, Databases or Theory conferences dur-
ing the period between 1994 and 2013. The author graph
contains a node for each author in the data, and there is
an edge between two authors if they have collaborated in at
least one paper. For each node in the graph we also have

1http:www.imdb.com
2http://dblp.uni-trier.de/xml/

information about the set of papers the author has written.
We prune authors who wrote less than 3 papers since we do
not consider them to be significant members of the network.

The Les Miserables dataset: This dataset contains the
network of co-appearances of characters in Victor Hugo’s
novel ”Les Miserables” [13]. Nodes represent characters of
the novel, and there is an edge between two nodes if the
pair of characters appear in the same chapter of the book.
For each edge we have the number of such co-appearances
between the two characters.

The Karate Club dataset: Zachary’s Karate Club
dataset [23] is a social network of friendships between 34
members of a karate club at a US university in the 1970s.
The information about the friendship was derived by ques-
tionnaires filled out by the members of the club.

The Amazon Books dataset: This dataset contains a
set of books about US politics published around the time of
the 2004 presidential election which are sold by the online
bookseller Amazon.com3. Edges between books represent
frequent co-purchasing of the books. In addition, each node
(book) is labeled as “liberal”, “neutral”, or “conservative”,
depending on its political viewpoint. There are 43 liberal,
13 neutral and 49 conservative books in this dataset.

7.2 Algorithms
In Section 5, we proved that minSTC problem on the

graph G can be mapped to the minVertexCover problem
on the dual graph GT . Given the graph G, the dual graph
GT is constructed by creating a node for every edge of G,
and connecting two nodes if the corresponding edges form
an open triangle. The algorithms we consider work by con-
structing an approximate solution to the minVertexCover
problem. We now describe them in detail.

The Greedy Algorithm: The input to the algorithm is
the graph G and its dual GT , and the output is a labeling of
the edges of the graph G as strong or weak. The algorithm
works by constructing a vertex cover of graph GT in a greedy
fashion. Recall that a vertex cover of a graph is a set of
vertices such that every edge of the graph has at least one
endpoint in the set. Let C denotes the set of nodes which are
selected by our algorithm. Initially C = ∅. At every step the
algorithm selects the node v with the maximum degree in
GT , and adds it to the set C. It then deletes node v and all
edges incident on v from graph GT . The process is repeated
until there are no more edges in the graph GT . Given the set
of nodes in C, we label the corresponding edges of graphG as
weak. The remain edges are labeled strong. This algorithm
is known to be a O(logn)-approximation algorithm [21].

If at any step of the algorithm more than one nodes have
the same degree, we break ties by choosing the node that
corresponds to the edge in G that participates in the fewest
closed triangles in the graph G. This way, our algorithm
tends to label as weak edges that participate in many open
triangles and few closed triangles, a principle that agrees
with our intuition of what a weak edge should be.

The MaximalMatching Algorithm: The MaximalMatch-
ing algorithm also produces a vertex cover of the graph GT ,
by constructing a maximal matching for the dual graph GT .
A matching of a graph is a collection of non-adjacent edges
of the graph, while a maximal matching is one where no
additional edges can be added. The algorithm constructs
the matching one edge at the time. Let M denote the set

3Available by V. Krebs at http://www.orgnet.com/.



of edges selected by our algorithm. Initially M = ∅. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high affinity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant difference
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the difference is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this difference is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.



7.4 Weak edges as bridges
Granovetter, in his seminal paper [8], demonstrated the

importance of weak social ties in connecting individuals with
information that is not readily available in their close social
circle, such as new work opportunities. A possible expla-
nation to this observation is nicely articulated in the book
of David Easley and Jon Kleinberg [4], where they postu-
late that weak ties act as bridges between communities in
the graph. Communities hold different types of information,
and the only way for an individual to obtain access to infor-
mation from a community different than her own is through
weak ties.

In accordance to this interpretation, given a labeling of
the edges of a graph with known community structure, we
would like most of the inter-community edges to be labeled
weak, while most of the strong labels to be confined to intra-
community edges. That is, edges that bridge communities
should be labeled weak, while strong edges should serve as
a backbone of the communities.

Formally, let G = (V,E) denote the input graph, and let
C = {C1, ..., Ck} denote a partition of the nodes of the graph
into k communities, which is also given as part of the input.
Let Einter denote the set of edges (u, v) such that u ∈ Ci and
v ∈ Cj for some i 6= j, and let Eintra denote the set of edges
(u, v) such that u, v ∈ Ci for some i. Also given the labeling
LG of the graph G let W denote the set of edges labeled
weak, and let S denote the set of edges labeled strong. We
define the precision PW and recall RW for the weak edges
as follows:

PW =
|W ∩ Einter|
|W | and RW =

|W ∩ Einter|
|Einter|

Similarly, we define precision PS and recall RS for strong
edges as follows:

PS =
|S ∩ Eintra|
|S| and RS =

|S ∩ Eintra|
|Eintra|

The numbers we are mostly interested in are RW and PS ,
that is, we want the bridging edges to be labeled weak, and
the strong edges to be confined within the communities.

To test our hypothesis we need graphs with known com-
munity structure. To this end, we use the Karate Club and
Amazon Books datasets. For the Karate Club dataset it
is well known [4] that there were two fractions within the
members of the club, centered around the two trainers, that
eventually led to the breakup of the club. For the Amazon
Books dataset the communities are given by the political
viewpoint of the books.

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy
PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching
PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Table 5 shows the results for the two datasets for the
Greedy and MaximalMatching algorithms. The two algo-

rithms behave similarly, but the Greedy algorithm performs
better overall in terms of both precision and recall. We now
study the labeling of the Greedy algorithm in more detail.

For the Karate Club dataset we observe that we have per-
fect precision for the strong edges, and perfect recall for the
weak edges. We visualize the results of the Greedy algorithm
in Figure 1. The nodes are colored white and gray depend-
ing on the community to which they belong. The thick red
edges correspond to the edges labeled strong, and the thin
blue edges to the edges labeled weak. We can see that strong
edges appear only between nodes of the same group, while
all edges that cross communities are labeled weak.

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

For the Amazon Books dataset the Greedy algorithm char-
acterizes 114 edges as strong, out of which 92 connect books
of the same type, thus yielding precision PS = 0.81. On
the other hand, there are 70 edges that connect nodes from
different groups, and 48 of those are labeled weak, yielding
recall RW = 0.69. Of the remaining 22 edges that cross
communities and are labeled strong, 20 are edges with one
of the two endpoints being a book labeled as neutral. It
is intuitive that people would co-purchase books of neutral
viewpoint with liberal or conservative books, thus leading to
strong connections. There are only two edges that connect
a liberal and a conservative pair of books, and are labeled
strong by our algorithm. These pairs are: (“America Un-
bound”, “Rise of the Vulcans”), and (“The Choice”, “Rise of
the Vulcans”). After some investigation, we found out that,
for the first pair, although the books “America Unbound”
and “Rise of the Vulcans” belong to different categories (lib-
eral and conservative respectively), they are both about the
exact same issue: George W. Bush’s foreign policy. There-
fore, there is a different latent dimension that groups them
together, which can explain the strong relationship between
them.

7.5 STC with added edges
In this section we conduct experiments for the minSTC+

problem, where except for labeling edges as strong or weak,
we can also add edges to the graph. To this end we use the
greedy algorithm we described in Section 6. The algorithm
works iteratively. At each step of the algorithm a pair of
nodes (u, v) is selected which covers the most remaining open
triangles. This pair is either an edge not currently in the
graph, which, when added, closes the most remaining open
triangles, or an existing edge, which, when labeled weak,



covers the most remaining open triangles. We refer to this
algorithm as the Greedy+ Algorithm.

Table 6 shows the number of strong, weak and added edges
using the Greedy+ algorithm. We can see that, as expected,
using added edges the number of strong edges increases. Ta-
ble 7 shows the mean weight for the strong and weak edges
for the Greedy+ algorithm. It is still the case that strong
edges have higher mean weight than the weak edges, how-
ever, compared to the results in Table 3, the strong edges
have lower mean weight while weak edges have higher mean
weight. Therefore, although the Greedy+ algorithm labels
more edges as strong, it seems that some of these edges are
of low weight.

Table 6: Number of strong, weak and added edges
for the Greedy+ algorithm.

Strong Weak Added
Actors 12095 91026 537
Authors 4041 5867 343

Les Miserables 165 89 14
Karate Club 29 49 1

Amazon Books 158 283 29

Table 7: Mean count weight for strong and weak
edges for the Greedy+ algorithm.

S W
Actors 1.403 1.191
Authors 1.332 1.142

Les Miserables 3.345 3.011

To obtain further insight into the effect of added edges we
look at the labeling produced by the Greedy+ algorithm for
networks with known community structure. Table 8 shows
the results for the Amazon Books and Karate Club datasets.
We observe that the recall value RS of the Greedy+ algo-
rithm is higher compared to that of the Greedy algorithm,
while the PS value is almost the same. This means that the
algorithm is successful at introducing strong edges within
the communities as it was supposed to. We also compute
the precision PA of the added edges, shown in Table 8. We
define PA as the fraction of added edges that fall within the
community. Clearly, the added edges serve the purpose of
“strengthening” an existing community.

Table 8: Precision and Recall for strong and weak
edges for the Greedy+ algorithm

PS RS PW RW PA
Karate Club 1 0.43 0.2 1 1

Amazon Books 0.79 0.37 0.13 0.53 0.72

We also visualize the effect of the added edges for the case
of the Karate Club dataset in Figure 2. For this dataset, the
Greedy+ algorithm adds only one edge (the dashed black
edge in the figure). Compared to Figure 1, the algorithm
maintains all the inter-community weak edges, and all the
intra-community strong edges produced by the Greedy algo-
rithm, and it adds an additional four strong edges within the
grey community. The added edge reveals the existence of a
near-clique of seven users in the network, which can now be
labeled strong.

Figure 2: Karate Club graph. Blue light edges rep-
resent the weak edges, red thick edges represent the
strong edges, and the black dashed edge represents
the added edge

Therefore, we can conclude that the Greedy+ algorithm is
better than the Greedy algorithm in revealing the backbone
of an existing community in the graph. However, this comes
at the price of labeling as strong more low-weight edges.

7.6 STC with multiple relationship types
We now consider the minMultiSTC problem where we

have k different types of strong ties. For this problem, there
is an approximation algorithm for k = 2, however, it makes
use of Linear Programming, making it complex to imple-
ment. There is no known algorithm for k > 2.

We propose a heuristic algorithm that works for any k by
making iterative calls to the Greedy algorithm. The algo-
rithm starts by running the Greedy algorithm on the graph
G, producing sets S1 and W1 of strong and weak edges re-
spectively. We label the edges in S1 as “Strong 1”. Given
the set W1 we compute the subgraph GW1 induced by the
edges in W1. We can now repeat the same process on the
graph GW1 to obtain a new set of edges S2 to label “Strong
2”, and a new subgraph GW2 . We continue iteratively until
all k labels have been utilized.

More formally, the i-th iteration of the algorithm takes the
graph GWi−1 as input (where GW0 = G), runs the Greedy
algorithm, and produces the sets of edges Si and Wi. The
set Si is labeled as “Strong i”, and the set Wi is used to
produce the graph GWi for the next iteration. This process
is repeated until k iterations are completed. The set Wk

in the final iteration is labeled as “Weak”. We refer to this
algorithm as the MultiGreedy Algorithm.

We now experiment with the MultiGreedy algorithm. For
simplicity we only consider the case where k = 2, that is, we
only have two types of strong edges. For this experiment, we
use as input graph an ego-graph, that is, the relationships
of a single individual, and the edges between them. This
is a common scenario in online social networks, where we
want to be able to discriminate between different types of
relationships of a specific individual.

Using the Authors dataset, we create two ego-networks
centered around Jon Kleinberg, and Ravi Kumar, two re-
searchers with diverse interests and collaborations. We prune
co-authors with whom the author has less than 3 papers to-
gether, so that we focus on the more meaningful collabora-
tions. Tables 9 and 10 show the results. For Kleinberg we
observe that the “Strong 1” edges correspond to collabora-
tions related to the early Web research, and his association



with IBM Almaden, while the “Strong 2” collaborations cor-
respond to more theoretical publications. For Ravi Kumar,
the “Strong 1” ties correspond to his time at IBM Almaden,
while the “Strong 2” ties to the time at Yahoo. Our al-
gorithm is able to differentiate between these two distinct
types of relationships.

Table 9: J. Kleinberg’s ego-network.
Type Names

Strong 1 R. Kumar, S. Rajagopalan, A. Tomkins, A.
Sahai, P. Raghavan

Strong 2 M. Sudan, D. P. Williamson
Weak E. Tardos, F. T. Leighton, L. Back-

strom, D. P. Huttenlocher, A. Kumar, J.
Leskovec, L. Lee

Table 10: R. Kumar’s ego-network.
Type Names

Strong 1 A. Tomkins, D. Sivakumar, E. Upfal, P.
Raghavan, S. Rajagopalan

Strong 2 V. Josifovski, S. Vassilvitskii, A. Z. Broder
Weak R. Rubinfeld, K. S. McCurley, M. Mitzen-

macher, A. Dasgupta, A. Panconesi, K.
Punera, V. Rastogi, J. Novak, J. M. Klein-
berg, M. Mahdian, E. Vee, S. Lattanzi, B.
Reed, A. Sahai, R. Krauthgamer, T. S.
Jayram, S. Pandey, B. Pang, R. V. Guha

8. CONCLUSIONS
In this paper we addressed the problem of characterizing

the connections in a social network. We made use of the
Strong Triadic Closure property, and we formulated a novel
optimization problem where we look for a labeling of the
edges of a graph into strong or weak, such that the STC
property is satisfied and the number of weak edges is mini-
mized. We studied the complexity of the ensuing problems,
and we showed that for the minimization problem we can
provide a constant approximation algorithm. We also con-
sidered extensions of the basic formulation, to account for
edge additions and networks where ties may have several
different types. The experimental results demonstrate that
the labeling we obtain makes sense in practice.

Our work leaves room for further research. More specifi-
cally, it would be interesting to consider further relaxations
of the STC property. It would also be interesting to have
a stochastic model where each edge has a probability of be-
ing strong or weak, rather than belonging exclusively to one
class or another. These questions become more interesting
when we have more than one types of strong edges.
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