Man Page for vtkHexahedron
Table of Contents

NAME

vtkHexahedron - a cell that represents a 3D rectangular hexahedron

SYNOPSIS


#include "/opt/vtk-c++/common/vtkHexahedron.h"

class VTK_EXPORT vtkHexahedron : public vtkCell

vtkHexahedron();
vtkHexahedron(const vtkHexahedron& h);
static vtkHexahedron *New() {return new vtkHexahedron;};
const char *GetClassName() {return "vtkHexahedron";};
vtkCell *MakeObject() {return new vtkHexahedron(*this);};
int GetCellType() {return VTK_HEXAHEDRON;};
int GetCellDimension() {return 3;};
int GetNumberOfEdges() {return 12;};
int GetNumberOfFaces() {return 6;};
vtkCell *GetEdge(int edgeId);
vtkCell *GetFace(int faceId);
int CellBoundary(int subId, float pcoords[3], vtkIdList& pts);
void Contour(float value, vtkFloatScalars *cellScalars,
vtkPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd);
void Clip(float value, vtkFloatScalars *cellScalars,
vtkPointLocator *locator, vtkCellArray *tetras,
vtkPointData *inPd, vtkPointData *outPd, int insideOut);
int EvaluatePosition(float x[3], float closestPoint[3],
int& subId, float pcoords[3],
float& dist2, float *weights);
void EvaluateLocation(int& subId, float pcoords[3], float x[3],
float *weights);
int IntersectWithLine(float p1[3], float p2[3], float tol, float& t,
float x[3], float pcoords[3], int& subId);
int Triangulate(int index, vtkIdList &ptIds, vtkFloatPoints &pts);
void Derivatives(int subId, float pcoords[3], float *values,
int dim, float *derivs);
static void InterpolationFunctions(float pcoords[3], float weights[8]);
static void InterpolationDerivs(float pcoords[3], float derivs[24]);
void JacobianInverse(float pcoords[3], double **inverse, float derivs[24]);

DESCRIPTION

vtkHexahedron is a concrete implementation of vtkCell to represent a 3D rectangular hexahedron (e.g., "brick" topology).

SUMMARY

vtkHexahedron()
Construct the hexahedron with eight points.

vtkHexahedron(const vtkHexahedron& h)
Deep copy of cell.

void JacobianInverse(float pcoords[3], double **inverse, float derivs[24])
Given parametric coordinates compute inverse Jacobian transformation matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation function derivatives.


Table of Contents