
Tra i ne es h i p A pp l ic at i o n

Gui de l i ne s a nd Hi nts for the

de ve lopme nt of t he p ro jec t

 Page 2

 Page 3

1 Introduction

This document provides some basic guidelines for the development of the project. We begin with

general development tips that should be followed. Then, we provide design directions concerning the

project.

2 General Guidelines - DOs and DON'Ts

 Classes

 Make classes small and cohesive - A single well-defined responsibility for a class

 Don’t break encapsulation by making the data representation public

 Class names are important – use descriptive names for the concepts represented by the

classes

 Use Noun & Noun phrases for class names

 See here for more - http://www.cs.uoi.gr/~zarras/soft-devII.htm

 Methods

 Make methods small – A method must do one thing

 Method names are important – use descriptive names for the concepts represented by

the methods

 Use Verb & Verb phrases for method names

 See here for more - http://www.cs.uoi.gr/~zarras/soft-devII.htm

 Fields

 Make fields private – A method must do one thing

 Field names are important – use descriptive names for the concepts represented by

the fields

 Use Noun & Noun phrases for field names

 Follow the standard Java Coding Style

 https://www.oracle.com/java/technologies/javase/codeconventions-contents.html

 Page 4

3 Application Design and Related Des ign Patterns

3.1 Architecture

IMPORTANT NOTICE: the design that is given here is a draft/incomplete version of a traineeship

application prototype that relies on the Spring Boot framework. You can use it as a starting point and

follow it to a certain degree. Feel free to adapt what is described in this document to your needs and

vision.

To facilitate the maintenance and enable future extensions of the application we assume an architecture

that relies on Martin Fowler's catalog of Enterprise Application Architecture (EAA) patterns (see

https://martinfowler.com/eaaCatalog/). Maintainability and extensibility are further promoted by the

fact that the Spring Boot framework heavily relies on the Model View Controller (MVC) pattern (see

the lecture slides on Software Design) for the development of Web applications. MVC allows the clear

separation of three different concerns: the view of the application that is responsible for the user

interaction (UI) with the application, the domain model that represents the data handled by the

application and the business logic, and the controller that takes user input, manipulates the domain

model data and updates the view.

FIGURE 1 APPLICATION ARCHITECTURE.

Figure 1, illustrates a draft architecture for the application. The following list describes briefly the basic

components of the architecture:

 Page 5

 The views package realizes the user interaction (UI) with the application in collaboration with

the Controller layer. Typically, this layer consists of a set of static and dynamic Web pages. The

dynamic Web pages are also known as template views (see Template View pattern from Martin

Fowler's catalog of EAA patterns). A dynamic HTML page renders data from domain model

objects into HTML based on embedded markers. The application controllers are responsible for

passing the appropriate domain model objects to the view layer.

 The MVC controllers package consists of controller classes which take user input from the views

of the application, perform certain service operations (see next) to manipulate domain model

objects, and update the views of the application.

 The services package defines a set of services that decouple the business logic of the application

from the front-end of the application (controllers and views). Decoupling the business logic from

the front-end makes replacing the front-end with another or adding a new front-end easier (e.g.

HTML + MVC controllers with React + Rest controllers). Essentially, here we apply the Service

Layer pattern from Martin Fowler's catalog of EAA patterns.

 The mappers package consists of several interface definitions derived from the general

JpaRepository interface that is provided by Spring Boot. These interfaces allow us to perform

basic database operations which map the application data stored in the database to in-memory

objects of the domain model classes. Basically, here we apply the Data Mapper pattern from

Martin Fowler's catalog of EAA patterns.

 The backbone of the architecture is the domain model package. The domain model consists of

the basic classes that define the representation of the data handled by the application and the

domain logic that is needed for the data manipulation. All the different layers of the application

rely on the data model.

3.2 Domain Model

The domain model that we assume in this draft prototype is given in Figure 2. User is a specific class we

must implement for the realization of the user registration and login actions in Spring Boot. User should

implement the Spring UserDetails interface for this reason 1. In the application we have different kinds

of users (students, companies, professors, committee members) that we distinguish using the Role

enumeration.

1 https://github.com/zarras/myy803_springboot_web_app_tutorials/tree/master/sb_tutorial_7_signup_signin

 Page 6

FIGURE 2 DOMAIN MODEL.

The remaining classes correspond to the key concepts of the application domain, i.e. Company, Student,

Professor, TraineeshipPosition and Evaluation. Company is a class of objects which hold information

about companies which offer traineeship positions. TraineeshipsPosition is a class of objects which hold

information about traineeship positions; some of the positions are assigned to students, while others

are still open. Student is a class of objects which correspond to students looking for traineeship

positions. Professor is a class of objects which represent professors who supervise traineeship positions.

Evaluation is a class of objects which correspond to the evaluations of assigned traineeship positions,

issued by the supervising professors and the companies that offer the assigned traineeship positions.

The relation between Company and TraineeshipsPosition is one to many as a company may offer many

 Page 7

positions. The relation between Professor and TraineeshipsPosition is also one to many because a

professor may supervise several positions. On the other hand, the relation between Student and

TraineeshipsPosition is one to one. At this stage of the design, it is not clear whether some of the

relations should be bidirectional.

The database schema of the application defines corresponding tables for the classes of the application

with foreign keys that correspond to the class associations. In Spring Boot the SQL schema can be

automatically generated from the domain model with the appropriate JPA annotations 2.

3.3 Services

The services package comprises the interface definitions of 5 services and the respective

implementation classes. More specifically, we have a service that is responsible for the users

registration, login and logout (Figure 3). The user service provides the UserService interface that is

implemented by the UserServiceImpl class. The service further implements the UserDetailsService

interface, as required by the Spring Security framework.

FIGURE 3 USER SERVICE.

The company service (CompanyService interface, implemented by the CompanyServiceImpl class) is

responsible for the management of company profiles, the creation of available traineeship positions and

the evaluation of assigned traineeships positions (Figure 4).

2 https://github.com/zarras/myy803_springboot_web_app_tutorials, https://github.com/zarras/myy803_springboot_jpa_tutorials,

https://www.baeldung.com/jpa-many-to-many

 Page 8

FIGURE 4 COMPANY SERVICE.

FIGURE 5 STUDENT SERVICE.

The student service (StudentService interface, implemented by StudentServiceImpl) is responsible for

the management of student profiles and traineeship logbooks (Figure 5). The professor service

(ProfessorService interface, implemented by the ProfessorServiceImpl class) is responsible for the

management of professor profiles and the evaluation of supervised traineeships positions (Figure 6).

Finally, the committee service (CommitteeService interface, implemented by the

CommitteeServiceImpl) is responsible for the assignment of traineeship positions to students, the

assignment of supervisors to traineeship positions and the final evaluation of completed traineeship

positions (Figure 7).

 Page 9

FIGURE 6 PROFESSOR SERVICE.

The assignment of positions to students is realized via alternative strategies that account for the

students’ interests, preferred location or both. To make the alternative strategies interchangeable and

facilitate the extension of the application with more strategies, we rely on the GoF strategy pattern, i.e.

the position assignment strategies are implemented in different classes that provide the same interface.

The committee service creates the appropriate strategy using a parameterized factory.

The assignment of professors to traineeship positions is also realized via alternative strategies that

account for the professors’ interests or load (Figure 8). As before, to make the alternative strategies

interchangeable and facilitate the extension of the application with more strategies, we rely on the GoF

strategy pattern, i.e. the supervisor assignment strategies are implemented in different classes that

provide the same interface. The committee service creates the appropriate strategy using a

parameterized factory.

 Page 10

FIGURE 7 COMMITTEE SERVICE.

 Page 11

FIGURE 8 STRATEGIES AND PARAMETERIZED FACTORIES.

3.4 MVC- Controllers and Views

The controllers package comprises six different controllers (Figure 9). The AuthController is responsible

for the user registration and login. CompanyController, StudentController ProfessorController, and

CommitteeController are responsible for the interaction with companies, students, professors and

committee members, respectively. The controllers rely on the respective services of the services

package for the manipulation of domain objects and the update of the views. The views are based on

the Thymeleaf template engine.

 Page 12

FIGURE 9 CONTROLLERS

4 Tests

Concerning the tests of the application logic we need to develop tests for the different packages of the

application (mappers, services, controllers, model). For the development of the tests we can rely on the

SpringBoot testing and mocking facilities.

