
R E S E A R CH A R T I C L E - EM P I R I C A L

The athletic heart syndrome in web service evolution

Apostolos V. Zarras | Ioannis Dinos | Panos Vassiliadis

Department of Computer Science &

Engineering, University of Ioannina, Ioannina,

Greece

Correspondence

Apostolos V. Zarras, Department of Computer

Science & Engineering, University of Ioannina,

Ioannina, Greece.

Email: zarras@cs.uoi.gr

Abstract

Despite the particular standards, technologies, and trends (W3C, RESTful, micro-

services, etc.) that a team decides to follow for the development of a service-oriented

system, most likely the team members will have to use one or more services that

solve general-purpose problems like cloud computing, networking and content deliv-

ery, storage and database, management and governance, and application integration.

Typically, general-purpose services are long-lived, they have several responsibilities,

their interfaces are complex, and they grow over time. The way that these services

evolve also affects the evolution of any system that will depend on them. Conse-

quently, the selection of the particular services that will be used is a main concern for

the team. In this paper, we report a pattern, called the athletic heart syndrome, which

facilitates the selection of services that evolve properly. Patterns specify best prac-

tices that emerge from multiple real-world cases. In our context, the athletic heart

syndrome comes out from a study that concerns the evolution of a set of popular,

long-lived Amazon services that cover different domains. According to the athletic

heart syndrome, the developers should select services whose heartbeat of changes

looks like the heartbeat of an athlete when he is at rest. Specifically, the heartbeat of

changes should consist mostly of calm periods, interrupted by few spikes of change.

Similarly, the incremental growth of the services should involve mainly calm periods

of maintenance, separated by spikes of growth. Selecting services that adhere to the

pattern signifies high chances that the services evolve to deal with changing require-

ments. The pattern further guarantees that the service evolution involves both the

expansion of the services with new functionalities and the maintenance of existing

ones. The pattern also assures that the complexity increase in the service interfaces

will be smooth and tolerable. Finally, conformance with the pattern implies that the

growth of the services will be predictable.

K E YWORD S

complex systems, web service evolution, Lehman's laws

1 | INTRODUCTION

Web services constitute a particular class of software systems that expose their functionalities through the web. They emerged as a promising

solution that facilitates the development of complex distributed systems, by promoting software reuse and reducing development cost. Over the

years, different standards, technologies, and trends came up.1 W3C services1 expose a set of operations, specified in terms of the Web Services

1We use the term W3C services to refer to document-passing services (typically operating with respect to the SOAP and WSDL standards); they also come by the name WS-* services.

Received: 15 March 2021 Revised: 26 October 2021 Accepted: 29 November 2021

DOI: 10.1002/smr.2418

J Softw Evol Proc. 2021;e2418. wileyonlinelibrary.com/journal/smr © 2021 John Wiley & Sons, Ltd. 1 of 24

https://doi.org/10.1002/smr.2418

https://orcid.org/0000-0001-9521-5853
mailto:zarras@cs.uoi.gr
https://doi.org/10.1002/smr.2418
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2418
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2418&domain=pdf&date_stamp=2021-12-27

Description Language (WSDL), while RESTful services expose a set of resources, which can be accessed using the standard HTTP primitives. More

recently, the current trend in the development of service-oriented systems is microservices.1 According to this trend, a service-oriented system is

composed of small independent services, provided by small self-contained teams. Microservices are specialized services with few, or even a single,

responsibility. Consequently, they can be easily, reused, maintained, or even replaced.

Regardless of the standards, technologies, and trends that a team chooses to follow for the development of a particular system, usually there

is a need to use one of more services that solve general-purpose problems like cloud computing, networking and content delivery, storage and

database, management and governance, and application integration. Typically, these services have been around for long and most likely they do

not follow the most recent trends, concerning the way that they have been designed and implemented. As we have already shown in prior studies,

general-purpose services have many responsibilities,2 they have complex interfaces, and they grow bigger as they evolve.3 Nevertheless, the

developers of service-oriented systems still have to use them because, as we said before, they solve problems that are frequently encountered in

many different kinds of systems.

Like all software, general-purpose services evolve over time. Their evolution may involve the expansion of the services with new functionali-

ties to meet new requirements, or the maintenance of existing functionalities.3 The evolution process is under the control of the service providers.

This fact alone makes the evolution of general-purpose services a very important issue that can affect the viability of the system that depends on

them and a major concern for the developers of the dependent system. Relying on services that do not evolve properly shall have a negative

impact on the evolution of the dependent system, as well.

In general, service evolution is a challenging research issue with several interesting approaches that emerged so far, towards dealing with this

issue. In particular, the state of the art on service evolution includes three central topics, specifically: (i) change-detection tools, that is, tools that

enable the detection of changes in subsequent service releases, and empirical studies that employ such tools to investigate the evolution proper-

ties of real-world services;4–8 (ii) frameworks that facilitate the management of service changes, both for the service providers, and the developers

of the systems that depend on the evolving services;4,9–14 and, (iii) patterns that specify best practices allowing to tackle the evolution of services

in a more systematic and easy way.15,16

In our prior efforts,3 we investigated the issue of service evolution from a theoretical perspective. Specifically, we studied a set of popu-

lar, long-lived, general-purpose Amazon services that cover different domains, to see if their evolution follows Lehman's laws of software evo-

lution.17 Our findings showed that the evolution of the examined services follows to a large extent Lehman's theory, which states that a

software system that solves a real-world problem (i.e., an E-type systems in Lehman's terminology) evolves in a controlled way, with respect to a

feedback based evolution process. The feedback is of two kinds, positive and negative. Positive feedback leads to the growth of the system to

meet new requirements, while negative feedback triggers maintenance activities that limit the growth of the system. Table 1 summarizes the

findings of our previous work concerning the validity of Lehman's laws in the case of the examined services. Specifically, we found evidence

that supports the validity of Laws I, II, III, V, VI, and VIII. On the other hand, we disproved Law IV, while for Law VII we were not able to

reach any conclusion.

In this paper, we revisit the issue of service evolution, this time from a more practical viewpoint. We get in the shoes of the developer who

wants to select a general-purpose service to use in his system. The developer looks for a service that meets his functional requirements. However, he also

wants to be sure that the service evolves properly. Specifically, the developer seeks a service that is enhanced and maintained by the service pro-

vider. As the service evolves, he wants to be sure that the complexity of the provided interface will not be a problem for service usage. He also

wants the service to evolve in a way that allows him to comprehend and master the provided functionalities. Finally, the developer wants to make

predictions about the evolution of the service.

Our main research objective is to provide the developer with a pattern that formally specifies the key criteria for selecting a general-purpose service

that evolves according to his expectations. To identify these criteria and specify them in the form of a pattern, we perform a more detailed study of

the services that we investigated in our previous work.3 As we already know that these services live normal lives that respect Lehman's theory of

software evolution, our goal is to identify the properties that indicate proper service evolution. These properties become the basic selection

criteria of the pattern. As in our prior work,3 we study changes performed in the operations that are provided by the services. In addition, in this

paper, we study changes performed in the data-types that are used for sending/receiving data to/from the services. Moreover, we study the

detailed service release notes that provide more insight concerning the purpose of the changes. More formally, we specify our research goal

as follows.

Research Goal: Given a set of popular, long-lived, general-purpose services that cover different domains, identify a pattern that specifies

common properties which indicate proper service evolution, to facilitate the selection of other services that also evolve with respect to

these properties.

To address our research goal, we focus on a more detailed list of research questions, given below. We begin by looking for a pattern in the

heartbeat of service changes and in the growth of the service functionalities. Then, we investigate the purpose of the service evolution and

particularly the various kinds of growth and maintenance (adaptive, perfective, corrective) activities it involves. Following, we focus on the impact

2 of 24 ZARRAS ET AL.

of service evolution on the complexity of the service interfaces. Finally, we investigate the possibility of making predictions about the way ser-

vices evolve.

• RQ1: Is there a pattern in the evolution of the services?

• RQ2: What is the purpose of the service evolution?

• RQ3: What is the impact of the service evolution on the complexity of the service interfaces?

• RQ4: Is it possible to make predictions about the evolution of the services?

The main research result of our study is the athletic heart syndrome pattern. According to the pattern, the developer should select a service if the

heartbeat of changes performed in the service interface, and the incremental growth of the service functionalities looks like the heartbeat of a healthy

athlete when he is at rest. In particular, the heartbeat of changes performed in the service interface should involve mostly calm periods, in which the

service interface does not change, interrupted by spikes of changes that include additions, updates, and rare deletions. The incremental growth of

the functionalities offered by the service should also follow this form, consisting mainly of calm periods of maintenance, separated by spikes of growth.

The alteration of calm periods with spikes of changes shows that the service changes to meet evolving requirements. Moreover, the alteration of

calm periods with spikes of changes shows that the service evolution combines enhancement and maintenance activities. Due to the spikes of

growth, the complexity of the service interfaces increases. However, the calm periods make sure that the increase is smooth. Finally, the combina-

tion of calm periods with spikes of growth makes the cumulative growth of the service functionalities predictable and gives time to the developer

to learn and master the evolving functionalities.

We structure the remainder of the paper as follows: In Section 2, we discuss related work; in Section 3, we details the setup of our study; in

Section 4, we report our findings; in Section 5 we define the athletic heart syndrome pattern; in Section 6, we focus on threats to validity; finally,

in Section 7, we summarize our findings and provide insights for future work.

2 | RELATED WORK

Service evolution is an active field of research for more than 15 years. For a recent survey of previous efforts in this field, the interested reader

can refer to the work of Tran et al.4 Following, we discuss our contribution with respect to the state of the art on service evolution. We organize

the discussion in three parts, based on our research questions and the overall research goal of our study. Specifically, RQ1 and RQ2 concern

TABLE 1 Lehman's laws of software evolution in the case of Amazon services

ZARRAS ET AL. 3 of 24

service changes and their purpose. Consequently, in Section 2.1, we focus on previous works that concern the detection of service changes and

related empirical studies. RQ3 and RQ4 pertain to the impact of changes in the complexity of service interfaces and the possibility of making pre-

dictions about service evolution. Hence, in Section 2.2, we discuss approaches that deal with service change management, impact analysis and

prediction. Finally, our ultimate research goal is to provide a pattern for the selection of services whose evolutionary behavior facilitates service

change management, impact analysis and change prediction. Thus, in Section 2.3, we discuss previous efforts on service evolution patterns.

2.1 | Service change detection and related studies

Service changes can take place at different levels of abstraction. In particular, Tran et al4 survey previous research efforts that focus on interface,

semantic, protocol and process changes. Similar classifications of the different kinds of changes involved in service evolution are provided by

Treiber et al18 and Wang and Wang.19 Our work is more closely related to previous works that focus on the detection of interface-level changes.

In particular, Fokaefs et al5 proposed VTracker, a change detection tool for W3C services that detects changes between different releases of

a service interface, specified in WSDL. The use of the tool has been validated in real-world services. In the validation of the tool, the authors

observed mostly operation additions and updates, while the deletions were relatively few. Romano and Pinzger6 proposed WSDLDiff that allows

a more fine-grained analysis of differences between service interfaces; the prominent features of the tool include the full coverage of the service

operations and data types, the filtering of irrelevant changes and the accurate tracking of changes. WSDLDiff has also been validated in real-world

services. The validation of the tool provides a detailed view of the changes that occurred in the examined services at the level of operations and

data types, along with a frequency analysis of the different types of changes. Romano and Pinzger also found mostly additions and updates and

rarely deletions. The approach of Romano and Pinzger6 is part of a broader ongoing research agenda that targets the change-proneness analysis

of service oriented software.20

Taking a step further, Fokaefs and Stroulia introduced WSDarwin,7,21 a change detection tool that extends VTracker. WSDarwin supports

both W3C and RESTful services. The change detection process is based on automatically generated WADL specifications. In the case of a W3C

service, the WADL specification is generated directly from the respective WSDL service specification. In the case of a RESTful service, the WADL

specification is constructed from a given set of URLs of corresponding REST API requests. Hence, a basic requirement for the generation of a

complete WADL specification is a complete set of URLs of corresponding REST API requests. Li et al22 also focused on changes that occur in sub-

sequent releases of RESTful services. In this work, the changes are detected by inspecting REST API reference and migration guides. In their study,

the authors observed operation/parameter additions and renamings, parameter and return type changes, some operation deletions that were basi-

cally due to the merging of two operations in one, and few operation splits. Espinha et al23 investigate the evolution of RESTful services from a

different perspective. Specifically, the authors interviewed developers to identify problems, due to the evolution of the services that they used.

The authors further found that different providers follow different practices and policies for changing services and essential features like

versioning are sometimes neglected.

Our work also focuses on the detection of changes in subsequent releases of a service interface. In our study we considered W3C services,

because the detection of changes in WSDL specifications is more convenient and accurate.7 However, this choice does not affect the results that

we report in the paper because at the time of the study AWS supported both W3C and RESTful releases of the services and the service releases

have been evolving in sync. The results of our study concerning the different kinds of changes that occur during the service lifetimes are in accor-

dance with those of the previous efforts. In particular, the changes in the services are mostly operation/type additions and updates and rarely

deletions. However, the overall goal of our work is different from the aforementioned efforts. Specifically, a key contribution of our study is the

athletic heart syndrome pattern that specifies properties of proper service evolution.

From a broader perspective, our study relates to previous works in the area of schema evolution. In this area we have investigated the

evolution of database schemas with respect to Lehman's laws of software evolution.24 Interestingly, the way that database schemas evolve is

similar to that of the services that we considered in our study. Specifically, our results showed that the schemas grow over time. However

the growth is usually small, with long calm periods. Concerning the evolution of individual tables,25 we observed that most tables are subjects

to few changes. A possible reason behind the observed similarities in the evolutionary behaviors of the examined services and database

schemas could be that in both domains the impact of changes on the dependent systems is high. Nevertheless, a deeper investigation is

needed to support this claim.

2.2 | Service change management and prediction

A significant part of the state of the art on service evolution concerns change management and versioning approaches.

One of the early works in this line of research is by Treiber et al.18 The authors proposed a holistic approach for managing information that

concerns different aspects of service evolution like requirements, interface, implementation, and QoS changes. The backbone of the proposed

4 of 24 ZARRAS ET AL.

approach is a unified extensible information model. Leitner et al26 proposed a mechanism that facilitates the documentation and management of

changes. Zou et al27 generate customized service release notes, per dependent system that uses a service, containing information only about

changes performed on the functionalities used by the dependent system.

Andrikopoulos et al9 proposed a formal framework that allows to perform automatic compatibility checks between different service releases.

Khebizi et al10 focused on service protocol changes. Their framework enables migration from old to new service protocols. The framework relies

on a declarative language that lets service providers to specify protocol migration rules for the different releases of the services that they provide.

Banati et al28 proposed a version management framework for maintaining multiple service versions. In a similar vein, the work of Campihnos

et al11 allow multiple service versions to be deployed simultaneously. Service requests coming from dependent systems are redirected to the right

service versions that meet specific type safety criteria. As discussed in the vision paper of Baresi and Garriga,1 the importance of managing multi-

ple coexisting service versions is magnified, as we move from systems that rely on the service-oriented architectural style towards systems that

employ the micro-services style. To this end, Sampaio et al29 proposed a service evolution model for micro-services that combines structural,

deployment and runtime information about evolving micro-services. Groh et al12 also deal with the evolution of micro-services. Specifically, the

authors proposed a framework that keeps track of interface, protocol and semantic changes in micro-serves and facilitates the validation of

dependent systems against these changes.

Service testing is a key research issue towards making sure that service changes do not introduce new faults that would break the systems

that depend on the evolving services. ServicePot30 and ParTes31 are two general purpose frameworks for service testing. Nguyen et al32 proposed

a change-driven service testing approach. The basic idea behind the proposed approach is to prioritize the test cases of a service orchestration/

choreography, based on their relevance to changes, performed on the composed services.

The co-evolution of service orchestrations/choreographies with the orchestrated/choreographed services4 is another interesting research

issue that involves several different problems. For instance, Baresi et al13 proposed an approach for the consistent dynamic evolution of service

choreographies. The proposed approach allows a service choreography to safely adopt the most recent versions of services that would not break

the choreography execution. Moreover, the proposed approach facilitates the retirement of service versions that are no longer needed. Calinescu

et al33 proposed an approach for dynamically evolving service orchestrations that meet reliability and performance requirements. In a similar vein,

Lv et al34 deal with dynamically evolving service orchestrations that meet QoS requirements. Wang et al14 proposed a distributed knowledge

based evolution model for services choreographies that allows to deal with failed or retired services. Autili et al35 introduced an interesting

approach for evolving choreographies with respect to context changes. The proposed approach builds upon a previous work,36 which enables the

dynamic synthesis of service choreographies that satisfy given choreography specifications.

Wang et al8 make an interesting attempt to predict the evolution of service interfaces, via a machine learning approach. To this end, the

authors employed a neural network to predict size metrics like the number of operations, types, bindings, etc. The neural network was trained

with size metrics derived from previous service releases. The validation of the approach showed that the predicted values are quite close to the

actual ones.

Our contribution is complementary with all the aforementioned efforts. In particular, dealing with service evolution would be easier for sys-

tems that depend on services that properly evolve. The athletic heart syndrome pattern facilitates the selection of such services.

2.3 | Service evolution patterns

The state of the art on service evolution includes several interesting patterns that document good practices, which aim at making the evolution of

services more systematic and easy to handle.

In particular, Wang et al15 introduced four patterns in their work. The compatibility pattern allows developers to determine whether their

implementation is compatible with a particular service version that they intent to use. The transition pattern specifies a change strategy that mini-

mizes the impact of service changes on the systems that depend on the service. The intent of the split-map pattern is to reduce the complexity of

a service interface, by splitting it into smaller interfaces, while the goal of merge-map is to reduce duplication in service interfaces, by merging sim-

ilar interfaces.

The work of Lübke et al16 concerns service evolution patterns that allow to balance compatibility and extensibility, during the lifetime of

evolving services. Specifically, the API description pattern defines the knowledge that should be shared between the provider of a particular ser-

vice and the developers of the systems that depend on the service. The version identifier pattern allows indicating the current capabilities of a ser-

vice and possible incompatibilities, while semantic versioning facilitates the comparison of different interface versions and the detection of

incompatibilities. Two in production, is a useful strategy for updating a service interface without breaking the systems that use it. The intent of the

limited lifetime guarantee pattern is to let the developers of systems that use a service know how long they can rely on a particular service version,

while the goal of the eternal lifetime pattern is to support developers, who cannot migrate their systems to newer service versions. Aggressive obso-

lescence documents a strategy that reduces the effort and the resources required for the maintenance of prior service versions that are still used.

ZARRAS ET AL. 5 of 24

Finally, the experimental preview pattern lets the provider of a service to smoothly introduce a new, possibly immature, service version and get

early feedback from developers of systems who are willing to use it.

The athletic heart syndrome pattern is different from the aforementioned patterns. The intent of the pattern is to let the developer of a system

select services that properly evolve. To this end, the pattern documents service evolution properties that indicate a “healthy” service lifetime.

3 | SETUP

To organize our study, we performed three main steps. In the first step, we identified the set of services that we consider in our study. In the sec-

ond step, we gathered evolution data and constructed the evolution histories of the examined services. Finally, in the last step, we calculated cer-

tain metrics that we consider in our study based on the service evolution histories. Following, we provide further details concerning each one of

the aforementioned steps.

3.1 | Identification of the examined services

In our study, we focus on a set of services, provided by the Amazon Web Services (AWS) infrastructure. The basic reasons for this choice are

listed below:

• Popularity: AWS is a very successful and widely accepted infrastructure that has millions of customers of various types, like NASA, NASDAQ,

Netflix, Facebook, Adobe, and D-Link.2

• Longevity: AWS has been around since the early 00's, with its services being continuously enhanced.

• Domain coverage: AWS offers a wide spectrum of services that cover various domains like cloud computing, networking and content delivery,

storage and database, management and governance, and application integration.

For the purpose of our study, we selected six services that belong to different domains. The list of services that we consider is given in

Table 2. When we started this study, AWS provided both W3C and RESTful releases of the services, which were evolving in sync. Therefore,

without loss of generality in our study we decided to focus on the W3C releases of the selected services because their parsable WSDL specifica-

tions make the gathering of data concerning the evolution of the services easier.21 The year of the first release of the examined services varies

from 2005 to 2009. The time spans of the services' lives vary from 3 to 8 years, while the number of service releases within these time spans

range from 12 to 73.

Table 3 provides descriptive statistics for the distribution of the service releases per year. In particular, the table provides the min, max, aver-

age and standard deviation for the number of service releases per year. We observe that for the majority of the services there is a continuous flow

of releases per year with an average number of releases per year that ranges from 2.22 to 9.13. The only exception to the rule is MTurk. For this

service, the average number of service releases per year is 2.22. However, the minimum number of service releases per year is 0 because there is

at least a 2 years pause in the continuous flow of releases. Next, we discuss in more detail the key functionalities, offered by the services.

Elastic Compute Cloud (EC2) allows allocating and managing virtual servers hosted at the Amazon infrastructure. The service provides opera-

tions that enable the configuration of several properties of the allocated virtual servers, including their CPU, memory, and storage. Moreover, it

provides operations for the deployment of applications that execute on the allocated virtual servers. Elastic Load Balancing (ELB) complements

2aws.amazon.com/solutions/case-studies/all/

TABLE 2 List of examined services

Services 1st release Time span Releases Domain

EC2 aws.amazon.com/ec2 2006 8 years 73 Cloud computing

ELB aws.amazon.com/elasticloadbalancing/ 2009 5 years 14 Networking and content delivery

AS aws.amazon.com/autoscaling/ 2009 3 years 12 Management and governance

SQS aws.amazon.com/sqs/ 2006 7 years 16 Application integration

RDS aws.amazon.com/rds/ 2009 5 years 41 Storage and databases

MTurk aws.amazon.com/mturk/ 2005 8 years 20 Crowd-sourcing marketplace

6 of 24 ZARRAS ET AL.

EC2 with functionalities for balancing the load of virtual servers that have been allocated, using EC2. ELB offers operations that enable the crea-

tion of a load balancer, which distributes requests over the virtual servers. Moreover, it allows monitoring the state of the virtual servers and

redistributing requests from failed servers to operational servers. Auto Scaling (AS) provides means for increasing/decreasing the number of vir-

tual servers that have been allocated via EC2. The scaling is done automatically, with respect to a given set of conditions. Simple Queue Service

(SQS) facilitates application integration via message-based communication. SQS provides operations for creating message queues, sending/

receiving messages via queues, managing queue attributes, and configuring queue access rights. Relational Database Service (RDS) provides oper-

ations for allocating DB instances. Each DB instance can comprise multiple relational databases, accessed via the DB engine that executes on the

DB instance. The RDS service further provides operations for configuring the computation, memory and storage capacity of the allocated DB

instances, and for tuning the properties of the DB engines that execute on top of them. Mechanical Turk (MTurk) is a crowdsourcing service that

makes it easier for individuals and businesses to outsource their tasks (e.g., simple data validation, survey participation, and content moderation)

to a distributed workforce who perform these tasks virtually. The service offers functionalities for creating tasks, allocating the tasks to workers,

collecting the results that they produce, approving the results, and paying the workers.

3.2 | Construction of service evolution histories

For each service we manually collected from the AWS site3 a set of release notes, corresponding to the different releases of the service. The

release notes describe the purpose of the changes that have been performed and provide a URL that refers to the WSDL specification of the pro-

vided functionalities. Several subsequent service releases may refer to the same WSDL specification, indicating that in these releases the service

interface did not change. A service interface defines a set of operations. An operation is defined in terms of input/output messages. A message def-

inition refers to the data types that are used to exchange data with the service. All the WSDL specifications that we collected for the examined

services are available in our github directory.37

At this point, it is worth mentioning that AWS no longer provides access to WSDL specifications. Instead, AWS provides access to

programming-language-specific SDKs that offer service-specific APIs. Hence, further service evolution studies would require parsing and analyz-

ing the aforementioned APIs.

To process the data that we gathered from the AWS site we developed a tool that relies on a well-known open source API, called Membrane

SOA Model,4 which allows to parse and compare WSDL specifications. The tool takes as input a set of WSDL specifications that correspond to

the different releases of a particular service and produces as output the service evolution history. In brief, the service evolution history provides

basic size and change metrics for the operations and the data types, specified in the WSDL specifications. More formally, the concept of service

evolution history is defined below.

Definition 1. Service evolution history: For a service s, we define the notion of service evolution history as a list, Hs ¼frs1, rs2,…, rsNg,
consisting of the different releases of s, which are totally ordered, based on the release dates.

Definition 2. Service release: We define a service release rsi that belongs to the evolution history Hs of a service, s, as a tuple,

rsi ¼ðID,date,Size,ChangeÞ, consisting of the following elements:

• ID is a unique release identifier for rsi that denotes the order of rsi in Hs.

• date denotes the release date of rsi .

3aws.amazon.com.
4https://www.membrane-soa.org/soa-model/.

TABLE 3 Descriptive statistics for the service releases per year

Case study Min Max Avg Stdev

EC2 2.00 17.00 9.13 5.54

ELB 1.00 6.00 2.80 2.05

AS 1.00 5.00 2.40 1.67

SQS 1.00 5.00 2.67 1.51

RDS 1.00 16.00 8.20 6.61

MTurk 0.00 8.00 2.22 2.82

ZARRAS ET AL. 7 of 24

https://www.membrane-soa.org/soa-model/

• Size is a tuple that consists of the following size metrics:

- Size[I] gives the number of interfaces defined in the specification of rsi .

- Size[O] gives the number of operations provided by the interfaces of rsi .

- Size[T] gives the number of data types defined in the specification of rsi .

• Change is a tuple that comprises the following change metrics:

- Change[OA], Change[OD], Change[OU] measure the number of operations that have been added, removed, and

updated, respectively.

- Change[TA], Change[TD], Change[TU] measure the number of data types that have been added, removed, and

updated, respectively.

3.3 | Service evolution metrics

In our study, we employ service evolution metrics for the incremental growth and the cumulative growth of service operations and data types.

Moreover, we assume a metric for the complexity of service interfaces.

Definition 3. Incremental growth: We define the incremental growth of service operations (resp. data types) IGopðrsi , rsiþ1Þ (resp.

IGtðrsi , rsiþ1Þ) for a pair of subsequent service releases rsi , r
s
iþ1 that belong to the evolution history, Hs, of a service, s, as the difference

in the number of operations (resp. data types) defined in the specification of rsiþ1 and rsi , that is, IGopðrsi , rsiþ1Þ¼ rsiþ1:Size½O�� rsi :Size½O�
(resp. IGtðrsi , rsiþ1Þ¼ rsiþ1:Size½T�� rsi :Size½T�).

The cumulative growth metrics that we assume for the operations and data types are defined below.

Definition 4. Cumulative growth: We measure the cumulative growth of the operations (resp. data types) Gopðrsi Þ (resp. Gtðrsi Þ) for a
service release rsi that belongs to the evolution history, Hs, of a service, s as the number of operations (resp. data types) defined in

the specification of rsi , i.e., Gopðrsi Þ¼ rsi :Size½O� (resp. Gtðrsi Þ¼ rsi :Size½T�).

In prior studies,17,24,38–40 Lehman and his colleagues showed that system growth can be estimated, via a feedback-based growth prediction

formula, known as the inverse square (IS) model. In our study, we use this model to calculate predictions for the cumulative growth of service

operations. To this end, we adapt the IS growth prediction formula, with respect to our definition of cumulative growth.

Definition 5. IS model for services—According to the IS model, the predicted cumulative growth of the operations, dGopðrsi Þ, pro-
vided by a service release rsi that belongs to the evolution history, Hs, of a service, s, is: dGopðrsi Þ¼dGopðrsi�1Þþ

�E
cGopðrsi�1

Þ2
, where dGopðrsi�1Þ

is the estimated cumulative growth of the operations, provided by the previous service release, rsi�1, and
�E estimates evolution

effort. More specifically, �E is the average of individual Ej, calculated for the service release history Hs, as follows:

Ej ¼ðGopðrsj Þ�Gopðrsj�1ÞÞ∗Gopðrsj�1Þ2, where Gopðrsj Þ is the actual cumulative growth of the operations, provided by a service release

rsj , and Gopðrsj�1Þ is the actual cumulative growth of the operations, provided by the previous service release rsj�1.

Concerning the complexity of service interfaces we assume the metric that is defined next.

Definition 6. Complexity: For a service release rsi that belongs to the evolution history, Hs, of a service, s, we measure complexity

as the complement of the number of interfaces, defined in the specification of rsi , divided by the number of operations, provided by

the interfaces of rsi , i.e., Cðrsi Þ¼1� rsi :Size½I�
rs
i
:Size½O�.

The metric is inspired by the generic approach that has been proposed by Sneed,41 for measuring the structural complexity of service

interfaces, with respect to the entities and relations defined in their specification. Moreover, the metric is based on our prior work on the system-

atic decomposition of service interfaces,2 where we empirically found that developers prefer smaller fine-grained interfaces that consist of few

operations which focus in specific functionalities, to larger coarse-grained interfaces that comprise lots of operations. Essentially, the value of the

metric is high if a service provides lots of operations, grouped in few interfaces. The metric takes its maximum value if all the operations are

grouped in a single interface; the larger the number of operations, the larger the value of the metric.

8 of 24 ZARRAS ET AL.

4 | FINDINGS

In this section, we describe the research findings of our the study over the collected service histories.

4.1 | Contextualization and theoretical foundations

Before proceeding with the research questions and the produced answers, we believe it is important to structure the theoretical framework of

our research. This subsection is devoted to establishing the rationale behind our research questions, and how they fit together.

Our theoretical framework over which we base this study is the one provided by Easterbrook et al.42 The framework of Easterbrook et al. is

basically structured along three fundamental categories of research questions that an empirical study can pose.

1. The first category of research questions are exploratory questions, trying to uncover the components, the properties, and the base rates and

normal behavior of the studied phenomena.

2. The second category of research questions are relationship & causality questions, trying to find out (a) what causes phenomena to occur, and

(b) whether different events frequently co-occur, relate or cause each other.

3. The third category of research questions are design questions, trying to move from knowledge extraction to normative guidelines on how to

best design well behaved systems, or, how to achieve their good properties.

Placing our work in the context of the above framework, we try to cover all the parts of the framework via different questions that we pose,

along with the methods that we use in order to answer them. In a nutshell, our research strategy evolves as follows.

Exploratory questions. Our starting point is, naturally, exploratory questions. As Easterbrook et al. mention,42 these questions are along the

lines of asking “does a phenomenon X occur?”, “what are the components and properties of phenomenon X?”, “how do we measure X?”, “what

are the frequency and base rates of X?”. In our case, of course, the phenomenon X is service evolution. Our research question RQ1, mainly

addresses the family of questions “how does service evolution look like?” and “are there commonalities in the evolution of different services?”. In
more concrete terms, we discuss the main components of service evolution (namely operation and data type evolution), the main measurements

of interest (change breakdown in additions, deletions and updates, both overall and also by component type, as well as the heartbeat, incremental

and cumulative growth, and, interface complexity). Mean, minimum, and maximum values are also of interest to establish base rates. RQ2 is mainly

concerned with how exactly the service evolution took place and the specific types of changes that took place.

Relationship and causality questions. To move one step further than simple exploratory questions, we proceed to examine the impact of

change. RQ3 studies the correlation of change to the complexity of the service interfaces. RQ4 is a bridge between the knowledge extraction and

normative families of questions, as it is concerned with the prediction of how a service will evolve. Based on the feedback characteristics of

Lehman's laws for evolving systems, the motivation is to investigate whether we can correlate the amount of past change to the amount of future

change in a system. To a large extent, this is an (auto) correlation question; at the same time, it opens the door for the next category of inquiries.

Normative, design questions. This family of questions is addressed in the following Section, when the Athletic Heart Syndrome pattern is

established. “How will I know a healthy service when I see it?” is the question of interest, as we are mostly interested with the client developer of

services, rather than the designer, tester or implementer of them. This normative question was not originally intended when the research study of

the collected services was performed. However, once the similarities of the service evolution in different histories was evident, a normative

research question was the obvious step. Our results for this family of questions are laid out in the following section.

So, having established our theoretical framework, we are now ready to move on to examine each research question, and its findings, one

by one.

4.2 | RQ1: Is there a pattern in the evolution of the services?

To address this research question, we study the heartbeat of changes performed in the interfaces of the examined services and the incremental/

cumulative growth of the functionalities that they provide.

Figure 1 gives a detailed view of the changes that have been performed in the operations of the examined services. Each bar chart corre-

sponds to a particular service; each bar gives the cumulative number of changes introduced in a service release, along with the statistical break-

down of the changes, with respect to their type (operation additions, deletions, updates). In the figure, we observe that in many service releases

the service interface does not change. Calm periods consisting of subsequent service releases that preserve the service interface are interrupted

by releases with spikes of changes. In particular, AS and SQS are very quiet, with the percentage of service releases that involve spikes of changes

being 8% and 9%, respectively. The rest of the services, namely EC2, ELB, RDS, and MTurk, are more active. In these services, the percentage of

ZARRAS ET AL. 9 of 24

releases with spikes of changes ranges from 22% to 67%. The overwhelming majority of the changes are additions and updates. This observation

is inline with previous studies that report similar results.5,6 The deletions of operations are rare. The percentage of deletions, over the total num-

ber of changes, varies for the examined services from 0% to 6.8%.

Concerning the changes in the data types of the examined services, the situation is much similar. Operation additions, deletions and updates

are strongly correlated with data type, additions, deletions, and updates, respectively. Specifically, in Table 4, we observe that the values of Spe-

arman's correlation coefficient between these variables range in [0.97, 1], [0.62, 1], and [0.80, 1].

Figure 2 gives the incremental growth of the operations provided by the examined services. In this figure, we also observe calm periods of

zero growth, interrupted by scarce spikes of positive growth. For the quiet services (AS, SQS) we observe only a couple of spikes separated by

long calm periods. On the other hand, for the active services (EC2, ELB, RDS, MTurk), we have more spikes, separated by shorter calm periods.

The behavior of MTurk is slightly different from the rest of the active services, as we have subsequent spikes, and only one short calm period.

F IGURE 1 Operation additions, deletions and updates per service release

TABLE 4 Spearman's ϱ between operation and data type changes

Services Additions Deletions Updates

EC2 0.98 0.62 0.94

ELB 0.97 - 0.96

AS 1.00 1.00 1.00

SQS 1.00 - 1.00

RDS 0.99 1.00 0.80

MTurk 0.98 1.00 0.99

10 of 24 ZARRAS ET AL.

Figure 3 gives the cumulative growth of the operations provided by the examined services. In all cases, we observe a increasing trend. However,

we also observe the alteration between calm periods and periods of growth. In the case of the quiet services (AS, SQS), the cumulative growth of

the operations occurs in a few abrupt steps, while in the active services the cumulative growth of the operations is more smooth, happening in

multiple smaller steps.

The incremental growth and the cumulative growth of data types evolve similarly with the incremental growth and the cumulative growth of

operations, respectively. In particular, Table 5 gives the values of Spearman's correlation coefficient for IGop and IGt. As we see, for most services

the correlation is very strong, ranging from 0.96 to 1.0. The only exception is EC2, where IGop and IGt are also positively correlated, but the

strength of the correlation is moderate. Table 5 further provides the values of Spearman's correlation coefficient for Gop and Gt. Again, the correla-

tion is very strong, ranging from 0.80 to 1.0.

Hence, our results show that all the services follow the same evolution pattern. According to this pattern, the heartbeat of changes consists

mostly of calm periods, in which the interface does not change, separated by spikes of changes that involve additions, updates and, rarely, deletions.

Respectively, the incremental growth of the service functionalities involves an alteration of calm periods, in which the service functionalities do not

expand, with spikes of growth.

Hereafter, we call the aforementioned pattern, the athletic heart syndrome, to reflect the analogy between the calm periods and the spikes of

changes/growth that we observe in the evolution of the examined services and the heartbeat of a healthy athlete when he is at rest. Typically, an

ordinary person's heartbeat should be strong and regular. A slower heartbeat, called bradycardia in medical terms, may indicate a medical problem.

However, for an athlete, bradycardia is an indication of a good physical condition. In the context of service evolution, the spikes of changes show

that the examined services continually adapt to satisfy evolving requirements. The spikes of growth show that the services are continually

enhanced with new functionalities. Calm periods allow the developers of dependent service-oriented systems to absorb changes that occur during

the adaption of the services and familiarize with new functionalities added during the growth of the services.

F IGURE 2 Incremental growth of service functionalities, measured as the difference in the number of operations offered by subsequent
service releases

ZARRAS ET AL. 11 of 24

4.3 | RQ2: What is the purpose of the service evolution?

To find out more about the purpose of the changes that have been performed in the examined services, we study in more detail the service

release notes that we gathered from the AWS site. To begin with, we classify the service releases in four different categories, based on the pur-

pose of the changes that have been performed:

• Functionality Growth/Update (FGU): The first category includes releases that focus on the growth and/or the update of the provided

functionalities.

• Service Platform Enhancements (SPE): The second category consists of releases that concern the provisioning of SDKs for various program-

ming languages and service management tools.

F IGURE 3 Cumulative growth of service functionalities, measured in terms of the number of operations, provided by subsequent service
releases

TABLE 5 Spearman's ϱ between (a) the incremental growth of operations and data types (IGop, IGt) and (b) the growth of operations and data
types (Gop, Gt)

Services ϱ for IGop, IGt ϱ for Gop, Gt

EC2 0.50 0.99

ELB 0.97 0.99

AS 1.00 1.00

SQS 1.00 1.00

RDS 0.99 0.99

MTurk 0.96 0.99

12 of 24 ZARRAS ET AL.

• Service Infrastructure Enhancements (SIE): The third category comprises releases that improve the underlying infrastructure with new or

upgraded OSs, DBMSs, hardware and so on.

• Service Regions and zones (SRZ): The fourth category includes releases that deal with service availability in various geographical regions and

zones.

At this point, we must note that FGU releases involve spikes of interface-level changes, while SPE, SIE and SRZ releases concern maintenance

activities that leave the service interface unchanged. Tables 6-11 provide summaries of the release notes. The white rows provide information

about FGU releases, while the light red rows provide information about calm periods that consist of SPE, SIE, and SRZ releases. The last column

of the table refers to the categories in which the service releases belong to. Following, we discuss in more detail the purpose of the changes that

have been performed in the case of each service.

Regarding EC2, the top five releases, with regard to the number of changes performed in the service interface, are R40, R12, R34, R31, and

R19. R40 is the release with the highest number of changes. The purpose of these changes is to add support for the EC2 Virtual Private Network

(VPN) internet gateway. The main reason for the changes that took place in R12 is to add support for the specification and management of EC2

bundle tasks, while R34 introduces changes that allow tagging and filtering of EC2 resources. In R32, the purpose of the changes is to enable EC2

placement groups, while in R19, the changes support the Amazon Virtual Private Cloud (VPC). In several calm periods (e.g., R4–6, R13–18, R32–

33, R57–58, and R63), the goal is to provide different kinds of EC2 instance types. Other calm periods (R20–22, R24–25, R39, R41, R73), include

releases that aim at supporting various OSs and technologies (e.g., IBM software, Windows, Oracle software, and Linux). Moreover, some calm

periods (e.g., R27–30 and R35–37) include releases that provide service programming support for programming languages like Java and PhP), as

part of corresponding AWS SDKs. Finally, there are calm periods (e.g., R20–22 and R27–30) with releases that deal with the service availability in

various regions and zones.

In the case of ELB, there are seven releases that introduce changes in the service interface. In particular, R14 comes with the largest amount

of changes to enable cross-zone load balancing. Then, we have R10 that enables new features, related to IPv6 and application instance lock down,

and R12 which adds support for using ELB in Amazon VPC applications. R11 provides new security features. Finally, R3 and R8 involve fewer

changes to support ELB sticky sesions and the creation/deletion of load balancer listeners, respectively. The calm periods (R1-2, R4-5, R9) include

releases that focus on the .NET SDK and the availability of ELB in various regions and zones.

In AS, R4 is the release with the highest number of changes in the service interface. The purpose of the changes is to enable various features

like auto scaling tag groups and instances, management of scaling triggers and so on. R5 and R6 involve fewer changes to support Amazon SNS

notifications and instance management policies. The calm periods comprise releases concerning the .NET SDK, support for VPCs, monitoring, con-

sole management, etc.

In the case of SQS, R2, R12, and R13 involve changes in the service interface. R2 comes with the highest number of changes to support

shared queues, anonymous access to queues, visibility and permission management. R12 and R13 introduce changes for new endpoints and

timers. The calm periods (R1, R3-11, R13) include releases concerning SDKs for different programming languages like Java and PhP, releases deal-

ing with the availability of SQS in several regions and zones, monitoring, console management, and so forth.

Concerning RDS, R29, R30, and R23 involve relatively high numbers of changes in the service interface, to support, respectively, file log

access, DB instance management and DB options groups. R13, R12, R11, and R7 introduce fewer changes, focusing on DB instance management,

while R2 and R4 have very few changes, concentrating on DB instance deployment and replication issues. Several calm periods (e.g., R14–22,

R24–28, and R30) comprise releases that aim at supporting various DBMSs (e.g., SQL server, Oracle, and MySQL). Other calm periods (e.g., R1,

R3-6) include releases concerning the Java SDK, the availability of RDS in various regions and zones, and console management.

In the case of MTurk, R12 introduces the highest number of changes in the service interface, to add new features for the management of

workers and the design of Human Intelligence Tasks (HITs). Then, there are several releases (e.g., R2, R7, R4, R19, and R20) with moderate

changes focusing on the management of HITs. Finally, there are releases with very few changes (e.g., R10, R15, and R16) which are also related to

the management of workers and HITs. The calm periods mainly consist of releases that deal with the MTurk Web site (e.g., R6, R13–14, and R20)

and the payment of workers (e.g., R13–14 and R16).

To summarize, the information provided in the release notes of the examined services shows that the athletic heart syndrome involves both

functional growth and maintenance activities. The calm periods of the pattern concern mainly adaptive5 and perfective6 maintenance activities that

improve the service programming platform, the service infrastructure and the service availability in various regions and zones. In the service release notes

there is no evidence of perfective maintenance activities aiming at re-structuring and maintainability improvements. Moreover, in the service release

notes there is not much evidence regarding corrective7 maintenance activities. However, these observations do not really mean that the evolution of

the services does not include such kind of maintenance activities. In general, internal service implementation corrections and improvements are

5Adaptive maintenance concerns modifications performed to deal with changes in the environment (e.g., upgrading OSs, libraries, and porting to new platforms).43

6Perfective maintenance focuses on modifications that improve documentation, performance, maintainability and other qualities.43

7Corrective maintenance aims at correcting discovered faults.43

ZARRAS ET AL. 13 of 24

immediately available to the dependent systems that rely on the services, without having to modify them or explicitly notify the developers of

these systems via a new service release.

4.4 | RQ3: What is the impact of the service evolution on the complexity of the service interfaces?

Figure 4 gives the complexity of the interfaces, provided by the examined services. In general, we observe that the complexity is high in all cases.

The complexity remains high for the entire evolution history of all services. There are no indications of any complexity control activities. In partic-

ular, in RQ1 we saw that the deleted operations are very few. Moreover, the possibility of interface decomposition is not exploited, as the number

of service interfaces usually remains unchanged for the entire evolution history of the examined services.

TABLE 6 EC2 summary of release notes

14 of 24 ZARRAS ET AL.

TABLE 10 RDS summary of release notes

TABLE 9 SQS summary of release notes

TABLE 7 ELB summary of release notes

TABLE 8 AS summary of release notes

ZARRAS ET AL. 15 of 24

TABLE 11 MTurk summary of release notes

F IGURE 4 Complexity of service interfaces per service release

16 of 24 ZARRAS ET AL.

In fact, during the life of the services we observe a complexity increase. The complexity increases slowly with a logarithmic trend. To provide

more insight on this observation we performed a logarithmic regression analysis. The regression formula that we obtained for each service is given

at the upper right corner of the corresponding line chart, along with the value of the R 2 statistic. In general, the values of the R 2 statistic range

from 0 to 1; high R 2 values indicate that a regression equation explains well the relationship between the variables involved in the equation. For

the examined services, the R 2 values that we obtained are medium-high, confirming the observed logarithmic trend. More specifically, for the

active services (EC2, ELB. RDS, MTurk) in which we have a relatively large percentage of releases with changes in the service interfaces (RQ1), we

observe very large R 2 values ranging between 0.86 and 0.97. For the quiet services (AS, SQS), the R 2 values are medium high (0.77 and 0.57,

respectively). The main reason that the complexity increase is smooth is that the incremental growth of the services follows the athletic heart syn-

drome pattern and specifically the frequent calm periods that separate the spikes which introduce the expansion of the service functionalities.

In summary, the complexity of the interfaces that are provided by the examined services starts high and smoothly increases during the evolution of

the services. Practically, this means that learning to use a service for the first time shall be the most difficult step for the developers of service-

oriented systems. After this step, dealing with the smooth complexity increase will most likely not be a problem for the developers. The fact that

the incremental growth of the services follows the athletic heart syndrome pattern contributes to this direction, as the alteration of spikes with

calm periods can make the comprehension and the adoption of the performed changes easier.3,17

4.5 | RQ4: Is it possible to make predictions about the evolution of the services?

To begin, we focus on the heartbeat of changes, performed in the interfaces of the examined services. In the detailed analysis of the changes per-

formed in the service operations that is given in Figure 1 we see that there is a large fluctuation in the number and the types of changes performed

in the different releases of each service. This observation holds both for the quiet (AS, SQS) and the active services (EC2, ELB, RDS, MTurk). As

expected, for the changes performed in the data types the situation is similar, as derived by the high values of the Spearman's correlation coeffi-

cient, between them and the changes performed in the operations, given in Table 4. Hence, it is not really possible to forecast the amount and

the types of changes that occur in the interfaces of the examined services,

Taking a different direction, we investigate the possibility of making predictions for the cumulative growth of the functionalities that are pro-

vided by the services. Specifically, we employ the IS model, as adapted to our context in Section 3.3, to calculate the estimated cumulative growth

of the operations, provided by the examined services. Then, we compare the estimated cumulative growth with the actual cumulative growth. To

compare the estimated with the actual values we rely on the R 2 statistic. For the calculation of the average evolution effort �E that is required by

the IS feedback formula, we assume 4 different variants:

• In the first variant, denoted by τ¼ all, we compute the average evolution effort �E, by taking into account all the releases that are included in

the service evolution history. The first variant is inspired by the original IS model introduced by Lehman.39

• In the remaining three variants, we calculate the average evolution effort �E, based on a certain number of recent service releases. In particular,

in τ¼2, τ¼3 and τ¼4, we calculate �E, based on the previous 2, 3, and 4 service releases, respectively.

Figure 5 illustrates the comparison between the predicted and the actual cumulative growth. In general, the accuracy of the predictions

depends on two different factors, the evolutionary behavior of the services and the number of service releases that are used for calculating the

average evolution effort �E. In detail, we observe that typically the model predictions for the active services (EC2, ELB, RDS, MTurk) are better

than the model predictions for the quiet services (AS, SQS). As discussed in RQ1, the reason for this is that the growth of the active services is

more smooth compared to the growth of the quiet services that happens in a few abrupt steps. Moreover, for most services the accuracy of the

predictions increases as we decrease the number of previous service releases that we consider for the calculation of the average evolution effort
�E. In fact, τ¼2 gives the best estimations in all cases, but MTurk where τ¼ all outperforms the other variants.

To summarize, forecasting the heartbeat of changes is not likely. Consequently, the accurate planning of the resources that should be spend for

dealing with the changes is also not possible. However, the IS model gives quite good predictions for the cumulative growth of the operations, provided

by the examined services. In particular, we can safely conclude that the growth of the service operations can be predicted with accuracy based on a

feedback-based formula that considers changes in previous service releases. The developers of service-oriented systems can benefit from such predic-

tions towards planning the resources that they will need for learning new functionalities and dealing with the increasing complexity of the services.

4.6 | Brief summary of findings

As we have already mentioned in the beginning of this Section, the main idea of our study was to address knowledge questions around how does

the evolution of services takes place, what its impact can be, and, whether we can predict it. In a nutshell, we can say that (i) the evolution of

ZARRAS ET AL. 17 of 24

services takes place with spikes of concentrated change amidst calm periods (which is reflected in all the major measurements of service evolu-

tion, namely heartbeat, incremental and cumulative change); (ii) both additions and maintenance actions take place; (iii) interface complexity starts

high and increases over time; and, finally, (iv) whereas heartbeat forecasting does not seem plausible, the forecasting of the cumulative growth

can be well approximated for the short term by a feedback-based model.

Having discussed all these knowledge extraction research questions, we are now ready to proceed to the research normative question, on

how does a healthy Web service looks like, from the viewpoint of the developer of a service-oriented system. This will be the core of the next

section.

5 | THE ATHLETIC HEART SYNDROME PATTERN AND ITS PRACTICAL IMPLICATIONS

A key lesson after performing this study on the evolution of Amazon services is that the assessment of the evolutionary behavior of web services

is quite demanding and challenging, especially since the typical developer of a service-oriented system does not have access to the internals of

the services that he uses or he intends to use. The minimum information that one needs to perform this task is service release notes that allow

the developer to extract information, concerning the changes that have been performed in subsequent service releases. Still, the task is not easy

because there are many issues to consider. So, our experience shows that although assessing the evolution of services is an interesting research exer-

cise, the successful completion of such a task requires time and effort that an ordinary developer working under deadlines and backlog requirements may

not have.

To help the developer of a service-oriented system in selecting general-purpose services that evolve in an appropriate way, we formally specify the

athletic heart syndrome pattern that emerged during our study, along with its consequences and practical implications for the developer. Figure 6 gives

an overview of the pattern. The pattern does not deal with criteria that concern the functionalities of the services, but rather, it focuses on

evolution-driven selection criteria.

F IGURE 5 Inverse square model predictions of cumulative growth

18 of 24 ZARRAS ET AL.

Patterns are a valuable means of conveying knowledge and experience. In the patterns community,8 there are several different pattern writ-

ing forms/templates that allow to systematically document patterns.44,45 Here, we shall rely on the Complien (a.k.a. canonical) form to specify our

evolution-driven service selection pattern. The Complien form is very popular and widely accepted in the patterns community. Moreover, it has

been used for the specification of several other service evolution patterns, reported in previous related works.15,16

According to the Complien form, a pattern specification consists of five parts: The context part describes the situations in which the pattern

can be applied; the problem part describes what the problem actually is; the forces part discusses in more detail the different issues that should

be resolved by the solution and possible trade-offs between them; the solution part gives in detail the solution to the problem; the consequences

part reports benefits and liabilities of the solution, forces that have been resolved, unresolved forces, etc. A pattern specification may comprise

some additional parts.15,16 In our case, we provide a comparison between our pattern with other related approaches and patterns.

5.1 | Context

A development team implements a complex service-oriented system. To realize the functionalities that are specific to the system they develop a

number of collaborating micro-services. To deal with general purpose problems like storage, networking, resource allocation and management

they want to reuse general-purpose services, offered be an external service provider (e.g., a cloud infrastructure).

5.2 | Problem

A member of the team wants to select a general-purpose service to be used for the implementation of the system. To address the risk of using an

external service in the implementation of the system, the team member wants to select a service that evolves properly. The methodology under

which the selection takes place (i.e., whether there is a single service being evaluated, or alternative services of different providers being com-

pared) is orthogonal to the problem.

5.3 | Forces

The problem is difficult; the developer should investigate several issues, without having access to the internals of the service implementation.

F1 The developer wants to select a service that changes to meet evolving requirements.

F2 The selected service should evolve in a way that lets the developer understand the evolving functionalities and deal with changes.

F3 The evolution of the selected service should involve both growth and maintenance activities.

F4 As the service evolves, the developer wants to be sure that the complexity of the service interface will not be a problem for service usage.

F5 The developer wants to make predictions about the way that the service evolves.

8hillside.net; europlop.net.

F IGURE 6 The athletic heart syndrome in service evolution

ZARRAS ET AL. 19 of 24

5.4 | Solution

To select a service that evolves according to his/her expectations, the developer should proceed as follows:

• Pick a service that provides access to prior release notes.

• Check the heartbeat of the changes, performed in the service interface. The heartbeat of a healthy service should look like the heartbeat of a

healthy athlete when he is at rest. Specifically, the heartbeat of changes should consist mostly of calm periods, in which the service interface

does not change, interrupted by spikes of change that include additions, updates, and rare deletions.

• Check the incremental growth of the service. In particular, the incremental growth of the service should comprise mainly calm periods of main-

tenance, interrupted by spikes of growth.

• If the previous properties hold, the developer can select the service. Mostly likely, the evolution of the service will be appropriate.

5.5 | Consequences and practical implications

C1 The alteration of calm periods with spikes of change is a clear sign that the service changes to meet evolving requirements.

C2 Releases with spikes of changes that include updates and deletions in the service interface require attention, because the developer will likely

have to modify the system to keep up with the changes that have been performed in the service interface.

C3 The developer can take advantage of the calm periods during which the service interface does not change, to assimilate and to master the

functionalities of the service, as they evolve in the spikes of changes that take place in between the calm periods.

C4 Spikes of growth show that the service is enhanced with new functionalities.

C5 Calm periods in the incremental growth of the service denote maintenance activities. Most likely, the maintenance activities will be improve-

ments of the service programming platform, the service infrastructure and the availability of the service to different geographical regions and

zones.

C6 The interface of the service may be complex. Probably, the complexity will increase as the service evolves. However, the increase of the inter-

face complexity will be smooth due to the frequent calm periods. Thus, the developer should account for a reasonable amount of time and

learning effort to start using the service. Likely, the effort that will be required for using subsequent releases of the service will be smaller.

C7 The developer will not be able to forecast the exact amount and the type of changes that will be performed over time. Hence, he/she will not

be able to plan accurately the necessary resources for coping with these changes. Instead, the developer should allocate resources for dealing

with the worst case.

C8 The developer will be able to coarsely predict the amount of new functionalities that will be added, as the service evolves. He/she can benefit

from such predictions towards planning the resources that he/she will need for learning new functionalities that contribute to the complexity

increase of the service interface.

5.6 | Related approaches and patterns

In Section 2, we discussed in detail the state of the art on service evolution. Here, we specifically focus on a comparison between these

approaches and the athletic heart syndrome pattern (Table 12). Before getting into the details of this comparison, we have to clarify that the diver-

sity of the state of the art approaches is very large. Therefore, a comparison that relies on a particular scenario or case study cannot be useful and

fair. For this reason, we compare the related approaches with our pattern at a logical level. The objective of the comparison is to discuss fitness

for purpose, on the basis of the problem that is solved by the pattern and the forces that define this problem.

• Service change detection: All of the service change detection tools discussed in Section 2.1 can be useful for calculating the evolution history

of services and facilitate the resolution of F1. However, the proposed tools cannot, on their own, resolve the remaining forces (F2–F5) of the

problem solved by the pattern. In comparison with these approaches, the athletic heart syndrome pattern provides a solution that dictates the

necessary methodological steps that resolve all the forces (F1–F5) of the problem, as reflected by the the resulted consequences (C1–C8) of

the pattern.

• Service change management and prediction: The service change management approaches discussed in Section 2.2 can contribute to the reso-

lution of F3 and, specifically, to the part of this force that refers to letting the developer deal with service changes easier. Moreover, the ser-

vice evolution prediction approach8 discussed in Section 2.2 can be employed to resolve F5. At this point, it is important to state that the

athletic heart syndrome pattern and the related change management and prediction approaches complement each other towards the resolution of

F3 and F5. Ideally, it would be useful to select services that evolve properly, according to the pattern, and further rely on advanced change

20 of 24 ZARRAS ET AL.

management approaches, like the ones discussed in Section 2.2. Nevertheless, the aforementioned efforts do not cover the resolution of F1

and F3, concerning the selection of services which are regularly enhanced and maintained to meet evolving requirements. In addition, the

related approaches do not resolve F4 that focuses on the evolving complexity of service interfaces. The way to deal with these forces is to

study the evolution of the services as described by the athletic heart syndrome pattern and select services that fulfill the criteria specified in the

solution of the pattern.

• Service evolution patterns: The service evolution patterns discussed in Section 2.2 can be helpful for the resolution of F3 and F4. Specifically,

some of the patterns can help the developer towards dealing with changes performed during the services' lifetime. Other patterns can be

applied to reduce the evolving complexity of the service interfaces. Nevertheless, the related patterns do not concern the study of the service

evolution, which is required for selecting services that evolve properly. Consequently, there is a difficulty in using other patterns towards

resolving the rest of the forces (F1, F2, F3) that are handled by the athletic heart syndrome pattern.

To summarize, in comparison with the state of the art approaches, the athletic heart syndrome pattern provides an effective solution that

resolves all the forces (F1–F5) of the problem, as reflected by the resulted consequences (C1–C8) of the pattern. When it comes to efficiency, the

effort for applying the pattern is proportional to the size of the evolution history of the services under study and the evolutionary behavior of the

services. Assessing the evolution of active (respectively: long-lived) services requires more effort compared to quiet (respectively: short-lived)

services.

6 | PATTERN VALIDITY

To increase our confidence on the validity of the pattern that we report in this paper, we had to deal with certain threats, discussed in this

section.

TABLE 12 Comparison with related approaches and patterns

Related approaches

Pattern forces

F1 F2 F3 F4 F5

Fokaefs et al.5 ✓

Romano and Pinzger6 ✓

Fokaefs and Stroulia7,21 ✓

Li et al.22 ✓

Espinha et al.23 ✓

Treiber et al.18 ✓

Leitner et al.26 ✓

Zou et al.27 ✓

Andrikopoulos et al.9 ✓

Khebizi et al.10 ✓

Banati et al.28 ✓

Campihnos et al.11 ✓

Sampaio et al.29 ✓

Groh et al.12 ✓

Tran et al.4 ✓

Nguyen et al.32 ✓

Baresi et al.13 ✓

Calinescu et al.33 ✓

Wang et al.14 ✓

Autili et al.35 ✓

Wang et al.8 ✓

Wang et al.15 ✓ ✓

Lübke et al.16 ✓

Athletic Heart Syndrome pattern ✓ ✓ ✓ ✓ ✓

ZARRAS ET AL. 21 of 24

6.1 | Construct validity

To address the research questions of our study, we have measured operation and data types additions, deletions and updates at the service-

interface level. This is pretty much the standard procedure in all of the previous related studies on service evolution (Section 2.1). Some of these

studies also consider operation renaming, merges and splits. In our study, we do not trace such changes. However, when it comes to the detailed

heartbeat of changes and the service growth, operation renamings, merges, and splits end up to operation additions, deletions and updates. In

addition to what is typically done in previous related studies on service evolution, in our work we also consider the detailed release logs of the

services to produce a more detailed view about the purpose of the changes that have been performed. Therefore, we consider that the treatment

of our research questions is sufficient.

Concerning the accuracy of the service evolution histories, we used Membrane SOA, a well-known open-source API, as the basis for their

construction. To strengthen our confidence on the accuracy of the detected changes, we performed tests of the API, based on synthetic WSDL

specifications that covered the different types of changes that we consider in our study. Moreover, we manually inspected random samples of

the collected data. Finally, we checked if the distributions of the detected changes are inline with those detected in other similar works.5,6 Nota-

bly, as in these studies, we also found frequent additions and updates and rare deletions.

The metrics that we employed in our study are inline with similar metrics that have been employed in the literature. Specifically, the

incremental growth of a software system is typically measured as the difference in the number of modules, included in subsequent releases of the

system.17,38,40 The growth of the software system is usually measured with respect to the size of the system, using metrics like the number of

modules that constitute the system, lines of code, and so forth.17,38,40 The complexity metric that we used is based on Sneed's41 structural com-

plexity of service interfaces and our previous work on the systematic decomposition of service interfaces.2

A possible limitation of our study that is also present in previous related studies is that we did not consider changes in the implementations

of the services. This was not possible because we did not have access to the service implementations. Nevertheless, assuming such information

was ever made publicly available, extending the study with information about the internal workings of the services would possibly allow to refine

the athletic heart syndrome pattern.

6.2 | Internal validity

Internal validity concerns possible cause and effect relationships established in a study. In our study, we validated the positive correlation

between the heartbeat of changes performed in service operations and data types using Spearman's correlation coefficient. Moreover, we used

Spearman's correlation coefficient to validate the positive correlation between the growth of operations and data types. To validate the smooth

logarithmic trend in the complexity increase of the service interfaces and the accuracy of the cumulative growth predictions we relied on the R2

statistic.

The comparison of our approach with other related approaches and patterns was driven by the context, the problem and the forces of

the athletic heart syndrome pattern. Consequently, the results of the comparison are related to the aforementioned framework. Under a dif-

ferent framework, the comparison of the athletic heart syndrome pattern with the related approaches and patterns can result into different

conclusions.

6.3 | External validity

When it comes to external validity, obviously, our results cannot be generalized to the overall population of Web services. However, this is not at

all the purpose of our study. Instead, our goal is to provide a pattern that formally specifies the criteria for selecting services that evolve properly.

In general, patterns report best practices that can be used to solve common problems. However, not all best practices can be considered as valid

patterns. Typically, a best practice should verified to be a recurring phenomenon,46 preferably in at least three real world cases. In the patterns

community this is known as “The Rule of Three”.47 In our study, we observed the athletic syndrome pattern in 6 different services. We selected

the services based on their popularity, their longevity and domain coverage. The population of the examined services is comparable with the num-

ber of services that have been studied in other related studies of Web service evolution.5,6 According to Lehman,17 8 to 10 is a sufficient number

of releases for a software evolution study. In our study, the number of service releases that we considered for the examined service varied from

12 to 73, released in time spans that varied from 3 to 8 years. Based on the above, we are confident that the athletic heart syndrome qualifies as a

valid service selection pattern. Two possible issues that would allow to further enrich the pattern are to consider (a) more services from different

providers, and, (b) services that offer similar functionalities.

22 of 24 ZARRAS ET AL.

7 | CONCLUSION

In this paper, we introduced the athletic heart syndrome pattern which formally specifies the criteria for selecting services that evolve properly. To

come up with the pattern, we studied the evolution of a set of popular, long-lived, general purpose Amazon services. In particular, we studied the

heartbeat of changes performed in the service interfaces, the incremental growth and the growth of the provided functionalities. Moreover, we

investigated the detailed service release notes to find out more about the purpose of the changes that have been performed during the services'

lives. The evolution of a particular service adheres to the pattern if its heartbeat of changes looks like the heartbeat of a healthy athlete when he

is at rest. In particular, the heartbeat of changes performed in the service interface should consist mainly of calm periods in which the interface

does not change, interrupted by spikes of change that include additions, updates and rarely deletions. The incremental growth of the functionali-

ties provided by the service should also involve mostly calm periods, separated by spikes of growth. Conformance to the pattern guarantees that

the service evolves over time. Adherence to the pattern further assures that the service evolution is a combination of growth and maintenance

activities. The pattern guarantees that the complexity increase in the service interface will be smooth and that the expansion of the provided

functionalities will be predictable. Finally, conformance with the pattern facilitates the comprehension and the adoption of the evolving

functionalities.

Extending our study with services offered from different service providers and services that provide similar functionalities is one possible

research direction of this work. Automating the selection of general-purpose services that conform with the athletic heart syndrome pattern is

another possible extension of this work. Another issue for future research is to study the co-evolution of general-purpose services and systems

that depend on them, towards assessing the impact of service evolution on these systems. The identification of patterns that allow to isolate

dependent systems from service changes would be a useful tool for the developers of these systems. Finally, studying the evolution of micro-

services is also a challenging open issue for future research, as the main characteristics of these services are fundamentally different from the

characteristics of the services that we have studied so far in the related literature.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in AWS-Data at github.com/zarras/AWS-Data/, reference number 53db8e8.

ORCID

Apostolos V. Zarras https://orcid.org/0000-0001-9521-5853

REFERENCES

1. Baresi L, Garriga M. Microservices: The evolution and extinction of web services? Microservices, Science and Engineering: Springer; 2020:3-28.

2. Athanasopoulos D, Zarras AV, Miskos G, Issarny V, Vassiliadis P. Cohesion-driven decomposition of service interfaces without access to source code.

IEEE Trans Serv Comput. 2015;8:550-562.

3. Zarras AV, Vassiliadis P, Dinos I. Keep calm and wait for the spike! Insights on the evolution of amazon services. In: Proceedings of the 28th Interna-

tional Conference Advanced Information Systems Engineering (CAISE), Lecture Notes in Computer Science, vol. 9694. Springer; 2016:444-458.

4. Tran HT, Nguyen VT, Phan CV. Towards service co-evolution in SOA environments: a survey. In: Context-aware systems and applications, and nature

of computation and communication. Springer; 2021:233-254.

5. Fokaefs M, Mikhaiel R, Tsantalis N, Stroulia E, Lau A. An empirical study on web service evolution. In: Proceedings of the 18th IEEE International Con-

ference on Web Services (ICWS); 2011:49-56.

6. Romano D, Pinzger M. Analyzing the evolution of web services using fine-grained changes. In: Proceedings of the 19th IEEE International Conference

on Web Services (ICWS); 2012:392-399.

7. Fokaefs M, Stroulia E. Using WADL specifications to develop and maintain REST client applications. In: Proceedings of the 22nd IEEE International

Conference on Web Services (ICWS); 2015:81-88.

8. Wang H, Kessentini M, Ouni A. Prediction of web services evolution. Proceedings of the 14th International Conference on Service-Oriented Computing

(ICSOC), Lecture Notes in Computer Science, vol. 9936: Springer; 2016:282-297.

9. Andrikopoulos V, Benbernou S, Papazoglou MP. On the evolution of services. IEEE Trans Softw Eng. 2012;38(3):609-628.

10. Khebizi A, Seridi-Bouchelaghem H, Benatallah B, Toumani F. A declarative language to support dynamic evolution of web service business protocols.

SOCA. 2017;11(2):163-81.

11. Campinhos J, Seco JC, Cunha J. Type-safe evolution of Web services. In: Proceedings of the IEEE/ACM 2nd International Workshop on Variability

and Complexity in Software Design (VACE); 2017:20-26.

12. Groh O, Baraki H, Jahl A, Geihs K. COOP - automatic validation of evolving microservice compositions. In: Proceedings of the Seminar Series on

Advanced Techniques & Tools for Software Evolution (SATTOSE), CEUR Workshop Proceedings, vol. 2510. CEUR-WS.org; 2019.

13. Baresi L, Guinea S, Manna VPL. Consistent runtime evolution of service-based business processes. In: Proceedings of the 11th IEEE/IFIP Conference

on Software Architecture; 2014:77-86.

14. Wang X, Feng Z, Chen S, Huang K. Dkem: A distributed knowledge based evolution model for service ecosystem. In: Proceedings of the 25th IEEE

International Conference on Web Services (ICWS); 2018:1-8.

15. Wang S, Higashino WA, Hayes M, Capretz MAM. Service evolution patterns. In: Proceedings of the 21st IEEE International Conference on Web

Services (ICWS); 2014:201-208.

ZARRAS ET AL. 23 of 24

https://orcid.org/0000-0001-9521-5853
https://orcid.org/0000-0001-9521-5853

16. Lübke D, Zimmermann O, Pautasso C, Zdun U, Stocker M. Interface evolution patterns: balancing compatibility and extensibility across service life-

cycles. In: Proceedings of the 24th ACM European Conference on Pattern Languages of Programs (EuroPLoP); 2019:15:1-15:24.

17. Lehman MM, Ramil JF. Software Evolution and Feedback: Theory and Practice: Wiley; 2006.

18. Treiber M, Truong HL, Dustdar S. On analyzing evolutionary changes of web services. In: Feuerlicht G, Lamersdorf W, eds. Service-Oriented Computing,

LNCS, vol. 5472; 2009:284-297.

19. Wang Y, Wang Y. A survey of change management in service-based environments. SOCA. 2013;7(4):259-273.

20. Romano D. Analyzing the change-proneness of service-oriented systems from an industrial perspective. In: Proceedings of the 35th International Con-

ference on Software Engineering (ICSE); 2013:1365-1368.

21. Fokaefs M, Stroulia E. Wsdarwin: A decision-support tool for Web-service evolution. In: Proceedings of the 29th IEEE International Conference on

Software Maintenance (ICSM); 2013:444-447.

22. Li J, Xiong Y, Liu X, Zhang L. How does Web service API evolution affect clients? In: Proceedings of the 20th IEEE International Conference on Web

Services (ICWS); 2013:300-307.

23. Espinha T, Zaidman A, Gross H-G. Web API growing pains: Loosely coupled yet strongly tied. J Syst Softw. 2015;100:27-43.

24. Skoulis I, Vassiliadis P, Zarras AV. Open-source databases: Within, outside, or beyond Lehman's laws of software evolution? In: Proceedings of the

26th International Conference Advanced Information Systems Engineering (CAISE), Lecture Notes in Computer Science, vol. 8484. Springer; 2014:

379-393.

25. Vassiliadis P, Zarras AV, Skoulis I. Gravitating to rigidity: Patterns of schema evolution - and its absence - in the lives of tables. Inf Syst. 2017;63:

24-46.

26. Leitner P, Michlmayr A, Rosenberg F, Dustdar S. End-to-end versioning support for web services. In: Proceedings of the 5th IEEE International Confer-

ence on Services Computing (SCC); 2008:59-66.

27. Zou ZL, Fang R, Liu L, Wang QB, Wang H. On synchronizing with web service evolution. In: Proceedings of the 15th IEEE International Conference on

Web Services (ICWS); 2008:329-336.

28. Banati H, Bedi P, Marwaha P. Wsdl-temporal: An approach for change management in web services. In: Proceedings of the 2nd International Confer-

ence on Uncertainty Reasoning and Knowledge Engineering (URKE); 2012:44-49.

29. Sampaio AR, Kadiyala H, Hu B, Steinbacher J, Erwin T, Rosa N, Beschastnikh I, Rubin J. Supporting microservice evolution. In: Proceedings of the 33rd

IEEE International Conference on Software maintenance and evolution (icsme); 2017:539-543.

30. Ali M, Angelis GD, Polini A. Servicepot - an extensible registry for choreography governance. In: Proceedigns of the 7th IEEE international symposium

on service-oriented system engineering (sose); 2013:113-124.

31. Angelis FD, Fanì D, Polini A. Partes: A test generation strategy for choreography participants. In: Proceedings of the 8th IEEE International Workshop

on Automation of Software Test (AST); 2013:26-32.

32. Nguyen CD, Marchetto A, Tonella P. Test case prioritization for audit testing of evolving Web services using information retrieval techniques. In: Pro-

ceedings of the 9th IEEE International Conference on Web Services (ICWS); 2011:636-643.

33. Calinescu R, Grunske L, Kwiatkowska M, Mirandola R, Tamburrelli G. Dynamic QoS management and optimization in service-based systems. IEEE

Trans Softw Eng. 2011;37(3):387-409.

34. Lv C, Jiang W, Hu S, Wang J, Lu G, Liu Z. Efficient dynamic evolution of service composition. IEEE Trans Serv Comput. 2018;11(4):630-643.

35. Autili M, Salle AD, Gallo F, Pompilio C, Tivoli M. On the model-driven synthesis of evolvable service choreographies. In: Proceedings companion of

the 12th European Conference on Software Architecture: Companion Proceedings (ECSSA). ACM; 2018:20:1-20:6.

36. Autili M, Inverardi P, Tivoli M. Automated synthesis of service choreographies. IEEE Software. 2015;32(1):50-57.

37. Zarras AV, Dinos I, Vassiliadis P. AWS-data: WSDL descriptions for EC2, ELB, AS, SQS, RDS and MTurk. github.com/zarras/AWS-Data/; 2021.

38. Lehman MM, Ramil JF, Wernick P, Perry DE, Turski WM. Metrics and laws of software evolution—the nineties view. In: Proceedings of the 4th IEEE

International Software Metrics Symposium (Metrics); 1997:20-34.

39. Lehman MM, Ramil JF, Perry DE. On evidence supporting the feast hypothesis and the laws of software evolution. In: Proceedings of the 5th IEEE

International Software Metrics Symposium (Metrics); 1998:84-88.

40. Xie G, Chen J, Neamtiu I. Towards a better understanding of software evolution: an empirical study on open source software. In: Proceedings of the

25th IEEE International Conference on Software Maintenance (ICSM); 2009:51-60.

41. Sneed HM. Measuring Web service interfaces. In: Proceedings of the 12th IEEE International Symposium on Web Systems Evolution (WSE); 2010:

111-115.

42. Easterbrook S, Singer J, Storey M-AD, Damian DE. Selecting empirical methods for software engineering research. In: Shull F, Singer J, Sjøberg DIK,

eds. Guide to Advanced Empirical Software Engineering: Springer; 2008:285-311. https://doi.org/10.1007/978-1-84800-044-5_11

43. Bourque P, Fairley RE, (eds.). Guide to the Software Engineering Body of Knowledge, version 3.0, IEEE Computer Society (Swebok): IEEE; 2014.

44. Meszaros G, Doble J. A pattern language for pattern writing. Pattern languages of program design 3: Addison-Wesley Longman; 1997:529-574.

45. Wellhausen T, Fiesser A. How to write a pattern? a rough guide for first-time pattern authors. In: Proceedings of the 16th ACM European Conference

on Pattern Languages of Programs (Europlop); 2011:1-9.

46. Gamma E, Helm R, Johnson RE, Vlissides JM. Design Patterns—Elements of Reusable Object-Oriented Software: Addison-Wesley; 1994.

47. Kuchana P. Software Architecture Design Patterns in java: Auerbach; 2004.

How to cite this article: Zarras AV, Dinos I, Vassiliadis P. The athletic heart syndrome in web service evolution. J Softw Evol Proc. 2021;

e2418. doi:10.1002/smr.2418

24 of 24 ZARRAS ET AL.

https://doi.org/10.1007/978-1-84800-044-5_11
info:doi/10.1002/smr.2418

	The athletic heart syndrome in web service evolution
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Service change detection and related studies
	2.2 Service change management and prediction
	2.3 Service evolution patterns

	3 SETUP
	3.1 Identification of the examined services
	3.2 Construction of service evolution histories
	3.3 Service evolution metrics

	4 FINDINGS
	4.1 Contextualization and theoretical foundations
	4.2 RQ1: Is there a pattern in the evolution of the services?
	4.3 RQ2: What is the purpose of the service evolution?
	4.4 RQ3: What is the impact of the service evolution on the complexity of the service interfaces?
	4.5 RQ4: Is it possible to make predictions about the evolution of the services?
	4.6 Brief summary of findings

	5 THE ATHLETIC HEART SYNDROME PATTERN AND ITS PRACTICAL IMPLICATIONS
	5.1 Context
	5.2 Problem
	5.3 Forces
	5.4 Solution
	5.5 Consequences and practical implications
	5.6 Related approaches and patterns

	6 PATTERN VALIDITY
	6.1 Construct validity
	6.2 Internal validity
	6.3 External validity

	7 CONCLUSION
	 DATA AVAILABILITY STATEMENT

	REFERENCES

