Man Page for vtkVoxel
Table of Contents

NAME

vtkVoxel - a cell that represents a 3D orthogonal parallelepiped

SYNOPSIS


#include "/opt/vtk-c++/common/vtkVoxel.h"

class VTK_EXPORT vtkVoxel : public vtkCell

vtkVoxel();
vtkVoxel(const vtkVoxel& b);
static vtkVoxel *New() {return new vtkVoxel;};
const char *GetClassName() {return "vtkVoxel";};
vtkCell *MakeObject() {return new vtkVoxel(*this);};
int GetCellType() {return VTK_VOXEL;};
int GetCellDimension() {return 3;};
int GetNumberOfEdges() {return 12;};
int GetNumberOfFaces() {return 6;};
vtkCell *GetEdge(int edgeId);
vtkCell *GetFace(int faceId);
int CellBoundary(int subId, float pcoords[3], vtkIdList& pts);
void Contour(float value, vtkFloatScalars *cellScalars,
vtkPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd);
void Clip(float value, vtkFloatScalars *cellScalars,
vtkPointLocator *locator, vtkCellArray *tetras,
vtkPointData *inPd, vtkPointData *outPd, int insideOut);
int EvaluatePosition(float x[3], float closestPoint[3],
int& subId, float pcoords[3],
float& dist2, float *weights);
void EvaluateLocation(int& subId, float pcoords[3], float x[3],
float *weights);
int IntersectWithLine(float p1[3], float p2[3], float tol, float& t,
float x[3], float pcoords[3], int& subId);
int Triangulate(int index, vtkIdList &ptIds, vtkFloatPoints &pts);
void Derivatives(int subId, float pcoords[3], float *values,
int dim, float *derivs);
static void InterpolationFunctions(float pcoords[3], float weights[8]);
static void InterpolationDerivs(float pcoords[3], float derivs[24]);

DESCRIPTION

vtkVoxel is a concrete implementation of vtkCell to represent a 3D orthogonal parallelepiped. Unlike vtkHexahedron, vtkVoxel has interior angles of 90 degrees, and
sides are parallel to coordinate axes. This results in large increases in computational performance.

SUMMARY

vtkVoxel()
Construct the voxel with eight points.

vtkVoxel(const vtkVoxel& b)
Deep copy of cell.


Table of Contents