
Online Social Networks and
Media

Community detection

1

2

Real networks are not random graphs

Communities
aka: groups, clusters, cohesive subgroups, modules

(informal) Definition: groups of vertices which probably
share common properties and/or play similar roles
within the graph

Some are explicit (emic) (e.g., Facebook (groups),
LinkedIn (groups, associations), etc), we are interested
in implicit (etic) ones

Introduction

3

4

Nodes: Football Teams
Edges: Games played

Can we identify node
groups?

(communities,
modules, clusters)

NCAA Football Network

5

NCAA conferences

Nodes: Football Teams
Edges: Games played

Protein-Protein Interactions

6

Can we identify
functional
modules?

Nodes: Proteins
Edges: Physical interactions

Protein-Protein Interactions

7

Functional modules

Nodes: Proteins
Edges: Physical interactions

Protein-Protein Interactions

8

Facebook Network

9

Can we identify social
communities?

Nodes: Facebook Users
Edges: Friendships

Facebook Network

10

High school Summer
internship

Stanford (Squash) Stanford (Basketball)

Social communities

Nodes: Facebook Users
Edges: Friendships

Twitter & Facebook

social circles, circles of trust

11

PART I
1. Introduction: what, why, types?

2. Cliques

3. Background: How it relates to “cluster analysis”
(node/edge similarity)

4. Betweeness centrality

5. Modularity, label propagation

6. How to evaluate

PART II (next lecture)
Cuts, Spectral clustering, Denser subgraphs
+ signed networks

Outline

12

Why? (some applications)

▪ Knowledge discovery
▪ Groups based on common interests, behavior, etc

(e.g., Canadians who call USA, readings tastes, etc)

▪ Recommendations, marketing

▪ Collective behavior observable at the group, not the
individual level, local view is noisy and ad hoc

▪ Classification of the nodes by identifying modules
and their boundaries

▪ To improve performance: partition a large graph into
many machines, assigning web clients to web
servers, routing in ad hoc networks, etc

▪ Summary, visual representation of the graph
13

14

59% Flemish, speaking Dutch 40% Walloons speaking French
Community structure in Belgium

Example: communities in Belgium

2 million mobile phone users
Nodes correspond to communities (>100 members)
Red French, Green Dutch
Connecting community Brussels

Community Types

Non-overlapping vs. overlapping communities

15

Non-overlapping Communities

16

Network

Adjacency matrix

Nodes

N
o

d
es

Overlapping Communities
What is the structure of community overlaps:
Edge density in the overlaps is higher!

17

Communities as “tiles”

Community Types

Member-based (local) vs. group-based

18

Community Detection

Given a graph 𝐺(𝑉, 𝐸), find subsets 𝐶𝑖 of V, such that ڂ𝑖 𝐶𝑖  V

Assumptions
▪ Undirected graphs
▪ Edges may have

▪ weights, (easily extended)
▪ labels
▪ content or attributes shared by individuals (in the same

location, of the same gender, etc)
▪ Nodes may have labels, attributed, or labeled graphs

Multipartite graphs – e.g., affiliation networks, citation
networks, customers-products: reduced to unipartited
projections of each vertex class

19

Hardness

20

Bell Number
Number of all possible partitions of N
nodes

N

For N = 50, 1040 partitions

Community Detection

We will see three approaches
▪ Node degree (familiarity)
▪ cliques

▪ Node similarity
▪ cluster

▪ Node reachability
▪ betweeness

21

Cliques (degree similarity)

Clique: a maximum complete subgraph in which all pairs of
vertices are connected by an edge.

A clique of size k is a subgraph of k vertices where the degree
of all vertices in the induced subgraph is k -1 .

✓ Cliques vs complete graphs

22

Cliques (degree similarity)

Search for:
▪ the maximum clique: the one with the largest number of

vertices) or
▪ all maximal cliques: cliques that are not subgraphs of a larger

clique; i.e., cannot be expanded further.

Both problems are NP-hard, as is verifying whether a graph
contains a clique larger than size k.

23

Cliques

Enumerate all cliques (in alphabetical order)
Checks all permutations!
For (complete graph) 100 vertices, 299- 1 different cliques

24

/* Check all neighbors of last node sequentially
if connected with all members in the clique

new clique -> push */

Cliques
Pruning
▪ Prune all vertices (and incident edges) with degrees less than

k - 1.

▪ Effective due to the power-law distribution of vertex degrees

Exact cliques are rarely observed in real networks.

E.g., a clique of 1,000 vertices has (999x1000)/2 = 499,500
edges.
▪ A single edge removal results in a subgraph that is no longer

a clique.
▪ That represents less than 0.0002% of the edges

25

Relaxing Cliques

All vertices have a minimum degree but not necessarily k -1

k-plex
For a set of vertices V0, for all u, du ≥ |V0| - k
where du is the degree of v in the induced subgraph

What is k for a clique?

Maximal

26

Relaxing Cliques

27

Clique

Weak community

Strong community

∀ 𝑖 ∈ 𝐶, 𝑑𝑖
𝑖𝑛𝑡 = 𝐶 − 1

∀ 𝑖 ∈ 𝐶, 𝑑𝑖
𝑖𝑛𝑡 > 𝑑𝑖

𝑒𝑥𝑡

෍

𝑖 ∈ 𝐶

𝑑𝑖
𝑖𝑛𝑡 > ෍

𝑖 ∈ 𝐶

𝑑𝑖
𝑒𝑥𝑡

𝑑𝑖
𝑖𝑛𝑡 degree (#edges) of node i

with nodes inside C

𝑑𝑖
𝑒𝑥𝑡 degree (#edges) of node i

with nodes outside C

Clique Percolation Method (CPM):
Using cliques as seeds

Assumption: communities are formed from a set of cliques and
edges that connect these cliques.

28

k = 4

Clique Percolation Method (CPM):
Using cliques as seeds

1. Given k, find all cliques of size k.
2. Create graph (clique graph) where all cliques are vertices,

and two cliques that share k - 1 vertices are connected via
an edge.

3. Communities are the connected components of this graph.

29

Clique Percolation Method (CPM):
Using cliques as seeds

Input graph, let k = 3

30

Clique Percolation Method (CPM):
Using cliques as seeds

Clique graph for k = 3

31

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Clique Percolation Method (CPM):
Using cliques as seeds

32

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Result

Note: the example protein network was detected using a CPM algorithm

Clique Percolation Method (CPM)

▪ By construction, overlapping communities

▪ Instead of k = 3, maximal cliques

▪ Theoretical complexity grows exponential
with size, but efficient on sparse graphs

33

PART I
1. Introduction: what, why, types?

2. Cliques
3. Background: cluster analysis (node/edge similarity)

4. Hierarchical clustering (betweenness)

5. Modularity

6. How to evaluate

Outline

34

What is Cluster Analysis?
Finding groups of objects such that the objects in a group
are similar (or related) to one another and different from
(or unrelated to) the objects in other groups

Inter-cluster
distances are

maximized
Intra-cluster
distances are

minimized

35

Types of Clustering

• Important distinction between hierarchical
and partitional sets of clusters

• Partitional Clustering
– Division of data objects into subsets (clusters)

– Assumes that the number of clusters is given

• Hierarchical clustering
– A set of nested clusters organized as a hierarchical tree

36

Partitional Clustering

Original Points A Partitional Clustering

37

Example Partitioning:
K-means Clustering

• Input: Number of clusters, K

• Each cluster is associated with a centroid (center point)

• Each point is assigned to the cluster with the closest
centroid

38

Example

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

39

• Initial centroids are often chosen randomly.

– Clusters produced vary from one run to another.

• The centroid is (typically) the mean of the points in the
cluster.

• Closeness - Similarity is measured by Euclidean distance,
cosine similarity, correlation, etc.

• K-means will converge for common similarity measures
mentioned above.

• Most of the convergence happens in the first few iterations.

• Often the stopping condition is changed to ‘Until relatively few points change
clusters’

• Complexity is O(n * K * I * d)
– n = number of points, K = number of clusters,

I = number of iterations, d = number of attributes

K-means Clustering

40

K-means Clusters

• Most common measure is Sum of Squared Error (SSE)
– For each point, the error is the distance to the nearest cluster

– To get SSE, we square these errors and sum them.

– x is a data point in cluster Ci and mi is the representative point for
cluster Ci

• can show that mi corresponds to the center (mean) of the cluster

– Given two clusters, we can choose the one with the smallest error

– One easy way to reduce SSE is to increase K, the number of clusters
• A good clustering with smaller K can have a lower SSE than a poor

clustering with higher K


= 

=
K

i Cx

i

i

xmdistSSE
1

2),(

41

Vertex similarity

▪ Define similarity between two vertices
▪ Place similar vertices in the same

cluster

▪ Use traditional cluster analysis

42

Vertex similarity

▪ Structural equivalence: based on the
overlap between their neighborhoods

43

▪ Normalized to [0, 1], e.g.,

Vertex similarity

44

Other definitions of vertex similarity

45

Use the adjacency matrix A,

We can also use 𝐴2

Common neighbors
(paths of length two)

Other definitions of vertex similarity

46

If we map vertices u, v to n-dimensional points A, B in the
Euclidean space,

Other definitions of vertex similarity

47

Many more – we shall revisit this issue when we talk about
graph embeddings

Also useful when there are attributes associated with nodes or
edges to combine distances

Hierarchical Clustering

• Produces a set of nested clusters organized as
a hierarchical tree

• Can be visualized as a dendrogram

– A tree like diagram that records the sequences of
merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5

48

Hierarchical Clustering

• Two main types of hierarchical clustering
– Agglomerative:

• Start with each node as an individual cluster (called singletons)

• At each step, merge the closest pair of clusters until only one cluster (or k
clusters) is left

– Divisive:
• Start with one, all-inclusive cluster = the whole graph

• At each step, split a cluster until each cluster contains a single node (or
there are k clusters)

• Traditional hierarchical algorithms use a similarity or distance
matrix
– Merge or split one cluster at a time

49

Agglomerative Clustering Algorithm

Popular hierarchical clustering technique

Basic algorithm is straightforward
1. [Compute the proximity matrix]

2. Let each node be a cluster

3. Repeat

4. Merge the two closest clusters

5. [Update the proximity matrix]

6. Until only a single cluster remains

50

51

Agglomerative

52

Agglomerative

53

Agglomerative

54

Agglomerative

55

Agglomerative

56

Agglomerative

57

Agglomerative

58

Agglomerative

59

Agglomerative

60

Agglomerative

61

Agglomerative

62

Agglomerative

63

Agglomerative

Strengths of Hierarchical Clustering

• Do not have to assume any particular number
of clusters
– Any desired number of clusters can be obtained

by ‘cutting’ the dendogram at the proper level

• They may correspond to meaningful
taxonomies
– Example in biological sciences (e.g., animal

kingdom, phylogeny reconstruction, …)

64

Where to cut?

Agglomerative Clustering Algorithm

Key operation is the computation of the proximity of two
clusters

– Different approaches to defining the distance between clusters
distinguish the different algorithms

66

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

Proximity Matrix

67

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

MIN or single link

based on the two most similar (closest)
points in the different clusters

sensitive to outliers

68

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

MAX or complete linkage

Similarity of two clusters is based on
the two least similar (most distant)
points in the different clusters

69

Tends to break large clusters
Biased towards globular clusters

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

Group Average

Proximity of two clusters is the
average of pairwise proximity
between points in the two clusters.

70

PART I
1. Introduction: what, why, types?

2. Cliques

3. Background: How it relates to “cluster analysis”
(node/edge similarity)

4. Betweeness centrality

5. Modularity, label propagation

6. How to evaluate

Outline

71

Example of a Hierarchically Structured
Graph

72

73

Divisive Algorithms

Which edge to
remove?

The Girvan Newman method

74

Hierarchical divisive method
▪ Start with the whole graph
▪ Find edges whose removal “partitions” the graph
▪ Repeat with each subgraph until single vertices

Which edge?

Use bridges or cut-edge (if removed, the nodes
become disconnected)

Which one to choose?

75

The Girvan Newman method

76

The Girvan Newman method

There may be none!

Strength of Weak Ties
• Edge betweenness: Number of

shortest paths passing over the edge
• Intuition:

77

Edge betweenness
in a real network

Assuming communication through
shortest paths, captures traffic

Edge Betweenness
Betweenness of an edge (a, b): number of pairs of nodes x and y such that the edge (a, b)
lies on their shortest path
There can be multiple shortest paths, take the fraction that includes (a, b)

7x7 = 49

3x11 = 33

1

1x12 = 12

edges that have a high probability to occur on a randomly chosen shortest path
between two randomly chosen nodes

78

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑎, 𝑏 = ෍

𝑥,𝑦 ∈ 𝐸

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 𝑥, 𝑦 _𝑡ℎ𝑟𝑜𝑢𝑔ℎ(𝑎, 𝑏)

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝑥, 𝑦)

Edge Betweenness

79

b=16
b=7.5

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑎, 𝑏 = ෍

𝑥,𝑦 ∈ 𝐸

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 𝑥, 𝑦 _𝑡ℎ𝑟𝑜𝑢𝑔ℎ(𝑎, 𝑏)

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝑥, 𝑦)

» Undirected unweighted networks

– Repeat until no edges are left:

• Calculate betweenness of edges

• Remove edges with highest betweenness

– Connected components are communities

– Gives a hierarchical decomposition of the network

80

[Girvan-Newman ‘02]

The Girvan Newman method

Girvan Newman method: An example

Betweenness(7, 8)= 7x7 = 49

Betweenness(3, 7)=Betweenness(6, 7)=Betweenness(8, 9) = Betweenness(8, 12)= 3x11=33

Betweenness(1, 3) = 1x12=12 81

Girvan-Newman: Example

82

Need to re-compute betweenness at every step

49
33

12
1

Girvan Newman method: An example

Betweenness(3,7)=Betweenness(6,7)=Betweenness(8,9) = Betweenness(8,12)= 3x4=12

Betweenness(1, 3) = 1x5=5

83

Girvan Newman method: An example

Betweenness of every edge = 1

84

Girvan Newman method: An example

85

Girvan-Newman: Example

86

Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Another example

5x5=25

87

Another example

5x6=305x6=30

88

Another example

89

Girvan-Newman: Results

• Zachary’s Karate club:
Hierarchical decomposition

90

Girvan-Newman: Results

91
Communities in physics collaborations

How to Compute Betweenness?

• Want to compute betweenness of
paths starting at node 𝐴

92

Computing Betweenness

1.Perform a BFS starting from A
2.Determine the number of shortest path

from A to each other node
3.Based on these numbers, determine the

amount of flow from A to all other nodes
that uses each edge

93

Initial network BFS on A

94

Computing Betweenness:
step 1

Count how many shortest paths from A to a specific
node

95

Computing Betweenness: step 2

Top-down

Compute betweenness by working up the tree: If there
are multiple paths count them fractionally

Bottom-up

96

Computing Betweenness: step 3

Count the flow through each
edge

Portion of the
shortest paths to K
that go through (I, K)
= 3/6 = 1/2

Portion of the shortest paths
to I that go through (F, I) = 2/3
+
Portion of the shortest paths
to K that go through (F, I)
(2/3) (1/2) = 1/3
= 1

1/3+(1/3)1/2 = 1/2

97

Computing Betweenness: step 3

(X, Y) X

Y

pX

pY

.. .

Y1 Ym

98

Computing Betweenness: step 3

𝑓𝑙𝑜𝑤 𝑋, 𝑌 =
𝑝𝑋
𝑝𝑦

+ ෍

𝑌𝑖 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑌

𝑝𝑋
𝑝𝑦

𝑓𝑙𝑜𝑤(𝑌, 𝑌𝑖)

Computing Betweenness

Repeat the process for all nodes

Sum over all BFSs

99

Example

100

Example

101

Computing Betweenness

Issues

▪ Test for connectivity?

▪ Re-compute all paths, or only those affected

▪ Parallel computation

▪ Sampling

102

103

Centrality measures

Degree centrality

104

PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Betweeness centrality

5. Modularity, label propagation

6. How to evaluate

Outline

105

Modularity
• Communities: sets of

tightly connected nodes

• Define: Modularity 𝑸

– A measure of how well
a network is partitioned
into communities

– Given a partitioning of the
network into groups 𝑠 𝑆:

Q  ∑s S [(# edges within group s) –

(expected # edges within group s)]

106

Need a null model!
a copy of the original graph keeping some of its structural
properties but without community structure

Null Model: Configuration Model

• Given real 𝐺 on 𝑛 nodes and 𝑚 edges,
construct rewired network 𝐺’

– Same degree distribution but
random connections

– Consider 𝑮’ as a multigraph

– The expected number of edges between nodes

𝑖 and 𝑗 of degrees 𝒅𝒊 and 𝒅𝒋 equals to: 𝒅𝒊 ⋅
𝒅𝒋

𝟐𝒎
=

𝒅𝒊𝒅𝒋

𝟐𝒎

107

j

i

෍

𝑢∈𝑁

𝑑𝑢 = 2𝑚

Note:

For any edge going out of i randomly, the probability of this

edge getting connected to node j is
𝒅𝒋

𝟐𝒎

Because the degree for i is di, we have di number of such edges

Null Model: Configuration Model

• The expected number of edges in (multigraph) G’:

– =
𝟏

𝟐
σ𝒊∈𝑵σ𝒋∈𝑵

𝒅𝒊𝒅𝒋

𝟐𝒎
=

𝟏

𝟐
⋅
𝟏

𝟐𝒎
σ𝒊∈𝑵𝒅𝒊 σ𝒋∈𝑵𝒅𝒋 =

– =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎

108

j

i

Modularity

• Modularity of partitioning S of graph G:
– Q  ∑s S [(# edges within group s) –

(expected # edges within group s)]

– 𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆σ𝑖∈𝑠σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚

• Modularity values take range [−1, 1]
– It is positive if the number of edges within

groups exceeds the expected number

– 0.3-0.7 < Q means significant community structure

109

Aij = 1 if i→j,

0 elseNormalizing cost.: -1<Q<1

Modularity

110

Greedy method of Newman (one of the many ways
to use modularity)

Agglomerative hierarchical clustering method

1. Start with a state in which each vertex is the sole
member of one of n communities

2. Repeatedly join communities together in pairs,
choosing at each step the join that results in the
greatest increase (or smallest decrease) in Q.

Since the joining of a pair of communities between which there are no
edges can never result in an increase in modularity, we need only consider
those pairs between which there are edges, of which there will at any time
be at most m

Modularity: Number of clusters
• Modularity is useful for selecting the

number of clusters:

111

Q

Modularity: Cluster quality

112

When a given clustering is “good”?

Also, it is both a local (per individual cluster)
and global measure

PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Betweeness centrality

5. Modularity, label propagation

6. How to evaluate

Outline

113

Label propagation

114

Vertices are initially given unique labels (e.g., their vertex labels).

At each iteration,
sweep over all vertices, in random sequential order:

each vertex takes the label shared by the majority of its
neighbors.
If no unique majority, one of the majority label is picked at
random.

Stop (convergence) when each vertex has the majority label of its
neighbors

Communities: groups of vertices having identical labels at
convergence

Label propagation

115

▪ Labels propagate across the graph: most labels will disappear,
others will dominate.

▪ By construction, each vertex has more neighbors in its community
than in any other community.

▪ Due to many possible ties, different partitions
▪ Perform many propagations from the same initial condition,

with different random seeds
▪ Aggregate partition label each vertex with the set of all labels

it has in different partitions → overlapping communities

PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Betweeness centrality

5. Modularity, label propagation

6. How to evaluate

Outline

116

Community Evaluation

▪ With ground truth

▪ Without ground truth

117

Evaluation with ground truth

Zachary’s Karate Club
Club president (34) (circles) and instructor (1) (rectangles)

118

Metrics: purity

119

the fraction of instances that have labels equal to the
label of the community’s majority

(5+6+4)/20 = 0.75

Metrics

120

Based on pair counting: the number of pairs of vertices which
are classified in the same (different) clusters in the two
partitions.

▪ True Positive (TP) Assignment: when similar members are
assigned to the same community. This is a correct decision.

▪ True Negative (TN) Assignment: when dissimilar members
are assigned to different communities. This is a correct
decision.

▪ False Negative (FN) Assignment: when similar members are
assigned to different communities. This is an incorrect
decision.

▪ False Positive (FP) Assignment: when dissimilar members
are assigned to the same community. This is an incorrect
decision.

Metrics: pairs

121

For TP, we need to compute the number of pairs with the
same label that are in the same community

Metrics: pairs

122

For TN: compute the
number of dissimilar
pairs in dissimilar
communities

Metrics: pairs

123

For FP, compute dissimilar pairs that are in the same community.

For FN, compute similar members that are in different communities.

Metrics: pairs

124

Precision (P): the fraction of pairs that have been
correctly assigned to the same community.

TP/(TP+FP)

Recall (R): the fraction of pairs assigned to the same
community of all the pairs that should have been in the
same community.

TP/(TP+FN)

F-measure
2PR/(P+R)

• Cluster Cohesion: Measures how closely related
are objects in a cluster

• Cluster Separation: Measure how distinct or
well-separated a cluster is from other clusters

• Example: Squared Error
– Cohesion is measured by the within cluster sum of squares (SSE)

– Separation is measured by the between cluster sum of squares

– Where |Ci| is the size of cluster i

 


−=
i Cx

i
i

mxWSS
2)(

 −=
i

ii mmCBSS 2)(

125

Evaluation without ground truth

Evaluation without ground truth

126

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝐶 =
#𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝐶

𝑁𝐶(𝑁𝐶 − 1)/2

𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶 =
#𝑖𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝐶

𝑁𝐶(𝑁 − 𝑁𝐶)

Evaluation without ground truth

127

Modularity

Both as a local (per individual community) and
as a global measure

Evaluation without ground truth

128

With semantics:

▪ (ad hoc) analyze other attributes (e.g., profile,
content generated) for coherence

▪ human subjects (user study) Mechanical Turk
Visual representation (similarity/adjacency matric,
word clouds, etc)

129

▪ Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets,
Chapter 10, http://www.mmds.org/

▪ Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An
Introduction, Chapter 6, http://dmml.asu.edu/smm/

▪ Santo Fortunato: Community detection in graphs. CoRR
abs/0906.0612v2 (2010)

▪ Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data
Mining, Chapter 8,
http://www.users.cs.umn.edu/~kumar/dmbook/index.php

▪ Albert-László Barabasi, Network Science, Chapter 9,
http://networksciencebook.com/

Basic References

http://www.users.cs.umn.edu/~kumar/dmbook/index.php

130

Questions?

