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1 Introduction 

‘How do we build large-scale enterprise information 
systems out of pre-existing elements and elements that are 
build from scratch?’ 

Nowadays, the web services architectural style appears 
as the most suitable answer to this question. Web services 
are web-enabled entities that confront the increased 
heterogeneity of software composition by encapsulating  
pre-existing elements and exporting them through  
platform-independent, standard interfaces to the rest of the 
information system. Interfaces are specified using the web 
services description language (WSDL) (W3C, 2001) and 
interaction is realised through XML messages that follow 
the SOAP standard (W3C, 2002). The orchestration of the 
business processes of systems that rely on the web service 
architectural style is specified using BPEL scenarios (IBM, 
2002). These scenarios are executed on top of BPEL 
compliant execution engines. 

‘How do we assess the quality (e.g., reliability, 
availability, efficiency, etc.) of the business processes 
supported by the integrated system?’ Regarding this 
question, the web services architectural style does not 
currently provide any particular support. This paper focuses 
in the reliability aspect and the primary goal is the 
provisioning of methods that enable the ‘what-if’ reliability 
analysis of complex BPEL business processes, with respect 
to various reliability properties (e.g., failure rate, 
redundancy, etc.) that may characterise the constituents of 
these processes. In other words, the refined question tackled 
in this paper is the following: ‘given a BPEL scenario, how 
can we assess the risk of suffering failures during its 
execution?’ 

Consider the example of a pharmaceutical company that 
collects medicines and medical accessories from 
pharmaceutical factories and delivers them to pharmacies. 
Currently, whenever an order is placed by a client 
pharmacist, all the items of the order are assembled in a 
single package. A delivery company is employed to deliver 
the package to the client pharmacy. Still, some orders are 
much more urgent than the others and therefore the 
company wishes to extend its delivery process, by allowing 
the client to specify whether the items should be shipped in 
a piecemeal fashion, as soon as possible. The piecemeal 
delivery incurs a possible change to the business process of 
the company, which involves organising the delivery of the 

products through a dedicated delivery division, instead of 
resorting to the external delivery company. 

The back-stage process of the pharmaceutical company 
is fully automated; the integration of the various parts of the 
company’s system with the external delivery company is 
facilitated through web services – see Figure 1. The 
pharmacists log-in, view medicines/equipment and compose 
an order. Then, the order is processed and a payment is 
made. The list of the ordered goods is passed to the delivery 
company’s system for delivery. Once the pharmacy has 
received the goods, it confirms that the order has been well 
processed. 

The manager of the company launches two workgroups 
to study the extension problem by providing a financial and 
an IT-expansion plan. The latter involves studying the risks 
and benefits of extending the current information system, by 
calculating development and maintenance efforts as well as 
the risk incurred by the new architecture. The potential drop 
of the reliability, after the extension, has a direct impact to 
the maintenance effort and the risk of the new system. 
Therefore, the IT team has to provide an assessment of how 
vulnerable the new system is going to be. The team is 
composed of experts familiarised with traditional modelling 
(e.g., UML) and reliability analysis (e.g., Markov models) 
techniques, but has no real experiences with novel 
technologies like BPEL. To proceed, the team decides to 
perform the following steps: 

• map the BPEL specification of the company’s business 
process to a familiar UML model 

• enhance the UML model with reliability properties 

• assess the reliability of the process through well-known 
techniques like block diagrams or Markov models. 

Although techniques exist on similar problems, none of the 
above tasks is straightforward. A full technique to translate 
a BPEL to a UML model is currently not available. There is 
no standard method on how to annotate a BPEL-specific 
UML model with reliability properties, either. Moreover, 
there is no principled way to derive block diagrams or 
Markov models from BPEL-specific UML models. Finally, 
there is no clear winner on which reliability analysis 
technique to use for the assessment of the system’s 
reliability – i.e., what technique should the IT team use 
given its constraints on time, resources and knowledge. 
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Figure 1 Reference example of a web service based business process 

 

 
Based on the above discussion, the main contributions of 
this paper are as follows: 

• A UML method is proposed for the specification of 
basic BPEL modelling constructs. This way, BPEL 
scenarios are mapped to UML activity models. 

• The introduced UML constructs are associated with 
properties that serve for the reliability analysis of BPEL 
processes. 

• Systematic methods are proposed for using the 
resulting, BPEL-specific UML models as inputs to two 
well-known reliability analysis techniques that rely on 
block diagrams and Markov models, respectively. 

• The use of the aforementioned techniques is illustrated 
based on the reference example and their 
appropriateness is discussed with respect to their 
precision and the resources they require for the 
reliability analysis of business processes. 

The work proposed in this paper extends previous work 
presented in Zarras et al. (2004). Specifically, the UML 
modelling method proposed in Zarras et al. (2004) is aligned 
with the standard UML profile for modelling quality of 
service and fault tolerance characteristics and mechanisms 
(OMG, 2004). Moreover, the proposed methods are 
generalised for mapping BPEL-specific UML models to 
traditional reliability analysis models to account for various 
kinds of faults and failures. Last but not least, care is taken 
for different possible execution scenarios that may originate 
from a BPEL process specification. 

The remainder of this paper is structured as follows. 
Section 2 details the proposed UML modelling method and 
the association of BPEL-specific UML constructs with 
reliability properties. Sections 3 and 4 detail the mapping of 
BPEL-specific UML models to block diagrams and Markov 
models. The use of these techniques is illustrated in  

Section 5. Section 6 discusses the related work. Finally, 
Section 7 summarises the contribution of this paper and 
discusses future work. 

2 Specifying business processes in UML 

Mapping BPEL specifications in UML, consists of defining 
a set of stereotypes that represent BPEL constructs (Section 
2.1). The method is straightforward: the fundamental BPEL 
constructs are exhaustively enumerated (first column of 
Table 1) and mapped to the appropriate UML constructs 
(second column of Table 1). In Mantell (2003), there has 
been a similar attempt to achieve this goal. However, the 
mappings at the level of BPEL concept categories (e.g., 
BPEL activities, BPEL variables, etc.) were discussed. 
Moreover, the proposed approach goes one step further by 
associating the proposed stereotypes with properties that 
serve for the reliability analysis (Section 2.2). These 
properties are defined in accordance with the standard UML 
profile for modelling quality of service and fault tolerance 
characteristics and mechanisms (OMG, 2004). 

2.1 Specifying BPEL constructs 

A business process in BPEL is described in terms of a 
process, specified using a homonymous stereotype  
(Table 1). The process consists of activities, specified using 
the activity stereotype. The execution of an activity relies on 
the use of an interface that is provided by a basic web 
service. This interface is termed partner in BPEL and it is 
modelled using the partnerLink stereotype. 
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Table 1 Stereotypes for structuring composite web services 

Stereotype UML base class Parent 

process Activity NA 
activity ExecutableNode NA 
partnerLink ObjectNode NA 
variable DataStoreNode NA 
catchAll, catch ExceptionHandler NA 
onMessage, onAlarm AcceptEventAction activity 
compensationHandler ExceptionHandler NA 
basicActivity ExecutableNode activity 
invoke CallAction basicActivity 
receive AcceptCallAction basicActivity 
reply ReplyAction basicActivity 
throw RaiseExceptionAction activity 
wait AcceptEventAction activity 
empty Action NA 
sequence, pick, flow ActivityPartition activity 
switch DecisionNode activity 
while LoopNode activity 

The process specification further includes the description of 
fault and event handlers (specified using the faultHandler 
and the eventHandler stereotypes). A fault handler consists 
of an activity, triggered upon the occurrence of a failure. By 
definition, ‘failure means deviation from compliance with 
the system specification’ (Laprie, 1985). Including, thus, a 
fault handler in the specification of a process implies that 
the occurrence of the respective failure does not cause 
deviation from the system specification. Hence, faults that 
are properly handled are not considered in the analysis. 

The proposed representation allows specifying different 
kinds of basic [Figure 2(a)] and structured [Figure 2(b)] 
BPEL activities. The execution of a basic activity relies on a 
single web service. On the other hand, a structured activity 
consists of a set of (basic or structured) activities and 
prescribes the order of their execution. In other words, it 
defines a number of control and data flow dependencies, 
specified using standard ControlFlow (i.e., arrows stating 
that the target activity is triggered when the execution of the 
source activity is done) and Dataflow (i.e., arrows stating 
that the target activity accepts input from the source 
activity) elements. The different kinds of basic activities 
supported are: 

• invoke activities, specifying the synchronous or 
asynchronous invocation of a web service operation. 

• receive activities, describing the reception of SOAP 
messages. A receive activity may be an initial activity 
of the process. In this case, any other activities that 
precede it or execute simultaneously must also be 
initiating receive activities. 

 

 

• reply activities, delineating responses to SOAP 
messages that were previously received during the 
execution of receive activities. 

Figure 2 Different kinds of (a) basic activities and (b) structured 
activities 

 
(a) 

 
(b) 

The different kinds of structured activities supported by the 
proposed representation are: 

• sequence activities, consisting of activities that execute 
sequentially. 

• switch activities, consisting of ordered activities 
associated with conditions. During a switch activity, 
only the first activity whose condition evaluates to true 
actually executes. 

• while activities, comprising a single activity that 
executes for a number of times. 

• pick activities, consisting of one or more event 
handlers. 

• flow activities, comprising one or more activities, which 
by default execute concurrently. However, there may 
exist control and data flow dependencies between them, 
imposing a certain execution order. 
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As already mentioned, the method for mapping BPEL to 
UML modelling elements is straightforward: the 
fundamental BPEL constructs (first column of Table 1) are 
exhaustively enumerated and mapped to the appropriate 
UML constructs (second column of Table 1). Despite the 
simplicity of the method, there are a couple of issues to be 
highlighted. A first comment concerns the recursive 
application of the method: the proposed mapping method 
can be recursively applied in the case of BPEL invoke 
activities that correspond to nested BPEL scripts, resolving 
each BPEL workflow one at a time. A second remark to be 
made is that the formal underpinnings of the BPEL-to-UML 
mapping are well beyond the scope of the paper, which 
focuses on reliability analysis. Despite the significance of 
the topic, providing the formal semantics to prove the 
correctness of the mapping process is not dealt with in this 
paper. Nevertheless, this issue is an interesting point for 
future research. 

Figure 1 illustrates the use of the stereotypes defined in 
this section for the specification of the reference example. 
Specifically, observe the use of a switch activity for the 
specification of the two alternative ways  
of delivery (i.e., the PiecemealDelivery while activity 
that executes using the LocalDelivery partner and the 
PrepareTotalDelivery invoke activity that executes 
using the DeliveryCompany partner). 

2.2 Specifying reliability properties 

The basic properties that characterise the stereotypes 
defined in Section 2.1 are given in Table 2. As imposed by 
the standard UML profile for modelling quality of service 
and fault tolerance characteristics and mechanisms (OMG, 
2004), they are specified as QoS characteristics, consisting 
of different QoS dimensions. 

Specifically, the process stereotype is associated with 
the reliability characteristic that has a single dimension, 
prob, defined as the probability that the process executes 
correctly for a given time duration. Time is also a reliability 
characteristic of the process stereotype. 

The impairments to reliability considered in the analysis 
are the faults and the failures of the partners, used by the 
activities of the process. Therefore, the partnerLink 
stereotype is associated with fault and failure 
characteristics. Faults appear with a certain rate, specified 
using the failure-rate dimension (Table 2). Faults and 
failures are characterised by further dimensions (e.g., the 
nature of faults, the persistence of faults, etc.), allowing to 
distinguish between different kinds of them (Table 3). For 
instance, physical faults are permanent faults that relate to 
physical phenomena and not to the partner’s internal or 
external condition. On the other hand, transient faults are 
temporary external faults, resulting from the interaction of 
the partner with the environment. Transient faults disappear 

with a certain rate (specified using the disappearance-rate 
dimension, given in Table 2). Intermittent faults are 
temporary internal faults, resulting from the interference 
between the different parts of the partner. Intermittent faults 
may be either active or benign. In the former case, the failed 
partner provides incorrect operations, while in the latter, the 
previous does not hold. Intermittent faults repeatedly go 
from active to benign and back to active with certain  
rates (specified using the active-to-benign-rate and the 
benign-to-active-rate dimensions, defined in Table 2) 
(Butler, 1992). More detailed definitions of the various fault 
and failure dimensions of Table 2 can be found in Laprie 
(1985). 

According to the standard UML profile for modelling 
quality of service and fault tolerance characteristics and 
mechanisms (OMG, 2004), more than one partners may be 
associated with the same fault and failure characteristics. 
Hence, it is possible to specify fault and failure 
dependencies between different partners. Such dependencies 
may result from several reasons such as a common 
development process that was followed for the partners or a 
common platform (Eckhardt and Lee, 1985; Knight and 
Leveson, 1986). It should be further noted that the faults and 
the failures of the underlying BPEL execution engine that 
executes business processes may also be considered as 
impairments to the reliability of these processes (Issarny  
et al., 2002). Dealing with the aforementioned issue is out of 
the scope of this paper. However, it would imply associating 
the stereotypes defined for basic and structured activities 
with reliability characteristics that are similar with the ones 
defined for the partnerLink stereotype. 

The partnerLink stereotype is further associated with the 
fault tolerance characteristic, which consists of different 
dimensions, prescribing the fault tolerance technique that 
may be used for a partner (Laprie et al., 1990). A partner 
may represent a redundancy schema, i.e., a configuration of 
redundant partners, which behave as a single fault tolerant 
unit. The schema is characterised by the error detection 
mechanism used, the number of partners ( )partnersno  that 
constitute it, the number of partner failures that can be 
tolerated ( )failuresno , etc. At this point, it should be noted 
that it is the responsibility of the designer to specify the 
aforementioned properties in a way that reflects the 
potential existence of dependent failures (Eckhardt and Lee, 
1985; Knight and Leveson, 1986). If, for instance, a schema 
comprises five partners and two of them fail in a dependent 
manner, then the actual value of the partnersno  property 
should be four. In general, if a partner represents a 
redundancy schema (i.e., it is associated with the fault 
tolerance characteristic), then it can be associated with 

partnersno  fault and failure characteristics, one for every 
constituent of the schema. 
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Table 2 Properties of the UML stereotypes 

Stereotype QoS dependability characteristics 

reliability 
QoS dimensions 

process 

prob 0..1     

fault failure fault-tolerance 
Qos dimensions QoS dimensions QoS dimensions 

nature {accidental, 
intentional} 

domain {time, value} error-detection {vote, comp, 
acceptance} 

cause {physical, 
human} 

perception {consistent, 
inconsistent} 

execution {parallel, 
sequential} 

phase {design, 
operational} 

  confidence {absolute, 
relative} 

persistence {permanent, 
temporary} 

  service-delivery {continuous, 
suspended} 

failure-rate Real   partnersno  Integer 

disappearance-rate Real   failuresno  Integer 

active-to-benign-rate Real     
benign-to-active-rate Real     

partnerLink 

Service-delivery {continuous, 
suspended} 

    

completion 
QoS dimensions 

completion-rate Real     
mean-completion-time Real     

basicActivity 

compl-dev Real     

iterations 
QoS dimensions 

while 

no-iter Integer     

Branches 
QoS dimensions 

switch, pick 

branch_prob Real     

In the reliability analysis, the mean-completion-time and 
deviation (or the completion-rate) of basic activities is 
further taken into account. The completion time of 
structured activities is a function of the completion times 
of the basic activities that constitute them. While activities 
are associated with a characteristic that represents the 
(possibly approximate) number of iterations performed by 
these activities. Switch and pick activities are associated 
with arrays of real values, ranging from zero to one (i.e., 

the branch-prob property). Each value represents the 
probability of executing one of the constituents of these 
activities. 

An example of specifying reliability properties is 
given in Figure 3. Specifically, the dimensions of the fault 
and the failure characteristics are specified for the 
DeliveryCompany partner. 
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Table 3 Different classes of faults 

Nature  Cause  Boundary 

Accidental Intentional  Physical Human  Internal External 
Class of faults 

x   x   x  
x   x    x 

Physical faults 

x   x    x Transient faults 
x   x   x  
x    x  x  

Intermittent faults 

x    x  x  Design faults 
x    x   x Interaction faults 
 x   x  x  
 x   x  x  

Malicious logic 

 x   x   x 
 x   x   x 

Intrusions 

Phase  Persistence 

Design Operational  Permanent Temporary 
Class of faults 

 x  x  
 x  x  

Physical faults 

 x   x Transient faults 
 x   x 
x    x 

Intermittent faults 

x   x  Design faults 
 x   x Interaction faults 
x   x  
x    x 

Malicious logic 

 x  x  
 x   x 

Intrusions 

Source: Defined in Laprie (1985) 
 

Figure 3 Reliability properties for the DeliveryCompany partner 

 

3 Block diagrams for business processes 

In principle, a block diagram is used to represent a 
constraint for correctly executing a process. The block 
diagram consists of blocks (i.e., boxes), representing the 
partners that provide the basic web services, used in the 
process. Those blocks are connected using serial 
connections. More specifically, for every structured activity 

A  of the process, consisting of the 1 2, ,K Nα α α  constituent 
activities, we have: 

1 If A  is a sequence, a flow or a while activity, all of the 
constituent activities are needed to successfully 
complete A  (for while activities 1=N ). 

2 If A  is a switch or a pick activity with N  branches, 
any constituent activity may execute, depending on the 
switch condition or the particular events that occur at 
runtime. Hence, A  implies the existence of N  possible 
execution paths. Some of these paths may involve the 
use of different sets of partners leading into different 
block diagrams. At this point, the purpose of the 
reliability analysis may differ depending on the 
preferences of the designer. In the case that the designer 
performs a what-if analysis, each path should be 
analysed as a different solution, independently from the 
others. In the case that the designer is interested on the 
impact of each choice on the reliability of the overall 
process, different probabilities for the choice of each 
path must be assigned. In the absence of any extra 
information (or input by the designer), the former is 
considered as the default choice. Based on the previous, 
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in the systematic block diagram construction, two 
possible alternatives may be followed: 
• Either we generate all the different block diagrams 

that result from A . 
• Or we assume a certain probability 

, 1,− = Kαi
branch prob i N  for every branch of A  

and construct a single block diagram that models 
all the paths. The branch probabilities may be 
identified based on experimental results derived 
from monitoring the process execution. 

Taking the reference example, we get three different 
block diagrams. Figures 4(a) and 4(b) give, 
respectively, the block diagrams that result from the 
different alternative delivery options offered by the 
process, while Figure 4(c) gives the overall weighted 
block diagram. 

Figure 4 Block diagrams for the reference example, (a) block 
diagram for local delivery (b) block diagram for 
external delivery (c) block diagram for both delivery 
alternatives 

 
(a) 

 
(b) 

 
(c) 

3 Based on 1–2, the block diagram is constructed as 
follows: 
a For the basic activities 1 2, ,Kα α αL  of ( ) :<A L N  

• Select the 1 2, ,K Kp p p  non-fault-tolerant 
partners (i.e., the partners that do not represent 
redundancy schemas), used by 1 2, ,K Lα α α . 
Create a new block for every such partner. The 
blocks are connected with serial connections. 

• Select the 1 2, ,+ + KK K Mp p p  fault tolerant 
partners, used by 1 2, ,Kα α αL . For every such 
partner, create a ( -out-of- )partnersi no  parallel 
connection that connects partnersno  blocks, 
representing the schema constituents. To 
correctly execute the process, 
= −partners failuresi no no  of the schema 

constituents must be operational. 
b For the composite activities 1 2, ,+ + Kα α αL L N  of 

A  recursively follow 1–3. 

To calculate, the reliability value from the block diagram 
specification, the reliability values that characterise the 
individual blocks and parallel connections are multiplied. 
The reliability value for a block is calculated in terms of the 
failure-rate characteristic of the partner that is represented 
by the block (e.g., Figure 4). 

4 Markov models for business processes 

The systematic construction of Markov models for BPEL 
processes is more complicated compared to the case of 
block diagrams. In this section, the issue of modelling 
BPEL processes with Markov models is discussed first. 
Then, the systematic specification of such models is 
detailed. The proposed approach is built upon a generic 
framework for the generation of Markov models, which has 
been proposed in Johnson (1988). Specifically, this work is 
adapted to the specificities introduced by BPEL processes. 

4.1 Markov models for BPEL processes 

A Markov model for a BPEL process consists of a set of 
transitions between states of the process. A state describes a 
situation where either the process executes correctly or not. 
In the latter case, the process is in a death-state. The state of 
the process depends on the situation of its basic activities 
(which may be encapsulated in structured activities or not) 
and the situation of the partners, used for executing these 
activities. The structured activities that encapsulate basic 
activities do not directly affect the situation of a process as 
they are not involved in performing any serious 
computation. Switch and pick activities are treated similarly 
to the case of block diagrams, i.e., either we specify 
different Markov models for different process execution 
paths or we specify an overall Markov model, using the 
branching probabilities associated to these kinds of 
activities. Flow and sequence activities serve as a 
structuring mechanism, which determines the execution 
order of their encapsulated activities. Accounting for 
failures of the middleware mechanisms that coordinate the 
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aforementioned execution order further complicates the 
reliability analysis and is out of the scope of this paper. 
Previous work presented in Issarny et al. (2002) tackles this 
particular problem in the case of conventional composite 
systems and may also serve in the case of systems that rely 
on the web services architectural style. 

Hence, the state of a process is modelled as a 
composition of sub-states, representing the partners and the 
basic activities of the process. A basic activity may be in 
four different states: inactive, active, complete or failed. 
Later, the special case of activities encapsulated in while 
activities is further discussed. The range of the different 
state situations for a partner depends on the partner’s faults. 
A partner with a physical or a transient fault may be: 
operational or failed. Similarly, a partner with an 
intermittent fault may be: operational, failed-active or 
failed-benign. The range of state situations for a partner that 
represents a redundancy schema further depends on the 
number of schema constituents, the number of failures that 
can be tolerated and the possible existence of dependent 
failures. For instance, for a redundancy schema of five 
partners and two failures, we have four possible situations in 
the absence of dependent failures: all partners are 
operational, one partner is failed, two partners are failed 
and three partners are failed (death-state). 

In the reference example, suppose that the 
DeliveryCompany partner fails because of a physical 
fault. Then, part of the Markov model that describes the 
execution path that involves the DeliveryCompany 
partner is given in Table 4 [the format used to present the 
Markov model is the one assumed by the SURE reliability 
analysis tool (Butler, 1992), which is used for solving 
Markov models]. The state of the process is modelled by a 
tuple of 11 integer values representing the sub-states that 
correspond to the three partners and the eight basic activities 
of the process. The first value of the tuples is zero in states 
where the UserControl partner is operational and one in 
states where it is failed. For the activities (the last eight 
values of each tuple in Table 4), the values of the tuples are 
0, 1, 2 or 3, in states where the activities are inactive, active, 
complete or failed, respectively. 

The Markov model comprises the following different 
kinds of transitions: 

• Transitions for partner failures, which model partner’s 
failures that do not affect the activities which use these 
partners because the failures take place before the 
beginning of their execution. These transitions are 
characterised by the failure-rate or the  
benign-to-active-rate of the partners (Table 2). 

• Transitions for partner recovery, which model the 
recovery of partners that previously failed. These 
transitions are characterised by the disappearance-rate 
or the active-to-benign-rate of the partners (Table 2). 

• Transitions for activity activation, which take the 
process from a state where an activity α  is inactive, to 
a state where the activity executes (e.g., transition 3 in 
Table 4). These transitions take place only if the 
activities upon which α  depends are complete and the 
partner used by α  is not failed. These transitions are 
characterised by a default mean-time for triggering 
activities. 

• Transitions for activity completion, taking the process 
from a state where an activity α  is active, to a state 
where α  is complete (e.g., transition 4 in Table 4). 
These transitions are characterised by the  
mean-completion-time of the activity (Table 2). 

• Transitions for activity failure, modelling the failure of 
activities that already execute or the failure of activities 
that are ready to execute (an activity α  is ready to 
execute when all the activities upon which it depends 
are complete; at this time, α  is going to be triggered). 
The activities fail due to the failure of the partners used 
by these activities. Therefore, the transitions are 
characterised by the failure-rate or the  
benign-to-active-rate of the failed partners (Table 2). 

The overall reliability of a process is calculated with respect 
to the probability of reaching a death-state of the Markov 
model within a given time duration .t  The calculation of 
this value involves solving a system of first-order 
differential equations (Butler, 1992). 
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Table 4 Markov model for the reference example 

Transition Source  Target Rate 

1 3 (* 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 *)  4 (* 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 *) <mean-trig-time, trig-dev> 
2 4 (* 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 *)  5 (* 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 *) <mean-completion-time, 

compl-dev> 
3 5 (* 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 *)  6 (* 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0 *) <mean-trig-time, trig-dev> 
4 6 (* 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0 *)  7 (* 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0 *) <mean-completion-time, 

compl-dev> 
5 6 (* 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0 *)  1 (* 1, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0 DEATH *) failure-rate 
6 7 (* 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0 *)  8 (* 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0 *) <mean-trig-time, trig-dev> 
7 8 (* 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0 *)  9 (* 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0 *) <mean-completion-time, 

compl-dev> 
8 8 (* 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0 *)  1 (* 0, 1, 0, 2, 2, 3, 3, 0, 0, 0, 0 DEATH *) failure-rate 
9 9 (* 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0 *)  10 (* 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0 *) <mean-trig-time, trig-dev> 
10 10 (* 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0 *)  11 (* 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0 *) <mean-completion-time, 

compl-dev> 
11 10 (* 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0 *)  1 (* 0, 1, 0, 2, 2, 2, 2, 3, 0, 0, 0 DEATH *) failure-rate 
12 11 (* 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0 *)  12 (* 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0 *) <mean-trig-time, trig-dev> 
13 12 (* 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0 *)  13 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0 *) <mean-completion-time, 

compl-dev> 
14 12 (* 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0 *)  1 (* 0, 1, 0, 2, 2, 2, 2, 2, 3, 0, 0 DEATH *) failure-rate 
15 13 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0 *)  14 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 0 *) <mean-trig-time, trig-dev> 
16 14 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 0 *)  15 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0 *) <mean-completion-time, 

compl-dev> 
17 14 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 0 *)  1 (* 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 0 DEATH *) failure-rate 
18 15 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0 *)  16 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1 *) <mean-trig-time, trig-dev> 
19 16 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1 *)  2 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2 *) <mean-completion-time, 

compl-dev> 

Notes: failure-rate = 10–3; Mean-trig-time = 0.005; Trig-dev = 0; Mean-completion-time = 4; and Compl-dev = 0 

 

4.2 The general framework for the specification of 
Markov models 

Generally, it is recognised that the specification of Markov 
models is a complex and error-prone task (Johnson, 1988). 
To deal with this problem, Johnson (1988) proposed an 
algorithm that relies on the concepts discussed in the 
previous subsection. In particular, states are modelled as 
shown in the example of Table 4. The algorithm generates a 
Markov model, given the following input: 

• The definition of the range of states for the Markov 
model. The range definition is given as a tuple of 
integer variables. Each variable represents the range of 
all possible state situations for a modelled element (e.g., 
a partner, an activity, etc.). 

• The definition of a death-state constraint for the 
Markov model, i.e., a conditional statement, defined on 
the values of the range variables. This statement 
evaluates the true for tuples that represent the  
death-states of the Markov model. 

• The definition of an initial state for the Markov model. 

The algorithm further accepts as input transition rules 
between sets of Markov states. A transition rule consists of 
a conditional statement and a transition statement. The 
conditional statement is defined on the values of the range 
variables and identifies a set of source states that have 
common features (e.g., states where a particular partner p  is 
operational). From all these source states, there should be 
transitions to target states, which also share common 
features (e.g., p  is failed in all target states). Moreover, the 
transitions to the target states are characterised by a 
common rate (e.g., the failure-rate that characterises p ). 
The transition statement of the rule specifies this common 
rate and the common features shared amongst the set of the 
target states. 

Given the above, the algorithm starts from the initial 
Markov state and recursively applies the transition rules, as 
long as, their conditional statements hold. During a 
recursive step (for a particular transition rule), the algorithm 
produces a transition to a state derived from the initial one. 
If the death-state constraint holds for the resulting target 
state, the recursion stops. That way, the algorithm 
automatically produces all the possible state transitions for 
the Markov model. 



 Modelling and analysing reliable service-oriented processes 157 

Taking the particular execution of the reference example 
that involves the DeliveryCompany, the state range 
definition is as follows: 

space = ( 

UserControl 0..1, 

Products 0..1, 

DeliveryCompany 0..1, 

UserLogin 0..3, 

VerifyUserLoginInfo 0..3, 

SearchMedicalEquipment 0..3, 

SearchMedicines 0..3, 

BuildCustomerOrder 0..3, 

StorePaymentInfo 0..3, 

PrepareTotalDelivery 0..3, 

UserLogout 0..3 

); 

Moreover, the death-state constraint for the same process is: 

deathif ( 3
           3 3

3 3
3)

= ∨
= ∨ = ∨

= ∨ = ∨
=

VerifyUserLoginInfo

SearchMedicalEquipment SearchMedicines

        BuildCustomerOrder StorePaymentInfo

        PrepareTotalDelivery

 

This constraint states that every tuple with 
3=VerifyUserLoginInfo  represents a death-state  

(w.r.t., the modelling of activity failures in the  
previous subsection). Similarly, every tuple with 

3=SearchMedicines  also represents a death-state. An 
example of a simple transition rule for the reference 
example is the following: 

conditional statement

common features for the target states

if 0 1 then

    tranto (
      1,  2

= ∧ =

+ +

144444444424444444443

K K14444444444244444 3

DeliveryCompany PrepareTotalOrder

DeliveryCompany PrepareTotalOrder    

    ) by 0.01;
endif;

44444  

The above rule refers to source states that share the 
following features: 

• the DeliveryCompany partner is operational 
( 0)=DeliveryCompany  

• the PrepareTotalOrder activity is active 
( 1).=PrepareTotalOrder  

According to the transition statement of the rule, for every 
source state, there exists a transition to a target state and the 
common features of all target states are: 

• the DeliveryCompany partner is failed 
( 1)=DeliveryCompany  

• the PrepareTotalOrder activity is failed because 
of the customer failure ( 3).=PrepareTotalOrder  

The rate that characterises all of the transitions prescribed 
by the above rule is 0.01; that is the failure-rate of the 
DeliveryCompany partner. 

Still, the specification of transition rules is a 
complicated task. To alleviate this problem, this paper 
proposes a systematic method for specifying input models 
for Johnson’s (1988) algorithm, from BPEL-specific UML 
models. The generated models serve as input to the ASSIST 
tool (Johnson and Boerschlein, 2000) that implements 
Johnson’s algorithm and generates complete Markov 
models. Finally, the Markov models can be given as input to 
the SURE analysis tool (Butler, 1992), which calculates 
corresponding reliability values. 

4.3 Generating state-range definitions 

The generation of a state range definition from the  
BPEL-specific UML model of a business process relies on 
the following steps: 

• First, we select all the partners of the process that do 
not represent a redundancy schema. For each one of 
them, a corresponding variable is created in the  
state-range definition. The range of the integer values 
for this variable depends on the fault and the failure 
properties that are associated with the partner. More 
specifically, we have: 
• For a partner p  with physical, transient, design, 

interaction, permanent intrusion or permanent 
malicious logic faults (Table 3), the value of the 
variable is zero in states where p  is operational 
and one in states where p  is failed. 

• For a partner p  with intermittent, temporary 
intrusion or temporary malicious logic faults 
(Table 3), the value of the variable is zero in states 
where p  is operational, one in states where p  is 
failed-active and two in states where p  is  
failed-benign. 

• Then, we select all the partners that represent a 
redundancy schema. Each one of them, p , consists of 

partnerno  redundant partners and may tolerate failureno  
failures. 
• If p  is a schema with physical, transient, design, 

interaction, permanent intrusion or permanent 
malicious logic faults, we create an integer variable 
that ranges from zero, in states where all partners 
are operational, to 1+failureno , in states where the 
number of failed partners exceeds the number of 
failures that can be tolerated. 
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• If p  is a schema with intermittent, intrusion or 
temporary malicious logic faults, we create two 
integer variables. The first one ranges from zero to 

1+failureno  and represents the number of failed 
partners in the schema. The second variable ranges 
from zero to failureno  and represents the number of 
failed-benign partners in the schema. 

• Following, we select all the basic activities that are 
specified in the process (some of them may be 
encapsulated into structured activities). For each 
activity ,α  we create a variable in the state-range 
definition. More specifically, if α  is encapsulated in a 
while activity that performs -no iter  iterations, the 
variable takes values from zero to - 1+no iter . 
Otherwise, the variable takes values from zero to three. 
The semantics of these values are summarised in  
Table 5. 

Table 5 Range of state-range variables for activities 

Embedded in while  Not embedded in while 

Value Semantics  Value Semantics 

0 α  is inactive  0 α  is inactive 

:1, ,
- 1−
Ki

no iter
 

α  is executed 
for the thi  
time 

 1 α  is active 

-no iter  α  is complete  2 α  is complete 

- 1+no iter  α  is failed 
due to the 
failure of the 
partner used 
by this activity 

 3 α  is failed due 
to the failure of 
the partner 
used by this 
activity 

Based on the previous steps, the state-range definition for 
the execution path of the reference example that involves 
the LocalDelivery partner is: 

space = ( 

UserControl 0..1, 

Products 0..1, 

LocalDelivery 0..1, 

UserLogin 0..3, 

VerifyUserLoginInfo 0..3, 

SearchMedicalEquipment 0..3, 

SearchMedicines 0..3, 

BuildCustomerOrder 0..3, 

StorePaymentInfo 0..3, 

PreparePiecemealDelivery 0..6, 

UserLogout 0..3 

); 

In the previous definition, it is assumed that the customer 
ordered five different products. Therefore, the 
PreparePiecemealDelivery ranges from zero to six. 
The latter is the only difference between this state-range 
definition and the one that was given in Section 4.2 for the 
execution path that involves the DeliveryCompany 
partner. 

4.4 Generating death-state constraints 

A process is considered as failed in states where any of its 
basic activities is failed (more precisely, failures of initial 
receive activities are not considered because in such cases, 
the overall process is not even initiated). Hence, to generate 
a death-state constraint, all the basic activities are selected. 
Then, the death-state constraint is built as the disjunction of 
a number of Boolean expressions. Each expression involves 
a state-range variable that represents one of the activities, 
say α . If α  is encapsulated in a while activity that 
performs -no iter  iterations, the expression evaluates to true 
if the variable equals to - 1+no iter  (Table 5). In all other 
cases, the expression evaluates to true if the variable equals 
to three (Table 5). 

In the execution path of the reference example that 
involves the LocalDelivery partner, the death-state 
constraint is: 

deathif ( 3
          3 3

3 3
6)

= ∨
= ∨ = ∨

= ∨ = ∨
=

VerifyUserLoginInfo

SearchMedicalEquipment SearchMedicines

        BuildCustomerOrder StorePaymentInfo

        PrepareTotalDelivery

 

4.5 Generating transition rules 

In Section 4.1, four different categories of transitions were 
identified. Consequently, here, four different categories of 
transition rules are discussed. 

• Transition rules for partner failures: Transition rules 
for partner failures are specified for all partners, 
independently from the classes of faults that 
characterise them. For every partner that does not 
represent a redundancy schema, a rule is specified 
whose conditional statement holds for all source states 
where the partner is operational and the activities that 
use the partner are inactive. The rule prescribes that for 
these source states, there should be transitions to target 
states, whose common feature is that the partner is 
failed. The rate for these transitions is the failure-rate or 
the benign-to-active-rate of the partner. If the partner 
represents a redundancy schema, the conditional 
statement holds for all source states where the number 
of failures that occurred is less or equal to the number 
of failures, failureno , that can be tolerated. For all these 
source states, there should be transitions to target states, 
whose common feature is that the number of failures is 
increased by one. 
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Following, an example of a rule is given for the 
UserControl partner of the reference example: 

if 0 0 then
   tranto ( 1) by failure-rate;
endif;

= ∧ =
=

UserControl VerifyUserLoginInfo

UserControl  

• Transition rules for partner recovery: These rules are 
specified for partners with temporary faults. 
Specifically, for every partner that does not represent a 
redundancy schema, a transition rule is specified. If the 
partner is characterised by a (temporary) external fault 
(i.e., transient, interaction or intrusion fault), then the 
conditional statement of the generated rule holds for 
states where the partner is failed. The transition 
statement specifies transitions to target states, whose 
common feature is that the partner is operational again. 
The rate for these transitions is the disappearance-rate, 
associated with the partner. Similarly, if the partner is 
characterised by a (temporary) internal fault (i.e., 
intermittent or temporary malicious logic fault), then 
the conditional statement of the rule holds for source 
states where the partner is failed and the fault is active. 
The transition statement prescribes transitions to target 
states, whose common feature is that the partner is still 
failed, but the fault is benign. The rate for these 
transitions is the active-to-benign-rate, associated with 
the partner. For partners that represent redundancy 
schemas, similar rules are specified. 

Below, an example of a rule is given, for the 
UserControl partner, if we suppose that it fails 
because of a transient fault: 

if 1 then
   tranto ( 0) by disappearance-rate;
endif;

=
=

UserControl

UserContol  

• Transition rules for activity activation: For every basic 
activity α  of the process, a transition rule is generated, 
whose conditional statement holds for states where: 
1 the activity is inactive 
2 the activities upon which α  depends are complete 
3 the partner, used by α  is operational. 

Hence, the conditional statement is built based on the 
dataflow and control dependencies, specified for α . 
The transition statement of the rule states that for all 
source states, there should be transitions to target states, 
whose common feature is that α  is active. 

If α  is embedded in a pick or a switch activity and we 
generate an overall Markov model for the process, then 
the generated transitions are characterised by the 
branch-prob of the corresponding branch. If α  is 
encapsulated in a flow activity together with activities, 

, , ,Kβ γ  then the conditional and the transition 
statements of the rule involve all these activities, which 
are concurrently activated. 

Below, an example of a rule is given for the activation 
of the activities that are included in the 
DisplayProducts flow of the reference example. 

if 0
   0
 2 0 then

   tranto ( 1
  1) by 
  <mean-trig-time, trig-dev>;

endif;

= ∧
= ∧

= ∧ =
= ∧

=

SearchMedicines

SearchMedicalEquipment

VerifyUserLoginInfo Products

SearchMedicines

SearchMedicalEquipment

 

• Transition rules for activity completion: For every basic 
activity α , a transition rule is further generated, whose 
conditional statement holds for states where: 
1 α  is active 
2 the partner that is used by α  is operational. 

Regarding the transition statement of the rule, we have: 
• If α  is encapsulated in a while activity, then the 

transition statement prescribes transitions to target 
states whose common feature is that α  is 
reactivated. These transitions actually model that in 
the source states, α  executes during the thi  
iteration of the while activity, whilst in the target 
states, α  executes during the thi  + 1 iteration of 
the while activity. 

• Otherwise, the transition statement specifies 
transitions to target states, whose common feature 
is that α  is complete. 

The transitions described by the aforementioned rule 
are characterised by the mean-completion-time (and the 
completion time deviation) of α . 

Following, an example of a rule is given for the 
completion of the BuildCustomerOrder activity. 

if 1 0 then
   tranto ( 2) by
                        <mean-completeion-time, compl-dev>;
endif;

= ∧ =
=

BuildCustomerOrder Products

BuildCustomerOrder
 

• Transition rules for activity failure: For every basic 
activity α , two transition rules are specified. The first 
one is for the generation of transitions that model the 
failure of activities that already execute, while the 
second rule is used for the generation of transitions that 
model the failure of activities that are ready to execute. 
For the first rule, the conditional statement holds for 
states where: 
1 α  is active 
2 the partner that is used by α  is operational. 

The transition statement of the rule states that there 
should be transitions from the aforementioned states to 
target states, whose common feature is that the partner 
is failed. In the target states, α  is also considered as 
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failed if the partner does not represent a redundancy 
schema. Otherwise, α  remains active until the number 
of schema failures exceeds the value of the failureno  
property. The rate for these transitions is the  
failure-rate or the benign-to-active-rate of the partner. 
An example of such a transition rule was given earlier 
in Section 4.1. 

For the second rule, the conditional statement holds for 
states where: 
1 α  is inactive 
2 the activities upon which α  depends are complete 
3 the partner that is going to be used by α  is failed. 

The transition statement of the rule states that there 
should be transitions to target states where α  is failed. 

5 Illustrations 

The use and appropriateness of the two reliability analysis 
techniques proposed in Sections 3 and 4 is illustrated based 
on the reference example. As discussed in Section 1, the 
main objective of the pharmaceutical company is to reduce 
the product delivery time by setting up a local piecemeal 
delivery service as an alternative to the delivery company 
that was used until now. Recall that the IT team that took 
over the reliability assessment of this expansion plan is 
going to perform a what-if analysis. Briefly, this means to 
inspect how changes into certain independent parameters 
impact on certain dependent variables (Golfarelli et al., 
2006). Typically, performing what-if analysis involves 
making some assumptions (scenarios in other terms), based 
on a brainstorming approach among the IT experts, who rely 
on historical data mined from the company’s organisational 
memory [the interested reader may further refer to Golfarelli 
et al. (2006) for a detailed methodology on what-if 
analysis]. In the particular reference example, the IT team 
decides to proceed with respect to the following 
assumptions: 

• an early release of the LocalDelivery service fails 
twice as much as the DeliveryCompany service that 
was used until now: 

- 2 -= ∗LocalDelivery DeliveryCompanyfailure rate failure rate  

• a mature release of the LocalDelivery service fails 
as much as the DeliveryCompany service: 

- -=LocalDelivery DeliveryCompanyfailure rate failure rate  

 

 

 

 

 

 

• the execution time of the company’s process may be 
reduced from 0% to 80%, due to the use of the 
LocalDelivery service, depending on how efficient 
would be the implementation of this service. 

More specifically: 

• Based on the proposed methodology, the block 
diagrams and the Markov models were constructed for 
the company’s process execution path which uses the 
early release of the LocalDelivery partner (i.e., the 
piecemeal delivery path). In these models, the time 
reduction in the execution time of the company’s 
process (which was initially set to 100 time units) 
varied from 0% to 80%. The failure rate of the early 
release of the LocalDelivery partner was set to 
0.002 failures per time unit, while the failure rates of 
the rest of the partners involved in this path were set to 
0.001 failures per time unit. The reliability values that 
resulted from these block diagrams and Markov models 
correspond to the Piecemeal Early columns, given in 
Figures 5(a) and 5(b), respectively. 

• Similarly, block diagrams and Markov models were 
developed for the company’s process execution path 
which uses the mature release of the 
LocalDelivery partner. In this case, the failure rate 
of the LocalDelivery partner and the failure rates of the 
rest of the partners involved were set to 0.001. As 
previously, the time reduction in the execution time of 
the company’s process varied from 0% to 80%. The 
reliability values obtained correspond to the Piecemeal 
Mature columns, given in Figures 5(a) and 5(b), 
respectively. 

• Finally, a block diagram and a Markov model were 
developed for the company’s process execution path 
that uses the DeliveryCompany partner (i.e., the 
total delivery path). The execution time for the total 
delivery path was also set to 100 time units. The failure 
rates of the partners involved in this path were set to 
0.001 failures per time unit. The reliability values 
obtained correspond to the Total Delivery lines given in 
Figures 5(a) and 5(b), respectively [note that lines were 
used instead of columns to highlight that in this 
experiment, the execution time of the company’s 
process was not varied; therefore, the lines should not 
be related with the values that are given in the x-axis of 
Figures 5(a) and (b)]. 
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Figure 5 Reference example reliability results, (a) block 
diagrams (b) Markov models (see online version for 
colours) 

 
(a) 

 
(b) 

In all models, the number of items to be delivered was set to 
ten. Moreover, the partner failures were due to permanent 
faults and none of the partners represented a redundancy 
schema. The system’s reliability was computed via the 
block diagrams using a Microsoft Excel spreadsheet. The 
Markov models were given as input to the SURE tool that 
took care of all the necessary computations (including the 
system of first-order equations) and produced the estimation 
of the system’s reliability as an output. 

Regarding the results in Figure 5(a), we can observe that 
the reliability values increased with the efficiency of the 
LocalDelivery partner (both in the Piecemeal Early and 
the Piecemeal Mature columns). This is reasonable 
considering that the faster the process gets, the less probable 
it is to fail during its execution. The total delivery line in 
Figure 5(a) gives the overall reliability for the process 
execution path that uses the DeliveryCompany partner. 
Clearly, this path was less reliable from the process 
execution path that used the mature release of the 
LocalDelivery partner. The reason behind this is that in 
both paths, the same failure rates were used for the partners 
and the execution path that involved the mature release of 
the LocalDelivery partner executed faster. Even the 
process execution path that used the early release of the 
LocalDelivery partner was more reliable from the path 
that used the DeliveryCompany partner, in certain cases 
where the authors assumed that the IT team implemented 
the LocalDelivery partner efficiently enough (i.e., in 
cases where the execution time reduction was greater than 
30%). 

Figure 5(b) gives the reliability values obtained from the 
Markov models. The gross observations resulted from the 
block diagrams still remain valid. However, a comparison 
between the reliability values obtained from the block 
diagrams and the Markov models shows that the former 
underestimated the overall process reliability (Figure 6). 
This underestimation is due to the fact that in the block 
diagrams, it is assumed that all partners should be 
operational for the whole duration of the process. On the 
contrary, the Markov models allowed to perform a more 
fine-grained modelling by taking into account the  
mean-completion times of the activities that constitute the 
process. The Markov models that were constructed reflected 
that the partners should be operational only during the 
activities that use them. The previous increased the 
reliability values that were calculated. 

Figure 6 Block diagrams and Markov comparison (see online 
version for colours) 

 

Hence, a ‘first lesson learned’ is that the gross-grained 
modelling capability of block diagrams is sufficient for 
driving a reliability analysis of business processes, which 
may serve for studying reliability trends regarding certain 
reliability properties (e.g., process execution time). On the 
other hand, the block diagrams cannot capture dynamics 
that relate to the execution of the activities that constitute 
the business processes. Ignoring such dynamics may lead to 
less precise results. In the reference example, for instance, 
the block diagrams analysis shows that if the IT group of the 
pharmaceutical company manages to build an early release 
of the LocalDelivery partner that reduces the process 
execution time by 30%, then the company’s process shall be 
more reliable despite the fact that the failure rate of the 
LocalDelivery partner is twice as the failure rate of the 
DeliveryCompany partner. According to the Markov 
models, the corresponding percentage of execution time 
reduction is much higher (40%). Quite expectedly, a 
‘second lesson learned’ is that Markov models are more 
suitable for detailed business process reliability analysis. As 
theoretically anticipated, Markov models are more 
expressive when facing the issue of modelling system 
dynamics such as dependent failures and repairable 
behaviour (Raussand and Hoyland, 2004). Nevertheless, 
there exist interesting recent works that propose extensions 
of block diagrams, which overcome the modelling 
limitations of conventional block diagrams (e.g., Distefano 
and Puliafito, 2007). 
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The price to pay for the fine-grained modelling 
capabilities of Markov models is the complexity of their 
specification. The models used in the reference example 
consisted of more than 50 states and more than 100 
transitions. The time to calculate reliability values out of the 
Markov models was comparable to the time required for the 
block diagrams (less than 20 msec). However, the 
complexity of the Markov models further increases if we 
consider partners that fail due to temporary faults [a small 
example of such a case is given in Zarras et al. (2004)]. In 
this case, block diagrams are significantly faster than 
Markov models. 

6 Related works 

The issue of quality analysis (e.g., performance, reliability, 
availability, etc.) for conventional composite systems has 
been explored in the past (Klein et al., 1999; Kazman et al., 
2000; Zarras and Issarny, 2000; Zarras et al., 2003; 
Rodrigues et al., 2003; Majzik et al., 2003; Skene and 
Emmerich, 2003; Rodrigues et al., 2004; Cardoso et al., 
2004). There are both similarities and differences with this 
line of research. On the common side, these approaches 
share the methodological approach to the problem (i.e., 
given a certain input, it is mapped to UML – for ease of 
modelling – and then the UML model is transformed to a 
model suitable for a well-known dependability analysis 
technique). On the other hand, there are prominent 
differences, specifically tailored for the case of web 
services: both the input (BPEL in our case) and the 
systematic derivation of the reliability analysis models are 
different. The lesson here is that although one does not need 
to reinvent the wheel in terms of fundamental techniques 
(but rather, follow a principled methodology), there are still 
important issues to address, which are handled in this paper. 

The OMG (2004) standardisation community recently 
recognised the importance of modelling the quality of 
composite systems and adopted a corresponding UML 
profile. The properties defined in Section 2.2 are aligned 
with the aforementioned standard. They constitute a 
superset of the dependability characteristics mentioned in 
the standard and they are specifically tailored to the case of 
BPEL business processes. 

In the context of web services, the issues of quality 
specification, analysis and management gained the attention 
of various research communities. More specifically, in Dan 
et al. (2004), the authors propose a framework for the 
provision of differentiated levels of service that meet the 
customers’ functional and quality requirements, which are 
described in terms of service level agreements (SLAs). 
SLAs are specified using a declarative language, named 
WSLA. SLAng is also a language for the specification of 
SLAs (Skene et al., 2004). While these approaches are quite 
generic, the proposed approach focused on reliability 
properties and reliability analysis techniques for  
service-oriented business processes. The reliability 
properties defined can be seen as SLA attributes. Then, the 
models can be used to further generate WSLA or SLAng 

specifications. In Cardellini et al. (2001), an  
infrastructure-based solution is proposed for the provision 
of differentiated levels of service. It particularly deals with 
performance SLA attributes. Similarly, in Liu and Issarny 
(2003), the problem of locating basic web services in ad-hoc 
networks based on a set of quality criteria is tackled. In 
Zeng et al. (2003), a similar problem has been dealt with. 
More specifically, in this approach, the input is the 
specification of a process that combines N  primitive web 
services. Moreover, the authors assume the existence of N  
sets of compatible primitive services characterised by a 
number of quality attributes like reliability, performance, 
price, reputation, etc. Then, they propose a technique that 
allows selecting N  services out of the N  sets, which 
provide optimal process quality. Although the proposed 
approach is interesting, its reliability analysis part can be 
refined based on the methods proposed in this paper. 

7 Conclusions 

This paper, investigated methods that enable the what-if 
reliability analysis of business processes. Specifically, a 
UML method for modelling business processes was 
proposed. The proposed method is built upon BPEL and 
introduces necessary extensions to support the specification 
of reliability properties that characterise the constituents of 
business processes. Moreover, systematic methods were 
introduced for using the resulting BPEL-specific UML 
models as input to two well-known reliability analysis 
techniques that rely on block diagrams and Markov models, 
respectively. Finally, the use of these techniques was 
illustrated and their appropriateness regarding their 
precision and the resources they require was discussed. 

The formal foundations for the correctness and 
reversibility of the mapping from BPEL to UML have not 
been dealt with in this paper and constitute an interesting 
research topic. Moreover, in this paper, it is assumed that 
the end-users of the proposed approach are the designers of 
web service based information systems, who statically 
perform the analysis at design-time. Performing reliability 
analysis dynamically during the lifetime of the system is 
also an interesting research issue. Such functionality can be 
part of a middleware infrastructure that supports the 
development of composite web services. In the latter case, 
the complexity of the analysis techniques plays an even 
more important role, especially if the infrastructure is 
targeted to the development of web services in pervasive 
computing environments (Issarny et al., 2005). 

Acknowledgements 

The authors would like to thank the anonymous reviewers 
for their valuable comments. This work was partially funded 
by the MobWS GSRT grant for Cooperation in S&T areas 
with European countries. 
 



 Modelling and analysing reliable service-oriented processes 163 

References 
Butler, R.W. (1992) ‘The SURE approach to reliability analysis’, 

IEEE Transactions on Reliability, Vol. 41, No. 2,  
pp.210–218. 

Cardellini, V., Casalicchio, E., Colajanni, M. and Mambelli, M. 
(2001) ‘Web switch support for differentiated services’, ACM 
SIGMETRICS Performance Evaluation Review, Vol. 29,  
No. 2, pp.14–19. 

Cardoso, J., Sheth, A., Miller, J., Arnold, J. and Kochut, K. (2004) 
‘Quality of service for workflows and web service processes’, 
Journal of Web Semantics, Vol. 1, pp.281–308. 

Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., 
Ludwig, H., Polan, M., Spreitzer, M. and Youssef, A. (2004) 
‘Web services on demand: WSLA-driven automated 
management’, IBM Systems Journal, Vol. 43, No. 1,  
pp.136–158. 

Distefano, S. and Puliafito, A. (2007) ‘Dynamic reliability block 
diagrams vs. dynamic fault trees’, in Proceedings of the IEEE 
Reliability and Maintainability Symposium (RAMS’2007), 
pp.71–76. 

Eckhardt, D.E. and Lee, L.D. (1985) ‘A theoretical basis for the 
analysis of multiversion software subject to coincident 
errors’, IEEE Transactions on Software Engineering, Vol. 11, 
No. 12, pp.1511–1517. 

Golfarelli, M., Rizzi, S. and Proli, A. (2006) ‘Designing what-if 
analysis: towards a methodology’, in Proceedings of the 9th 
ACM International Workshop on Data Warehousing and 
OLAP, pp.51–58. 

IBM, Microsoft Corporation and BEA (2002) Business Process 
Execution Language for Web Service (BPEL4WS) v.1.0, 
Technical Report, IBM, Microsoft Corporation, BEA, 
available at http://www.ibm.com/developerworks/ 
webservices/library/ws-bpel/. 

Issarny, V., Kloukinas, C. and Zarras, A. (2002) ‘Systematic aid 
for developing middleware architectures’, Communications of 
the ACM (CACM), Vol. 45, No. 6, pp.53–58. 

Issarny, V., Sacchetti, D., Tartanoglou, F., Sailhan, F., Chibout, R., 
Levy, N. and Talamona, A. (2005) ‘Developing ambient 
intelligence systems: a solution based on web services’, 
Journal of Automated Software Engineering, Vol. 12, No. 1, 
pp.101–137. 

Johnson, S.C. (1988) ‘Reliability analysis of large complex 
systems using ASSIST’, in Proceedings of the 8th AIAA/IEEE 
Digital Avionics Systems Conference, pp.227–234. 

Johnson, S.C. and Boerschlein, D.P. (2000) ASSIST User Manual, 
January, NASA Langley Research Center. 

Kazman, R., Carriere, S.J. and Woods, S.G. (2000) ‘Toward a 
discipline of scenario-based architectural engineering’, 
Annals of Software Engineering, Vol. 9, pp.5–33. 

Klein, M., Kazman, R., Bass, L., Carriere, S.J., Barbacci, M. and 
Lipson, H. (1999) ‘Attribute-based architectural styles’, in 
Proceedings of the 1st IFIP Working Conference on Software 
Architecture (WICSA-1), pp.225–243. 

Knight, J.C. and Leveson, N.G. (1986) ‘An experimental 
evaluation of the assumption of independence in  
multi-version programming’, IEEE Transactions on Software 
Engineering, Vol. 12, No. 1, pp.96–109. 

Laprie, J-C. (1985) ‘Dependable computing and fault tolerance: 
concepts and terminology’, in Proceedings of the 15th 
International Symposium on Fault-Tolerant Computing 
(FTCS-15). 

Laprie, J-C., Arlat, J., Beounes, C. and Kanoun, K. (1990) 
‘Definition and analysis of hardware and software  
fault-tolerant architectures’, IEEE Computer, Vol. 23, No. 7, 
pp.39–51. 

Liu, J. and Issarny, V. (2003) ‘QoS-aware service location in 
mobile ad-hoc networks’, in Proceedings of the 5th IEEE 
International Conference on Mobile Data Management 
(MDM’04). 

Majzik, I., Pataricza, A. and Bondavalli, A. (2003) Architecting 
Dependable Systems, LNCS, Chapter Stochastic 
Dependability Analysis of System Architecture Based on UML 
Models, Vol. 2677, pp.219–244, Springer-Verlag. 

Mantell, K. (2003) From UML to BPEL, Technical Report, IBM, 
available at http://www.106.ibm.com/developerworks/ 
webservices/library/ws-uml2bpel/. 

OMG (2004) UML Profile for Modelling Quality of Service and 
Fault Tolerance Characteristics and Mechanisms, Technical 
Report, OMG, ptc/2004-06-01, available at 
http://www.omg.org/docs/ptc/04-06-01.pdf. 

Rausand, M. and Hoyland, A. (2004) System Reliability Theory 
Models Statistical Methods and Applications, 2nd ed., Wiley. 

Rodrigues, G., Rosenblum, D. and Emmerich, W. (2004) ‘A model 
driven approach for software systems reliability’, in 
Proceedings of the 26th IEEE/ACM/SIGSOFT International 
Conference on Software Engineering (ICSE’04), pp.30–32. 

Rodrigues, G.N., Roberts, G., Emmerich, W. and Skene, J. (2003) 
‘Reliability support for the model driven architecture’, in 
Proceedings of the 2nd IEEE-ACM-SIGSOFT ICSE 
Workshop on Software Architectures for Dependable Systems 
(WADS’03), p.7. 

Skene, J. and Emmerich, W. (2003) ‘A model driven architecture 
approach to analysis of non-functional properties of software 
architectures’, in Proceedings of the 18th IEEE Conference 
on Automated Software Engineering (ASE’03), pp.236–239. 

Skene, J., Lamanna, D. and Emmerich, W. (2004) ‘Precise service 
level agreements’, in Proceedings of the 26th 
IEEE/ACM/SIGSOFT International Conference on Software 
Engineering (ICSE’04), pp.179–188. 

W3C (2001) Web Services Description Language (WSDL) v1.1, 
Technical Report, W3C, available at 
http://www.w3c.org/TR/wsdl. 

W3C (2002) Simple Object Access Protocol (SOAP) v1.2, 
Technical Report, W3C, available at 
http://www.w3c.org/TR/soap12-part0. 

Zarras, A. and Issarny, V. (2000) ‘Automating the performance 
and reliability analysis of enterprise information systems’, in 
Proceedings of the 16th IEEE International Conference on 
Automated Software Engineering (ASE’01), pp.350–355. 

Zarras, A., Kloukinas, C. and Issarny, V. (2003) Architecting 
Dependable Systems, LNCS, Chapter Quality Analysis of 
Dependable Systems: A Developer Oriented Approach,  
Vol. 2677, pp.197–218, Springer-Verlag. 

Zarras, A., Vassiliadis, P. and Issarny, V. (2004) ‘Model-driven 
dependability analysis of web services’, in Meersman, R., 
Tari, Z. et al. (Eds.): Proceedings of the 6th International 
Symposium on Distributed Objects and Applications 
(DOA’2004), LNCS, No. 3290, pp.1608–1626. 

Zeng, L., Benatallah, B. and Dumas, M. (2003) ‘Quality driven 
web services composition’, in Proceedings of the 12th ACM 
International Conference on the World Wide Web (WWW’03), 
p.411. 


