
Revisiting Java Bytecode
Compression for Embedded and
Mobile Computing Environments

Dimitris Saougkos, George Manis, Konstantinos Blekas, Member, IEEE, and

Apostolos V. Zarras, Member, IEEE

Abstract—Pattern-based Java bytecode compression techniques rely on the identification of identical instruction sequences that

occur more than once. Each occurrence of such a sequence is substituted by a single instruction. The sequence defines a

pattern that is used for extending the standard bytecode instruction set with the instruction that substitutes the pattern occurrences in

the original bytecode. Alternatively, the pattern may be stored in a dictionary that serves for the bytecode decompression. In this case,

the instruction that substitutes the pattern in the original bytecode serves as an index to the dictionary. In this paper, we investigate a

bytecode compression technique that considers a more general case of patterns. Specifically, we employ the use of an advanced

pattern discovery technique that allows locating patterns of an arbitrary length, which may contain a variable number of wildcards in

place of certain instruction opcodes or operands. We evaluate the benefits and the limitations of this technique in various scenarios

that aim at compressing the reference implementation of MIDP, a standard Java environment for the development of applications for

mobile devices.

Index Terms—Java, compression (coding).

Ç

1 INTRODUCTION

THE Java language has become a dominant means for the
realization of embedded and mobile computing envir-

onments. The main feature of Java that led to this is its
portability. More specifically, the compilation of Java
applications results in device independent code, generated
in terms of a standard format, called Java bytecode. The Java
bytecode can then execute on top of different device-specific
Java Virtual Machines (JVMs), which take charge of
translating the bytecode into device-specific machine code.

The memory limitations imposed by embedded and
mobile devices certainly constrain the set of applications
that may possibly execute on top of them. Confronting the
aforementioned issue fosters research in two orthogonal
directions. The first one concerns the reduction of the
physical size and cost of memory chips, while the second
one involves reducing the size of the code of embedded
applications. Advances in both of these research directions
are equally valuable. No matter how much we increase the
amount of available memory, there will always be more
demanding applications. Similarly, even if we manage to
diminish the size of embedded and mobile applications, we
may always require concurrent execution of as many of
them as possible.

Many significant research efforts have already been
made toward the generation of compressed code [1].

However, most of these efforts involve the compression of
either machine or assembly code. Among the few ap-
proaches that focus on the case of Java bytecode, we have
those proposed in [2], [3], and [4]. In [2], the authors
examine various approaches for bytecode compression,
relying on Huffman codes and Markov chains. In [3],
bytecode compression is based on the use of canonical
Huffman codes and the generation of fast decoders. In [4],
the approach followed is based on the discovery of
instruction sequences that occur more than once within
the Java bytecode. Each sequence of instructions defines a
pattern. Each pattern occurrence is substituted by a single
instruction that is called a macro.

However, a pattern, in its broadest sense may have the
following characteristics:

1. It may be of an arbitrary length.
2. It may contain wildcards in place of a particular

opcode or operand. Hereafter, we use the term
parameterized to refer to patterns that contain a
variable number of wildcards. Respectively, we use
the term nonparameterized to refer to patterns that do
not contain wildcards.

So far, existing approaches for Java bytecode compres-
sion do not deal with the aforementioned generic form of
patterns. This fact is recognized in [4], where the authors
further highlight the need for more sophisticated pattern
discovery techniques. The main contribution of this paper is to
assess the use of such a technique in the context of Java bytecode
compression. Specifically:

. We customize a well-known pattern discovery
technique, called agglomerative clustering [5], [6],
toward the identification of parameterized and
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nonparameterized patterns within a given Java
bytecode. The proposed technique allows discover-
ing patterns of an arbitrary length, which may
contain a variable number of wildcards.

. We assess the advantages and the limitations of the
aforementioned technique in various scenarios that
aim at compressing MIDP, a standard Java environ-
ment that supports the development of applications
for mobile devices. The main feature of the para-
meterized pattern discovery technique is that it
allows finding a large variety of patterns that can be
combined to obtain better bytecode size reduction.
This, however, is also its main limitation. Exploring
the large variety of patterns toward finding a
combination that gives a good bytecode size reduc-
tion is a complex task. Given this fact, in our
assessment:

1. We employ/compare two heuristic methods
toward the combination of patterns.

2. Based on the two heuristics, we investigate the
impact of using patterns that contain a variable
number of wildcards for the compression of Java
bytecode. To this end, we compress MIDP using
patterns that contain a variable number of
wildcards, patterns that do not contain wild-
cards, and patterns that contain a fixed number
of wildcards, and we perform a comparative
study of the results.

3. Moreover, we examine the impact of the
increasing length of the patterns in the compres-
sion of Java bytecode.

4. Finally, we study the behavior of the decom-
pression overhead introduced by the examined
technique.

The remainder of this paper is structured as follows: In
Section 2, we discuss related work. In Section 3, we
introduce a typical nonparameterized pattern discovery
technique, followed by the advanced parameterized
pattern discovery technique that we investigate. Then,
we highlight the benefits of the parameterized pattern
discovery technique, as opposed to the nonparameterized
one, with respect to a number of motivating examples. In
Section 4, we introduce the complementary heuristic
techniques, which serve for handling the complexity of
combining large numbers of parameterized and nonpar-
ameterized patterns. Moreover, we present the experi-
mental results we obtained in the case of MIDP. Finally,
in Section 5, we summarize the contribution of this paper
and point out the future directions of this work.

2 RELATED WORK

Code compression techniques can be divided into two
major categories [7]. The first one aims at producing a
reduced-size wire code that can be transmitted to the CPU as
fast as possible. In this case, what matters is achieving the
best possible compression. For the particular case of Java,
there have been several approaches for the construction of
wire code. Among the prominent ones, we have JAZZ [8],
an alternative to the standard JAR format, and Slim Binaries

[9], an alternative to the standard bytecode format. More-
over, we have the approach proposed in [2], where the
authors discuss methods for reducing the size of the
constant pool. In [10], Pugh also discusses interesting ideas
toward a wire code format that aims at reducing the size of
collections of class files. Finally, in [11], Tip et al. investigate
techniques for the removal of redundant class file attributes
and methods, along with techniques for constant pool
compression and class hierarchy transformations.

The second category of techniques aims at producing a
reduced-size interpretable code that can be stored and
executed without being fully decompressed. In this case,
what is important is the reduction of the overall amount of
memory required for the execution of the application. The
various techniques proposed for the generation of inter-
pretable code rely either on Huffman codes and arithmetic
coding or on the identification of patterns.

The use of Huffman codes [12], [13] and arithmetic
coding [14] in code compression aims at shortening a
sequence of instructions by mapping them into the shortest
possible sequence of bits. Huffman-based techniques have
been criticized for their decompression complexity. How-
ever, in [3], Latendresse and Feeley propose an approach for
fast Huffman decoding. Their approach focuses on virtual
instructions and is evaluated for the case of Java bytecode.
In [2], Rayside et al. also investigate the use of Huffman
codes for compressing Java bytecode.

Pattern-based techniques for interpretable code compres-
sion focus on the identification of multiple occurrences of
instruction sequences within an application. Each such
sequence is called a pattern. Patterns are usually stored in a
dictionary and their occurrences in the original code are
substituted in the compressed code by dictionary indexes.
Indexes are frequently called macros and their size is usually
the size of a single instruction. Specifically, in [15], Cooper
and McIntosh propose a dictionary-based approach that can
be applied in RISC intermediate representations. This
approach allows searching for nonparameterized patterns
of an arbitrary length. Nonparameterized patterns of an
arbitrary length are also used by the IBM CodePack
compressor [16], which is deployed on PowerPCs. This
particular technique originates from the one proposed by
Lefurgy et al. in [17].

In [18], Debray et al. present an approach that deals with
parameterized patterns. The approach relies on the dis-
covery of similar basic blocks (i.e., code fragments with a
unique entry and a unique exit point). As a similarity
metric, the authors use a fingerprint function. Moreover,
several classical compiler optimization techniques (e.g.,
dead code elimination) are applied. In [19], De Sutter et al.
go one step further by searching for similar procedures and
code regions. Again, the fingerprint function is used as a
similarity metric. Parameterized procedures are also used in
Krinke’s work [20]. Moreover, in BRISC [7], Ernst et al.
propose a dictionary-based technique that relies on patterns
consisting of two instructions. The patterns may further
contain wildcards in place of instruction operands. Para-
meterized pattern discovery is also used in [21]. This
approach focuses on the identification of similar basic
blocks in ARM code. For a set of similar blocks, a
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representative function is built. The representative function
comprises predicated instructions, corresponding to the
differences met among the original basic blocks. In [22],
Evans and Fraser also propose an approach that employs a
sort of parameterized pattern. The proposed system accepts
as input a grammar and a training set of programs and
produces an expanded grammar that allows shorter
derivations of the training and other similar programs.
The rules of the expanded grammar can be seen as
parameterized patterns, leading to different derivations. In
[20], legacy source code is transformed using procedural
abstraction, so that it becomes more understandable,
maintainable and small. Extracted sets of statements form
procedures and the extracted code is replaced with
procedure calls. Similarly, in [23], the authors identify
similar segments of source code based on program
dependence graphs.

Considering the particular case of Java bytecode, in [4],
Clausen et al. propose a technique which considers
nonparameterized patterns of an arbitrary length. Their
main contribution is that they do not directly use the
notion of a dictionary; instead, they specialize the JVM
with more complex instructions that actually realize the
execution of the patterns. Then, the patterns can be
substituted in the original code by the new instructions,
thus reducing the size of the original code. In this paper,
we investigate a dictionary-based bytecode compression
technique, which goes one step beyond [4] by considering
both parameterized and nonparameterized patterns of an
arbitrary length. Currently, the technique is applied in
bytecode basic blocks, but it could as well be used in the
case of whole Java methods. The technique that we
investigate is more fine-grained with respect to the other
parameterized pattern discovery techniques discussed in
this section. It does not search for similarity among whole
basic blocks (or procedures). Instead, it searches inside
the basic blocks for similar instruction sequences of an
arbitrary length. To cope with the increased complexity of
this task, we employed the agglomerative clustering
algorithm [5], [6].

3 JAVA BYTECODE COMPRESSION PROCESS

The bytecode of a compiled Java program is a sequence of
binary-encoded JVM instructions. Each instruction consists
of an opcode and possibly a number of operands. The size
of instruction opcodes or operands is 1 byte. As an example,
consider the Java program given in Fig. 1a. This simple
program comprises a class of objects that represent vectors
in the three-dimensional space. Each vector is characterized
by three coordinates (x, y, z, attributes) and provides a
method, called distance, which calculates the euclidean
distance norm, d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, for the vector.

The compiled bytecode for the distance method of our
program is given in Fig. 1b. The overall size of the sequence
is 34 bytes. In the remainder of this section, we use the
example of Fig. 1b to highlight the main steps of the
nonparameterized and the parameterized compression
approaches, discussed in this section. In both cases, the
overall compression process consists of the following steps:

1. The Java bytecode is segmented into basic blocks.
2. A pattern discovery technique is used for the

identification of patterns in the basic blocks of the
bytecode.

3. The resulted patterns are collected; possible combi-
nations of patterns are examined and, for each one of
them, the corresponding bytecode size reduction is
calculated.

4. Finally, the combination of patterns that gives the
highest bytecode size reduction is selected and used
for the generation of the compressed code.

3.1 Nonparameterized Pattern Discovery

The nonparameterized pattern discovery can be reduced

into a simple string search problem. Specifically, consider a

finite set � ¼ fc1; . . . ; c�g consisting of � ¼ j�j individual

characters. An arbitrary string over the set � is any

sequence Sj ¼ fsjkgLjk¼1 of length Lj, where sjk 2 � denotes

the character at the kth position of the sequence Sj. Let

S ¼ fS1; . . . ; SMg be a set of M sequences of length

L1; . . . ; LM , respectively. In our case, S denotes the set of
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Fig. 1. A simple Java program. (a) Source code. (b) Compiled bytecode

for the distance method.



basic blocks of the Java bytecode, identified during the first
step of the code compression process. Then, the pattern
discovery amounts to finding common substrings that are
repeated in the sequences of S. Suppose that we search for
substrings of a variable length k ¼ 2; . . . ; K. Then, to locate
them, we perform the following tasks:

1. For each k ¼ 2; . . . ; K, obtain the collection Xk ¼
fxignki¼1 of k-length substrings of the sequences that
belong in S by sliding a window of size k in each
sequence Sj 2 S. For every Sj, the resulted number
of substrings is Lj � kþ 1. Hence, the cardinality of
Xk is nk ¼ jXkj ¼

PM
j¼1fLj � kþ 1g.

2. Then, the set of nonparameterized patterns P is
calculated by searching within each collection Xk for
identical substrings. The union of the identical
substrings obtained during this step constitutes P .

To accomplish the first of the above tasks we have to
perform

PK
k¼2

PM
j¼1fLj � kþ 1g ¼

PK
k¼2fjXkjg sliding steps.

Moreover, to accomplish the second task, we have to
perform an overall total of

PK
k¼2

PjXkj�1
i¼0 fjXkj � i� 1g ¼PK

k¼2fjXkj � ðjXkj � 1Þ=2g substring comparisons.

All the possible combinations of the patterns retrieved
are 2jP j. The subset of P that gives us the highest bytecode
size reduction is stored in the dictionary. The dictionary we
use is actually a table of characters. Each table element is
used to hold a pattern instruction opcode or operand.
Moreover, there are table elements that contain a special
character used to signify the end of a pattern; hereafter, we
use the term END_OF_PATTERN to refer to that character.
The occurrences of each pattern are substituted in the
original code by a character (i.e., one byte) that indexes the
dictionary element that contains the first byte of the pattern.
For the selection of the indexing characters we employ the
typical approach of Clausen et al., which amounts to using
unused bytecode instruction opcodes [4]. Different standard
Java platforms for embedded systems comprise unused
instruction opcodes, whose number ranges from 52 to 152.
As discussed by Clausen et al., the number of unused
opcodes limits the number of patterns that can be used.
However, this problem can be alleviated by using a second
character, along with the ones that correspond to unused
instruction opcodes.

Getting to our example scenario, the bytecode for the
distance method (Fig. 1b) constitutes a basic block as it does
not comprise any branch operations. Alphabet � consists of
12 characters that encode the various opcodes (e.g.,
getfield, aload_0, etc.) and operands (e.g., 0, 2, 3, 4,
5) used in the basic block. The basic block contains patterns
of length 4. Since the overall size of the basic block is
34 characters (i.e., 34 bytes), the set of substrings of length 4
for this basic block contains 31 elements. The set of patterns
that results from the 31 substrings includes the three
patterns given in Fig. 2a.

Let us consider the first of the three patterns. When
stored in the dictionary the required space is 4 bytes, plus
one more byte for the END_OF_PATTERN character. Since
this pattern appears twice in the examined Java bytecode,
2 bytes are needed in the compressed bytecode to index
into the dictionary the position of the pattern. Hence, the

gain from substituting the occurrences of the first pattern
in the original bytecode is

2 occurences� 4 bytes �
ð5 dictionary bytes þ 2 indexing bytesÞ ¼ 1 byte:

Thus, compressing the bytecode with respect to the first
pattern saves us 1 byte. If we repeat the same procedure for
the other two patterns, we can save two more bytes and the
final bytecode will be 31 bytes. Therefore, the bytecode size
reduction obtained is 8.82 percent. As we demonstrate in
the following subsection, this is much smaller than the
reduction obtained by using the parameterized pattern
discovery technique.

3.2 Parameterized Pattern Discovery

The parameterized pattern discovery technique is actually
an extension of the nonparameterized one. It starts from the
point where we have already identified the different
collections X2; . . .XK of substrings of the sequences that
belong in S. Following, the discovery of parameterized
patterns can be viewed as a clustering problem in the sense of
searching for disjoint subsets (clusters) in each set Xk that
are characterized by a high degree of similarity among the
samples that they enclose. Several algorithms have been
proposed for clustering discrete data [24], [5], [6]. From
among them, we selected agglomerative clustering (AC) [5],
[6], which is a hierarchical approach that relies on the
bottom-up generation of a treelike structure of clusters.

AC is performed for every Xk toward obtaining a subset
of candidate patterns Pk. Specifically, AC starts with a set of
jXkj clusters (leaf nodes), each one containing one bytecode
substring xi from the set Xk. Then, a multinomial distribu-
tion with �v parameters is generated for each cluster v. In
particular, �v can be seen as a two-dimensional matrix of
size k� j�j. The rows of the matrix correspond to the
k elements of the samples of v (i.e., xi, in the first step of the
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Fig. 2. Patterns discovered for the distance method. (a) Non-

parameterized patterns. (b) Parameterized patterns.



algorithm), while the columns correspond to the different
characters of � that can become the values of each element.
Then, the value of a matrix element �v½m; l� denotes the
probability of observing character cl at position m of the
samples of v. Specifically, �v½m; l� is maximum-likelihood
(ML) estimated as follows:

�v½m; l� ¼ nvml=nv: ð1Þ

nvml counts the number of occurrences of the character cl 2
� at the mth position of the nv samples of cluster v.
Formally,

nvml ¼
X
xi2v

�iml; where �iml ¼
1 if xim ¼ cl
0 otherwise:

�
ð2Þ

In the first step of AC, nv ¼ 1 and each row m of the �v
matrix contains one element equal to 1. The values of all the
other elements of the mth row are 0. Taking our example
program of Fig. 1, suppose that we search for patterns
whose maximum length is 9 bytes. AC must be applied in
the different collections X2; . . . ; X9 that contain bytecode
substrings of length 2; . . . ; 9, respectively. For the case of X9,
AC results in creating leaf clusters, each one of which
includes a sequence of length 9. Some of these clusters are
given in Fig. 2b (note that, in order to simplify the figure, we
used A, G and F to denote the opcodes aload_0,
getfield, and fmul, respectively). Let v be the first leaf
cluster from the left side of the figure. Then, �v is a
9� 12 matrix. Similar matrices are created for the rest of the
leaf clusters of Fig. 2b.

At each next step of AC, the algorithm searches the
current set of clusters to identify the two most similar ones
v, u that can be merged into a new cluster denoted by v [ u.
In our example, the substrings of the first and the third
cluster differ only in the operands that reside in their fourth
and eighth positions. These clusters can be merged into a
new cluster that contains the aforementioned substrings.
Moreover, the fourth and eighth rows of the �v[u matrix
comprise two nonzero valued elements. Consequently, the
�v[u matrix represents a parameterized pattern of the two
substrings, which contains two wildcards in place of its
fourth and eighth elements. A similar merge takes place in
the third step of the algorithm. Let w be the fourth leaf
cluster from the left of Fig. 2b. This cluster is merged with
the one created in the previous step into a new one that is
still represented by the parameterized pattern created in the
previous step.

The distance between two clusters is formally defined as
follows [5], [6]:

Dðv; uÞ ¼ Lvð�vÞ þ Luð�uÞ � Lv[uð�v [ uÞ: ð3Þ

The quantity Lvð�vÞ represents the log-likelihood value that
characterizes the cluster v and is given by the following
formula:

Lvð�vÞ ¼
X
xi2v

Xk
m¼1

Xj�j
l¼1

�iml log �v½m; l�: ð4Þ

In general, a wildcard in the ith position of a parameterized
pattern that characterizes a cluster signifies that the

substrings of the cluster differ in their ith byte. The pattern
may contain more than one consecutive wildcards, if the
substrings of the cluster differ in more than one consecutive
bytes. The AC algorithm may further construct nonpar-
ameterized patterns by merging clusters that contain
identical substrings.

The algorithm terminates when no pair of nodes is
allowed to be further merged. To assess the final set of
patterns and obtain Pk, we perform a depth-first visit upon
the nodes of the constructed tree. In particular, starting
from the high-level nodes, we traverse each subtree until
finding the first cluster (node) v, whose multinomial density
parameters �v represent a required degree of similarity. This
is done by setting a threshold T ðkÞ to the number of
nonwildcard elements of the pattern that is represented by
the node that we look for. The value for T ðkÞ should be
experimentally determined.1 Once such a node is found, it
is stored in Pk. By construction, Pk may comprise patterns
that overlap. More precisely, two patterns in Pk may refer to
the same opcode or operand of the original bytecode.
Overlapping patterns may contribute differently in the
overall bytecode size reduction and, therefore, they are
included in Pk. At the end of AC, the retrieved patterns are
further simplified. Specifically, if Pk contains a pattern with
a wildcard in place of the first (or the last) byte, this pattern
is substituted with the pattern that results from removing
this wildcard. Therefore, the resulting set Pk contains
patterns that do not start or end with a wildcard.
Nonparameterized patterns may also result from the
simplification procedure when it is applied in patterns that
contain wildcards only in place of their first or last bytes.

The P2; . . . ; PK subsets of significant patterns obtained
from the application of AC to the X2; . . . ; XK collections of
substrings are finally merged into a single set of significant
patterns P . Again, P may comprise overlapping patterns.
Moreover, P may comprise nested patterns, in the sense
that a pattern p that was originally included in Pi exactly
matches with a part of a pattern q that was originally
included in Pj, where j > i. The elements of P are combined
during the last two steps of the code compression process
mentioned at the beginning of this section.

As in the case of the nonparameterized patterns
technique, the total number of possible combinations of
patterns is 2jP j. The subset of them that gives us the highest
bytecode size reduction is stored in the dictionary, whose
structure is, however, slightly different from the one used in
the nonparameterized pattern discovery technique. Specifi-
cally, the dictionary is still a table of characters. Each table
element holds a pattern instruction opcode or operand and
there are elements that contain the END_OF_PATTERN

character. The wildcards are not stored in the pattern.
Instead of wasting one table element for storing a value that
signifies the existence of a wildcard, we only spend 1 bit.
Specifically, for patterns of maximum length K we use
dðK � 2Þ=8e table elements at the beginning of each pattern
to encode the positions of the wildcards within it. Recall
that the patterns produced by AC do not contain wildcards
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in their first and last bytes; hence, a pattern of maximum
length K may contain at most K � 2 wildcards. Then, the
value of the ith bit of a table element that encodes the
positions of wildcards within the pattern is 1, if the pattern
contains a wildcard in the ith position. Hence, for patterns
of maximum length 10, we use one extra table element.
Similarly, for patterns whose length is between 11 and 18,
we use two extra table elements, and so on. In the original
bytecode, the occurrences of a pattern are substituted by a
character (i.e., 1 byte) that indexes the dictionary elements
that encode the positions of wildcards within the patterns.
The indexing byte is followed by the actual values of these
wildcards. As indexing characters we use unused bytecode
instruction opcodes [4].

Summarizing, the most important concept of AC is the
intercluster distance Dðu; vÞ, which we use as a basic criterion
for merging clusters during the construction of the tree. The
distance used (3) is derived from a probabilistic model; it
reflects the likelihood decrease that results by merging the
clusters u and v. During each of its steps, the algorithm
merges the best pair of clusters, i.e., those having the lower
likelihood decrease when putting together. AC has several
advantages as it requires OðjXkjÞ memory for every
Xk; k ¼ 2; . . . ; K, while its complexity is typically quadratic
to jXkj [5]. Nevertheless, the application of other statistical
methods for finding patterns in Java bytecode constitutes
one of our future directions in this subject area.

Returning to our example scenario, suppose that we use
the pattern identified in Fig. 2b to compress our simple Java
program. The pattern appears in three bytecode sequences
in the program. Originally, for these sequences we need
3� 9 bytes ¼ 27 bytes. In the dictionary, we need 7 bytes to

store the nonwildcard pattern elements and 1 byte extra to

encode the positions of the wildcards.
Finally, we need 1 byte for the END_OF_PATTERN

character. In the bytecode, each pattern occurrence is
replaced by 3 bytes, one for indexing the directory and
two for the actual values of the two wildcards. Thus, in the
compressed code, we need 9 bytes for specifying the
positions of the pattern occurrences in the bytecode and
9 bytes for storing the pattern in the dictionary. This means
that the compression results in saving 9 bytes. Hence, the
use of parameterized patterns gives us a much better
bytecode size reduction (26.47 percent), compared to the
one (8.82 percent) obtained in the case of the nonparame-
terized pattern discovery technique.

To further motivate the investigation of the advanced
parameterized pattern discovery technique, we applied it
in a set of simple Java programs that realize standard
algorithms. The sizes of these simple programs are given
in Table 1a. The percentages of the bytecode size
reduction we obtained in these examples are given in
Table 1b. It should be noted that these results are optimal
in the sense that we performed all possible combinations
of the retrieved patterns toward locating the subset of
these patterns that gives the highest bytecode size
reduction. Once more, we can observe that the para-
meterized pattern discovery technique results in better
percentages of bytecode size reduction, compared to the
ones obtained from the nonparameterized one. It is worth

noticing that in some of the examples (e.g., fibonacci
numbers, selection sort, etc.), the nonparameterized
technique completely failed to locate any patterns, while
the parameterized technique results in a respectable
percentage of bytecode size reduction.

3.3 Bytecode Decompression

The bytecode decompression procedures for the techniques
we discussed in this section are quite straightforward. In the
case of the nonparameterized technique, the decompression
module is initialized with a given dictionary. The module
provides an operation that accepts as input an index to the
dictionary. This particular operation should be called by the
main loop of the Java bytecode interpreter, upon the
discovery of a byte that corresponds to an unused bytecode
opcode. The decompression module uses the input index to
find the first byte of the pattern. This corresponds to the
first instruction opcode contained in the pattern. The
decompression module reasons based on the given opcode
about the number of bytes that need to be fetched from the
dictionary. Then, the required number of bytes are fetched
from the dictionary toward forming an instruction. The
remaining instructions that constitute the particular pattern
are decompressed similarly. The overall decompression
procedure ends up by fetching the END_OF_PATTERN

element from the dictionary.
For the parameterized technique, the decompression is

similar. The decompression module is also initialized with a
given dictionary and the maximum length used for deriving
the patterns contained in this dictionary. The decompres-
sion module accepts as input an index to the dictionary.
Following, it uses the input index to repeatedly fetch from
the dictionary a number of elements that encode the
positions of the wildcards within the indexed pattern. The
number of these elements depends on the maximum length
used for discovering the patterns contained in the dic-
tionary (by default, the maximum length of patterns is 9
and therefore 1 byte is fetched). The byte that follows the
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the Parameterized Techniques to Compess
a Typical Set of Algorithms Implemented in Java

(a) Class file and bytecode sizes. (b) Percentage of bytecode size
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elements that encode the positions of wildcards is the first
instruction opcode contained in the pattern. As previously,
the decompression module figures out about the number of
bytes required for forming the first instruction that should
be executed. Some of the required bytes are fetched from
the dictionary, while some others are found in the
compressed code. Specifically, the ith byte is fetched from
the dictionary if the value of the ith bit of the bytes that
encode the positions of wildcards within the pattern is 0.
Otherwise, the ith byte is found in the compressed code.
The remaining instructions that constitute the particular
pattern are decompressed similarly. Again, the overall
decompression procedure ends up by fetching the END_

OF_PATTERN element from the dictionary.

4 ASSESSMENT

Although some benefits from using the parameterized
pattern discovery technique are evident from the simple
examples discussed in Section 3, we further conducted
experiments involving a real-world case study. Specifically,
the target of our investigation is the MIDP (Mobile
Information Device Profile) v2.0 reference implementation
from Sun Microsystems.2 MIDP is part of the Java 2 Platform
Micro Edition (J2ME) and relies on CLDS (Connected
Limited Device Configuration). It provides a basic environ-
ment for the development of Java applications for mobile
information devices (MIDs) such as mobile phones and
PDAs. The MIDP reference implementation consists of
11 packages. In this section, we present the results we
obtained from six of these packages, which we consider as
the core of MIDP. The basic characteristics of each package
(size of class file and bytecode size) are given in Table 2. The
sizes of the particular Java class files are representative,
considering real world applications aimed at mobile and
embedded devices. Specifically, the standard JTWI (Java
Technology for the Wireless Industry)3 specification sets the
limit of a standard-size-application to 64 Kbytes. JTWI
actually defines a standard framework for the development
of mobile applications and MIDP is part of it. Applications
that are under the limit of 64 Kbytes are guaranteed to work
correctly over any kind of device that complies with JTWI.
Regarding the MIDP packages, java.io provides classes for

input and output through data streams. The java.lang
package consists of basic language classes coming from
J2SE (Java 2 Standard Edition), javax.microedition.io
includes networking support relying on CLDC. The
javax.microedition.media package allows accessing
device-dependent resources for multimedia processing.
The javax.microedition.midlet package defines the basic
MIDP application model. Finally, javax.microedition.pki
enables managing certificates, used for securing connections.

The goals of our experiments were:

1. To investigate the benefits and the cost of the
parameterized pattern discovery technique, mea-
sured in terms of the bytecode size reduction obtained
and the time spent for discovering and combining
patterns, respectively.

2. To study the cost of the decompression procedure
that comes along with the parameterized technique
in terms of the time overhead, introduced in the
execution of Java bytecode.

4.1 Bytecode Compression

To evaluate the benefits and the cost of the parameterized
pattern discovery technique, we performed two different
sets of experiments. The first one aims at evaluating the
impact of using patterns that contain a variable number of
wildcards in the compression of MIDP. The second set of
experiments aims at investigating the impact of the
increasing length of the patterns in the compression of
MIDP. In the first set of experiments, the maximum length
of the patterns is set to 9, while in the second one we
increase this length from 9 to 11. In both sets, the threshold
for nonwildcard elements in the patterns was set to
T ðkÞ ¼ dk=2e.

The strong point of the advanced parameterized pattern
discovery technique is its ability to track down a rich
variety of patterns, whose combination may lead to more
effective bytecode size reduction. This fact is particularly
highlighted in Table 3a and Table 3b, which give the total
number of patterns and the number of nonparameterized
patterns discovered in the MIDP packages. Table 3a
specifically refers to the first set of experiments, in which
the maximum length of the patterns was 9, while Table 3b
refers to the second set of experiments, in which the
maximum length of the patterns was 11. In general, we can
observe that increasing the maximum length of the patterns
results in increasing the overall number of patterns found.

Nevertheless, the time required by the advanced para-
meterized pattern discovery technique for the discovery of
patterns is quite high (Table 3a and Table 3b). Moreover, the
discovery of a rich variety of patterns also increases the
complexity of combining these patterns to obtain a good
bytecode size reduction. Therefore, an issue that should be
studied in our assessment is whether the discovered
patterns are useful, that is, worthy of the time required
for discovering and combining them.

As already discussed, the complexity for finding all
possible combinations of patterns is 2jP j. In the first set of
experiments, the average number of parameterized patterns
found per MIDP class is 157. On the other hand, the average
number of nonparameterized patterns found per MIDP
class is 85.6. If we assume that each combination of patterns
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TABLE 2
MIDP Packages Basic Features



requires 1 �sec to be performed, then the assessment of all
possible combinations of parameterized patterns would
require 5:39864 � 1031 hours to complete. Similarly, the
assessment of all combinations of nonparameterized pat-
terns would require 1:69879 � 1010 hours. The assumption
that the assessment of a particular combination of patterns
requires 1 �sec is rather optimistic and refers to combina-
tions of two patterns. As we can observe in the experiments
detailed later, the required time depends on the number of
combined patterns and it is usually higher than 1 �sec.
Therefore, for both the parameterized and the nonparame-
terized sets of patterns found in MIDP, the assessment of all
possible combinations is virtually impossible. To deal with
this particular problem, we investigate the use of two
heuristics. The purpose of the heuristics is to allow us to
efficiently obtain good suboptimal bytecode size reduction.

In both heuristics, we sort an overall set of patterns P
based on the bytecode size reduction provided by these
patterns when they are used in isolation for the compres-
sion of the bytecode within which they were found. In a
sense, we quantitatively group/cluster the patterns with
respect to the bytecode size reduction that they provide.
Then, in the first heuristic, we start from the pattern that
offers the best bytecode size reduction and we examine its
combination with the second-best pattern. If the bytecode
size reduction obtained using the two patterns is greater
than the one obtained from the first pattern, we keep the
second pattern as well. Otherwise, the second-best pattern

is useless. We follow the same procedure for the rest of the
sorted patterns, ending up with a set of patterns that gives
us a suboptimal bytecode size reduction. The second
heuristic amounts to performing the first heuristic jP j
times. During each iteration i : i ¼ 1; jP j, we start from the
ith best of the sorted patterns and we proceed by checking
the usefulness of combining it with the iþ 1; iþ 2,
. . . ; jP j; 1; 2; . . . ; i� 1 patterns. At the end of this procedure,
we end up with jP j sets of patterns, among which we select
the one that gives us the highest bytecode size reduction.

In general, the impact of the second heuristic in the
overall time required for the bytecode compression is
expected to be much higher than the impact of the first
heuristic (since the application of the second heuristic
consists of applying the first heuristic jP j times). On the
other hand, the combinations of patterns examined by the
second heuristic are a superset of the combinations of
patterns examined by the first heuristic. Hence, the
percentage of bytecode size reduction obtained from the
application of the second heuristic is expected to be at least
as good as the percentage of bytecode size reduction
obtained from the application of the first heuristic.

4.1.1 Experimental Results—First Set of Experiments

In the first set of experiments, we used as input to both
heuristics the full set of patterns, Pparam, discovered by the
parameterized pattern discovery technique in each one of
the MIDP packages. Moreover, we used as input to both
heuristics the set of nonparameterized patterns, Pnon-param,
discovered in each one of the MIDP packages. To compare
the contribution of patterns that contain a variable number
of wildcards against the contribution of patterns that
contain a fixed number of wildcards, we further constructed
four input sets, P1w, P2w, P3w, and P4w, consisting of patterns
that contain one, two, three, and four wildcards, respec-
tively. P1w, P2w, P3w, and P4w were constructed from the full
set of patterns Pparam that resulted from AC. Finally, to
investigate the impact of the increasing number of wild-
cards in the compression of the MIDP packages, we
constructed three more input sets, P1-2w, P1-3w, and P1-4w,
consisting of patterns that contain one-to-two, one-to-three,
and one-to-four wildcards, respectively. P1-2w, P1-3w, and
P1-4w were also constructed from the full set of patterns
Pparam that resulted from AC.

Fig. 3 compares the results we obtained per MIDP
package from the application of the first heuristic in Pparam,
Pnon-param, P1w, P2w, P3w, and P4w (more detailed results
regarding the bytecode size reduction obtained per different
class of the MIDP packages are given in the Appendix).
Specifically, the time required to combine the patterns
(Fig. 3b) is acceptable in every case. However, the bytecode
size reduction we obtained for each package largely
depends on the patterns used. In particular, in some
packages (e.g., javax.microedition.midlet), Pparam gives the
best bytecode size reduction. In other packages (e.g., java.io),
the nonparameterized set, Pnon-param, performs better.
Finally, there are also packages where the sets that contain
patterns with fixed numbers of wildcards give the best
bytecode size reduction (e.g., P1w and P2w in javax.micro
edition.pki). Therefore, the first heuristic is quite fast but
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TABLE 3
Comparing the Numbers of Parameterized and
Nonparameterized Patterns Discovered in MIDP

(a) Maximum length of patterns ¼ 9. (b) Maximum length of patterns
¼ 11.



rather unpredictable regarding the set of patterns that
should be used to obtain the highest bytecode size reduction.

Moreover, in most packages, the first heuristic appears
incapable of taking advantage of the flexibility provided by

the large variety of patterns contained in Pparam.
The results obtained from the application of the second

heuristic in Pparam, Pnon-param, P1w, P2w, P3w, and P4w are given
in Fig. 4 (more details regarding the bytecode size reduction
obtained per different MIDP class are given in the Appendix).
As expected, the time required to combine patterns
(Fig. 4b) is much higher than the time spent when using
the first heuristic. However, it is still reasonable compared
to the time required for deriving all possible combinations
of patterns. The bytecode size reduction we obtained is
generally better than the corresponding reduction obtained
from the application of the first heuristic. The use of Pparam
gives the highest bytecode size reduction in all packages,
except for the javax.microedition.pki one (Fig. 4a). Hence,
the second heuristic renders the use of Pparam more
beneficial. The reduction obtained from the sets that contain
patterns with fixed numbers of wildcards is in most
packages poorer than the reduction resulted from Pparam.
However, among P1w, P2w, P3w, and P4w, the first two sets
give better bytecode size reduction. Hence, patterns with a
relatively small number of wildcards contribute more in
reducing the size of the MIDP packages.

Fig. 5 and Fig. 6 compare the results we obtained from
the application of the first and the second heuristic in
Pparam, Pnon-param, P1-2w, P1-3w, and P1-4w (more details can be
found in the Appendix). Regarding the two heuristics, the
observations derived from Fig. 3 and Fig. 4 are still valid.
The bytecode size reduction obtained from the first
heuristic is smaller compared to the one obtained from
the application of the second heuristic. In both heuristics,
the reduction obtained in the case of P1-2w, P1-3w, and P1-4w

is greater than the reduction obtained in the case of P1w, P2w,
P3w, and P4w. In most cases, P1-2w gives better bytecode size
reduction than P1-3w and P1-4w. This observation is addi-
tional evidence that patterns with a small number of
wildcards result in combinations that give us better
bytecode size reduction.

The inclusion of patterns with three and four wildcards
in the set of patterns that contain one and two wildcards
results in the worst bytecode size reduction in certain cases
because of the overlapping between these patterns. For
example, a pattern that contains three wildcards could
appear in the bytecode in the form of two consecutive
patterns that contain one and two wildcards. In the same
bytecode, there may also be individual occurrences of the
two constituent patterns. If used in isolation,4 the two
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Fig. 3. Experimental results from the application of the first heuristic in Pparam, Pnon-param, P1w, P2w, P3w, and P4w. (a) Percentage of bytecode size

reduction per MIDP package. (b) Time to combine patters per MIDP package (sec).

4. That is, according to the way that we assess the contribution of
patterns in the heuristics.



constituent patterns may result in bytecode size reductions
that are smaller than the one that can be obtained from the
use of the three-wildcards-pattern. On the other hand, if
both the constituent patterns are used we may get a
reduction that is better than the one obtained by the use of
the three-wildcards-pattern. However, the selection of the
three-wildcards-pattern may render the selection of the two
constituent patterns impossible (e.g., because, after the
substitution of the three-wildcards-pattern occurrences, the
constituent patterns no longer appear in the bytecode more
than once).

Although one would expect that the bytecode size
reduction resulted from P1-3w and P1-4w would be really
close or equal to the one obtained from Pparam, this is not the
case. P1-4w comprises all the patterns that contain wildcards.
However, Pparam further comprises the nonparameterized
patterns, discovered by AC (Section 3.2). The contribution
of the nonparameterized patterns is quite significant, along
with the contribution of the patterns that contain one and
two wildcards. This becomes clear with further elaboration
on the results obtained from the application of the second
heuristic in Pparam. Specifically, Fig. 7 gives the numbers of

useful patterns (i.e., the patterns that are finally used for
compressing the MIDP packages) that resulted from the
second heuristic in relation with their lengths and the
number of wildcards that they contained.

Figs. 3a, 4a, 5a, and 6a further compare the results we
discussed so far with the ones obtained from the use of
GZIP. We used GZIP to compress the bytecode of the
different MIDP packages that constitute our case study. The
resulted compressed bytecode is not interpretable, in that it
cannot be executed without being fully decompressed.
However, the bytecode size reduction obtained with GZIP

is a useful measure toward our assessment. In all figures,
we can observe that the percentage of the bytecode size
reduction obtained with GZIP is comparable with the one
resulted from Pparam. It is interesting to note that in the case
of the first heuristic (Fig. 3a and Fig. 5a), in most MIDP
packages, GZIP performs slightly better than Pparam and
Pnon-param. On the other hand, in the case of the second
heuristic, we see that Pparam gives, in some MIDP packages
(java.io, java.lang packages), better bytecode size reduction
than GZIP, while Pnon-param gives only, at most, as good
bytecode size reduction as GZIP.
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Fig. 4. Experimental results from the application of the second heuristic in Pparam, Pnon-param, P1w, P2w, P3w, and P4w. (a) Percentage of bytecode size

reduction per MIDP package. (b) Time to combine patterns per MIDP package (sec).



Summarizing the results from the first set of experi-

ments, we can derive the following conclusions: The

examined pattern discovery technique allows the discovery

of a rich variety of parameterized and nonparameterized

patterns. The discovery of the patterns is quite expensive,

with respect to the time spent by AC. Moreover, the

complexity of selecting and combining patterns is also high.

Our experimental results showed that in the case of MIDP,

the most useful patterns out of Pparam are the nonparame-

terized ones and the ones that contain one and two

wildcards. However, this may not be the case in other Java

applications, where patterns with more than two wild-

cards may also prove useful. Based on these remarks, a

good strategy for balancing the trade-off between the time

spent for discovering/combining patterns and the result-

ing bytecode size reduction is to apply the technique in an

incremental manner. For a given bytecode, instead of

using AC for constructing a large set of patterns, contain-

ing many wildcards, AC can be customized to construct a

smaller set of patterns, containing few wildcards. Starting

from this smaller set of patterns, the technique may be

used at a later time, if necessary, to discover patterns that
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Fig. 5. Experimental results from the application of the first heuristic in Pparam, Pnon-param, P1-2w, P1-3w, P1-4w, and P4w. (a) Percentage of bytecode size

reduction per MIDP package. (b) Time to combine patterns per MIDP package (sec).

Fig. 6. Experimental results from the application of the second heuristic in Pparam, Pnon-param, P1-2w, P1-3w, P1-4w, and P4w. (a) Percentage of bytecode

size reduction per MIDP package. (b) Time to combine patterns per MIDP package (sec).



contain more wildcards, toward further improving the
bytecode size reduction.

4.1.2 Experimental Results—Second Set

of Experiments

In the second set of experiments, we used as input to both
heuristics the set of patterns of maximum length 11, Pparam,
discovered in each one of the MIDP packages. As discussed
at the beginning of this subsection, increasing the maximum
length of the patterns results in the discovery of more
patterns. Moreover, increasing the maximum length implies
increasing the time required for discovering the patterns
and the time required for combining them. The expected
benefit against the time increment is the increment of the
bytecode size reduction. However, the above may not hold;
increasing the maximum length of the patterns may result
only in a small increment of the bytecode size reduction. In
the worst case, it may result in a decrement of the bytecode
size reduction. As detailed in Section 3.2, to encode the
positions of wildcards in patterns of maximum length K,
we have to use dðK � 2Þ=8e bytes. Therefore, for patterns of
maximum length 9, 1 byte is needed. On the other hand, for
patterns of maximum length 11, 2 bytes have to be used.
The extra bytes used for encoding the positions of wildcards
when the maximum length of the patterns is long may
reduce the benefits obtained from using these patterns.

More specifically, Fig. 8a and Fig. 8b give the results we
obtained in the case of the MIDP packages. Fig. 8a refers to

the first heuristic, while Fig. 8b refers to the second
heuristic. In both figures, the left axis corresponds to the
percentage of the bytecode size reduction increment or
decrement resulted from increasing the maximum length of
the patterns from 9 to 11 (columns that are under 0 percent
correspond to bytecode size reduction decrement, while
columns that are above 0 percent correspond to bytecode
size reduction increment; the smaller the columns that are
under 0 percent, the larger the decrement of the bytecode
size reduction). The right axis shows the increment of the
time required for discovering and combining the patterns
when their maximum length is increased from 9 to 11. In the
case of the first heuristic, time increases from 26 percent to
34 percent for the different MIDP packages. Similarly, in the
second heuristic, time increases up to 34 percent. With the
exception of one package (javax.microedition.pki), the
bytecode size reduction decreases. In the first heuristic,
the decrement ranges from �12 percent (Fig. 8a, third
column—javax.microedition.media) to �42 percent (Fig. 8a,
second column—java.lang), while in the second heuristic
the decrement ranges from �7 percent (Fig. 8b, third
column—javax.microedition.media) to �33 (Fig. 8b, first
column—java.io). In the javax.microedition.pki package, the
bytecode reduction increases up to 3 percent for both the
heuristics (sixth column, Fig. 8a and Fig. 8b).

Summarizing the results from our second set of experi-
ments, we can conclude that very long patterns may not
prove beneficial for the bytecode compression process. The
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Fig. 7. Patterns contributed by the second heuristic in the case of Pparam. (a) java.io. (b) java.lang. (c) javax.microedition.io.

(d) javax.microedition.media. (e) javax.microedition.midlet. (f) javax.microedition.pki.



best strategy is to start from discovering patterns whose
maximum length is less than or equal to 10 since the bytes
required for encoding them in the dictionary is small. The
discovery of longer patterns could be tried toward optimiz-
ing the compression, while keeping in mind that it may lead
to worse results.

4.2 Bytecode Decompression

The decompression overhead introduced in the execution of
applications that were compressed into interpretable by-
tecode is always an issue for the assessment of the
compression technique that was used. However, this over-
head depends on several factors concerning the application
itself and the environment within which the application
executes. Specifically, in the case of the technique examined
in this paper, the overhead depends on the number of
pattern instances encountered during the bytecode execu-
tion, the length of the patterns and the number of wildcards
of these patterns. Moreover, the overhead depends on the
characteristics of the particular device and the JVM used for
the execution of the bytecode. It should be noted that the
JVM may be even implemented as part of the processor
used. The previous particularly holds in the case of Java
processors such as picoJava,5 Komodo,6 aJile GEMCore,7

JOP,8 and several others. Given the previous remarks, in
this paper, we focus on examining the general behavior of
the decompression overhead. To this end, we used
randomly generated synthetic bytecode and a simple JVM
main loop [25] that interprets the synthetic bytecode. The
simple JVM main loop was realized for the purpose of our
experiments along with a random bytecode generator and
the two decompression modules discussed in Section 3.3.

The random bytecode generator accepts as input a
required percentage of bytecode size reduction and pro-

duces a synthetic bytecode sequence that can be compressed

according to this percentage of bytecode size reduction. The

generator further accepts as input the main features of a set

of patterns that is generated with respect to the given

features. This set of patterns is then used by the generator

towards the construction of the target bytecode sequence,

which consists of instances of the generated patterns,

complemented with bytecode instructions that will not be

compressed. Specifically, the main features that characterize

a generated set of patterns are:

. The maximum length, K, of the patterns. Based on
this feature, the generator creates patterns, whose
length is uniformly distributed in the range ½2; K�.

. The maximum number of wildcards, M, contained
in the patterns. Given this feature, the generator
builds patterns, whose number of wildcards is
uniformly distributed in the range ½0;M�.

. The maximum the number of pattern occurrences, L.
According to this feature, the generator constructs a
number of pattern occurrences in the target byte-
code, which is uniformly distributed in the range
½2; L�.

. A two-dimensional K �M matrix FR. The value of
each matrix element FR½k;m� (such that k : 2; . . . ; K
and m : 0; . . . ;M) corresponds to the probability of
generating a pattern of length k with m wildcards.

The JVM loop does not provide any advanced JIT
compilation capabilities. Moreover, several typical JVM
activities (e.g., verification, resolution, and access control
[25]) that precede the bytecode interpretation are omitted.
Consequently, the overhead introduced by the decompres-
sion modules is expected to be high. In any case, the results
are based on randomly generated bytecode and may not be
representative of real applications that do not comply with
the features used for the generated bytecode in our
experiments. To perform our experiments, we used two
different environments. The first one relies on a 2 GHz
AMD Athlon XP 2400+ with 256 Kbytes L2 cache, while the
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Fig. 8. The impact of increasing the maximum length of the patterns in the bytecode syze reduction obtained and the time required for discovering

cominging the patterns. (a) Results obtained from the first heuristic. (b) Results obtained from the second heuristic.



second one is based on a 500 MHz UltraSPARC-IIe with
256 Kbytes L2 cache.

The input parameters of the generator relied on the
results we obtained from the MIDP case study. In
particular, we constructed four different sets of bytecode

sequences, whose size was reduced 5 percent, 10 percent,
15 percent, and 20 percent, respectively. The compression of
these bytecode sequences relied on patterns, which con-
tained up to four wildcards. Similarly, we generated four
more sets of bytecode sequences, whose size was reduced
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Fig. 9. Evaluating the decompression overhead of the parameterized pattern discovery technique. (a) Probabilities of generating patterns of length

k : 2; . . . ; 9 with m : 0; . . . ; 4 wildcards. (b) Decompression overhead for the synthetic bytecode sequences. (c) Absolute times for pattern

decompression (�sec).

Fig. 10. Experimental results per MIDP class from the application of the first heuristic in Pparam, Pnon-param, P1w, P2w, P3w, and P4w. (a) java.io.

(b) java.lang. (c) javax.microedition.io. (d) javax.microedition.media. (e) javax.microedition.midlet. (f) javax.microediton.pki.
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Fig. 11. Experimental results per MIDP class from the application of the second heuristic in Pparam, Pnon-param, P1w, P2w, P3w, and P4w. (a) java.io.

(b) java.lang. (c) javax.microedition.io. (d) javax.microedition.media. (e) javax.microedition.midlet. (f) javax.microediton.pki.

Fig. 12. Experimental results per MIDP class from the application of the first heuristic in Pparam, Pnon-param, P1-2w, P1-3w, and P1-4w. (a) java.io.

(b) java.lang. (c) javax.microedition.io. (d) javax.microedition.media. (e) javax.microedition.midlet. (f) javax.microediton.pki.



5 percent, 10 percent, 15 percent, and 20 percent, with
respect to sets of patterns, which did not contain wildcards.
In all cases, the maximum length of the patterns was set

to 9. The range of the pattern instances was ½2; 12�. The
matrix FR that was given as input to the generator was
calculated with respect to the overall set of patterns that
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Fig. 13. Experimental results per MIDP class from the application of the second heuristic in Pparam, Pnon-param, P1-2w, P1-3w, and P1-4w. (a) java.io.

(b) java.lang. (c) javax.microedition.io. (d) javax.microedition.media. (e) javax.microedition.midlet. (f) javax.microediton.pki.

Fig. 14. The impact per MIDP class of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required
for discovering and comining the patterns (first heuristic). (a) java.io. (b) java.lang. (c) javax.microedition.io. (d) javax.microedition.media.
(e) javax.microedition.midlet. (f) javax.microediton.pki.



were combined using the second heuristic in the case of
MIDP (Fig. 7). The specific values of FR that we used are
given in Fig. 9a.

Fig. 9b gives the average decompression overhead we
obtained for the aforementioned sets of bytecode sequences.
As expected, the overhead is quite high (however, it is close
to the overhead reported in [4] for the CaffeineMark
synthetic Java programs). The overhead linearly increases
with the percentage of the bytecode size reduction. In
general, the overhead in the case of the bytecode sequences
that were compressed using patterns that did not contain
wildcards was smaller, compared to the overhead in the
case of the bytecode sequences that were compressed using
patterns that contained wildcards. To further elaborate on
the decompression overhead, we measured the absolute
time required for decompressing parameterized and non-
parameterized patterns, whose length ranged from 2 to
9 bytes. The parameterized patterns comprised up to three
wildcards. Specifically, the patterns of lengths 2 and 3
comprised one wildcard. The patterns of lengths 4, 5, and 6
comprised two wildcards. Finally, the patterns of lengths 7,
8 and 9 comprised three wildcards. The results we obtained
are given in Fig. 9c. The time to decompress linearly
increases with the length of the patterns.

5 CONCLUSION

In this paper, we introduced a first approach that aimed at
assessing the use of statistical pattern discovery for dic-
tionary-based Java bytecode compression. In particular, we
focused on the use of agglomerative clustering, a well-known
hierarchical pattern discovery technique. The main outcome

revealed from our assessment is that the examined technique
promotes the identification of a rich collection of parameter-
ized and nonparameterized patterns of variable lengths,
which give the opportunity for obtaining good bytecode
size reduction. However, the discovery of such a rich set of
patterns for a given bytecode is certainly time consuming.
Moreover, the complexity of finding useful combinations of
patterns out of this set that result in a good bytecode size
reduction is also high. To deal with the complexity of
combining patterns we investigated two heuristics. Our
experimental results showed that the length of the patterns
should be appropriately customized so that it does not
negatively affect the compression by requiring a large
number of bytes for encoding the patterns. Moreover, our
experimental results showed that nonparameterized pat-
terns and patterns that contain a relatively small number of
wildcards are the most useful in our case study. However,
this observation may not hold for any possible Java
bytecode. Based on these remarks, a good strategy
for balancing the trade-off between the time spent for
discovering/combining patterns and the resulted bytecode
size reduction is to apply the patterns discovery technique
in an incremental manner. In a first step, the algorithm can
be customized toward the discovery of small sets of
patterns that contain few wildcards. Then, the small sets
of patterns may serve as input to the algorithm toward the
discovery of patterns that contain more wildcards, which
may further improve the bytecode size reduction.

The incremental use of the agglomerative clustering
algorithm is an interesting issue for further research,
along with techniques that would allow pruning patterns

494 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

Fig. 15. The impact per MIDP class of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required

for discovering and comining the patterns (second heuristic). (a) java.io. (b) java.lang. (c) javax.microedition.io. (d) javax.microedition.media.

(e) javax.microedition.midlet. (f) javax.microediton.pki.



that are not useful, early in the patterns-discovery
process. Currently, our work is also targeted toward
further improving the efficiency of the pattern combina-
tion procedure. To this end, we aim at formulating the
problem of pattern combination as a global optimization
problem. This would allow us to investigate the use of
classical global optimization techniques, such as simu-
lated annealing, in conjunction with the proposed para-
meterized pattern discovery technique. Our future research
further aims at the exploration of other, possibly more
efficient, statistical methods for discovering patterns in
Java bytecode.

APPENDIX

FURTHER RESULTS FROM THE MIDP CASE STUDY

In this section, we provide further details regarding the
experiments performed for the assessment of the para-
meterized pattern-discovery technique discussed in this
paper. Specifically, Fig. 10 and Fig. 11 provide details
regarding the bytecode size reduction obtained per differ-
ent MIDP class from the application of the first and the
second heuristics in Pparam, Pnon-param, P1w, P2w, P3w, and
P4w. Similarly, Fig. 12 and Fig. 13 give the bytecode size
reduction obtained per different MIDP class from the
application of the first and the second heuristics in Pparam,
Pnon-param, P1-2w, P1-3w and P1-4w. Finally, Fig. 14 and Fig. 15
detail the impact of increasing the maximum length of the
patterns found in MIDP from 9 to 11, in the bytecode size
reduction obtained and the time required for compressing
each MIDP class.
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