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Abstract—Software cohesion concerns the degree to which the elements of a module belong together. Cohesive software
is easier to understand, test and maintain. In the context of service-oriented development, cohesion refers to the degree to
which the operations of a service interface belong together. In the state of the art, software cohesion is improved based on
refactoring methods that rely on information, extracted from the software implementation. This is a main limitation towards
using these methods in the case of Web services: Web services do not expose their implementation; instead all that they
export is the Web service interface specification. To deal with this problem, we propose an approach that enables the cohesion-
driven decomposition of service interfaces, without information on how the services are implemented. Our approach progressive
decomposes a given service interface into more cohesive interfaces; the backbone of the approach is a suite of cohesion metrics
that rely on information, extracted solely from the specification of the service interface. We validate the approach in 22 real-world
services, provided by Amazon and Yahoo. We assess the effectiveness of the proposed approach, concerning the cohesion
improvement, and the number of interfaces that result from the decomposition of the examined interfaces. Moreover, we show
the usefulness of the approach in a user study, where developers assessed the quality of the produced interfaces.
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1 INTRODUCTION

Alice in the Web services world: Alice is an ordinary
Java developer. Some time ago, she discovered the
benefits of using Web services for developing soft-
ware. Alice finds them very handy. As it is typically
done, the applications that she develops access ser-
vices via JAX-WS1 proxies, generated from the WSDL
specifications of the services. A JAX-WS proxy looks
much like an ordinary Java class, but its methods
delegate calls to service operations and bring the
results back to the application.

However, using services also has its drawbacks.
Often, new versions of the Web service interfaces are
released and Alice spends quite some time to test
and maintain her software, when this happens. For
instance, one of the projects that Alice is involved in
relies on the Amazon Simple Queue Service (SQS)
service2. SQS facilitates message-based communica-
tion for applications running on the Amazon Cloud
via queues; it provides operations for (a) the creation
and management of message queues, (b) message
storage and retrieval to/from message queues, (c) the
management of queue access grants, and, (d) the man-
agement of message visibility timeouts. Developers
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blend calls to SQS operations in their code to al-
low their applications communicate via SQS message
queues. Since 2007, the main interface of the service
has been changed more than 4 times 3. Whenever
the MessageQueue interface changes, the continuous
integration development platform (CIDP) that is used
in Alice’s project traces that the MessageQueue proxy
has changed. Following, the CIDP rebuilds the whole
application and retests all the classes since they de-
pend on the changed proxy. This overall process takes
too long. Worst, Alice spends much time on checking
the built logs and the test results to find out which
tasks went right, or wrong.

On the back of her head, Alice has an idea that
could save her from this burden. The idea is to split
the MessageQueue interface into a set of new inter-
faces and develop a corresponding set of surrogate
classes that implement these interfaces (Figure 1).
The methods of the surrogate classes would then
call the actual MessageQueue operations, via the
MessageQueue proxy. Making the application use
the surrogate classes, instead of directly using the
MessageQueue proxy, will decouple the constituent
parts of the application from service operations that
are not actually used in these parts. In this setting,
changes to the MessageQueue interface shall affect
certain surrogate classes. Then, only the parts of the
application that use the affected surrogate classes will
have to be re-built and re-tested. In fact, this idea
would be useful for many others that use Amazon

3. aws.amazon.com/articles/Amazon-SQS/1148
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Fig. 1. A client application that relies on a cohesive
decomposition of the MessageQueue interface.

SQS. So, Alice plans to make her new interfaces and
the surrogate classes that implement them available
as an open source Java API. Alice thinks that the
same idea could also be useful in the case of services
that provide a large number of operations. Amazon
EC24, for instance, provides 87 operations grouped in
a single interface. Similarly, Yahoo KeywordService5

provides 34 operations, grouped in a single interface.
The decomposition of such large interfaces could be
used to develop APIs that provide the developers
with higher-level views of what the services do.

Having in mind a larger community of developers
that could benefit from her idea, puts Alice into
deeper thoughts about the proper splitting of service
interfaces. The decomposition of service interfaces
should be done in a principled way. Alice recalls the
fundamental notion of cohesion. In general, software
cohesion refers to the degree to which the elements of a
module belong together [1]. Cohesive software is easier
to understand, test and maintain. In the case of Web
service interfaces, the splitting should rely on a certain
notion of cohesion that reflects the relatedness of the
operations which are grouped in the same interface
[2], [3], [4], [5], [6].
Technical challenge: Unfortunately, Alice cannot ob-
tain her desideratum of splitting a service interface
into a set of cohesive interfaces via the state of the
art cohesion-driven refactoring methods [7], [8], [9],
[10], [11], [12], [13], [14], [15]. On the one hand, like
all Web services, the ones that Alice uses do not expose
their internals, i.e., their source code; on the contrary, the
very philosophy of Web services dictates that all that
is exported by a Web service is the Web service interface
specification. On the other hand, the cohesion-driven
refactoring methods are tailored to operate by taking
the source code into consideration. To overcome this
problem, in this paper we propose an approach that
facilitates the cohesion-driven decomposition of service
interfaces, without information on how the services are

4. aws.amazon.com/ec2/
5. developer.searchmarketing.yahoo.com/docs/V6/reference/services/

implemented.
Contribution: The backbone of our approach is a suite
of cohesion metrics for service interfaces. Specifically,
to keep our approach independent from the way
that cohesion is measured, we introduce a generic
cohesion metric that quantifies the degree to which the
operations of a service interface are related, based on
interface-level relations, extracted from the service inter-
face specification. Following, we reformulate the met-
rics of [6], as refinements of the generic cohesion met-
ric; the Lack of Message-Level Cohesion (LoCmsg) and
the Lack of Conversation-Level Cohesion (LoCconv),
account for interface-level relations, between opera-
tions that have similar types of inputs/outputs. We
further extent [6], with a new metric, which is also
introduced as a refinement of the generic cohesion
metric; the Lack of Domain-Level Cohesion (LoCdom),
considers interface-level relations, between operations
that are characterized by similar domain-level terms,
which are extracted from the names of the operations.
Our cohesion-driven decomposition method accepts as
input a cohesion metric and a service interface. The
given interface is progressively split into more cohe-
sive interfaces. If it is no longer possible to produce
more cohesive interfaces, the decomposition stops.

We have validated the proposed approach in 22 case
studies that concern services provided by Amazon
and Yahoo. We have evaluated the effectiveness of
our approach concerning the cohesion improvement,
and the number of interfaces that result from the
decomposition of the examined interfaces. Moreover,
we have assessed the usefulness of the approach in a
user study, where developers evaluated the quality of
the produced interfaces, as well as the success of each
of the proposed cohesion metrics.

The rest of this paper is structured as follows. In
Section 2, we discuss our contribution with respect
to the state of the art. In Section 3, we present our
metrics suite. In Section 4, we detail the modus operandi
of the decomposition method. In Section 5, we discuss
the results that we obtained. Finally, in Section 6 we
summarize our contribution and discuss the future
perspectives of this work.

2 RELATED WORK

In this section, we discuss in further detail the con-
tribution of our approach with respect to the state of
the art. More specifically, in Section 2.1 we discuss
the relation of our approach with previous efforts on
software refactoring. Then, in Section 2.2 we focus
on cohesion metrics that have been proposed in the
object-oriented and the service-oriented paradigms.

2.1 Refactoring

Refactoring is a behavior preserving changing process
that improves the quality of a software system [16].
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For an excellent survey on refactoring the interested
reader may refer to [17].

Our approach, is more closely related to metrics-
driven refactoring methods, which employ metrics
to discover and repair design problems. To achieve
this goal, the state of the art methods rely on
implementation-level relations, derived from source code
(Appendix A, Table 5 6). Specifically, in [18], Harman
& Tratt focus on the improvement of coupling. To
this end, they rely on dependencies between classes,
quantified based on the well-known CBO metric [19].
In [8], [9] and [7], the goal is to improve the cohesion
of classes, by taking into account relations between
class methods and attributes (or other methods), used
by the methods. Certain approaches consider the im-
provement of multiple quality properties. In particu-
lar, the methods proposed in [10] and [11] focus on
both coupling and cohesion. The methods proposed
in [12], [13] account for coupling, cohesion and code
complexity. In [14] the proposed method considers
the improvement of coupling, cohesion and code size.
Finally, the method proposed in [15] accounts for
coupling, cohesion, code complexity and size.

Concerning their modus operandi, the metrics-driven
refactoring methods can be divided in two categories.
In the first category, the methods require more in-
volvement from the developer [8], [13], [7]. In par-
ticular, based on the values of the metrics that are
considered, the methods identify possible refactorings
that can improve the values of the metrics. Following,
the developer is supposed to select and apply the
refactoring that suits his/her preferences. In the sec-
ond category, the methods do more work on behalf of
the developer. These methods consider the refactoring
as an iterative process. As long as the design of the
classes can be improved the refactoring process keeps
going. The algorithms that are used to realize the
refactoring process vary. We have methods that rely
on meta-heuristic optimization algorithms (e.g., hill-
climbing [18], [14], simulated annealing [14], genetic
algorithms [10], [12], [15]). Moreover, we have meth-
ods that are based on clustering [9].

Concerning the state of the art, our approach is the
first one that deals with the cohesion-driven decomposition
of service interfaces. We address this problem without
assuming knowledge on how the services are implemented.
Instead, we rely on interface-level relations, extracted
from the specification of the service interfaces.

2.2 Cohesion Metrics
In the early 90’s Chidamber and Kemerer proposed
the well-known LCOM metric (Lack of Cohesion
of Methods) for measuring the cohesion of object-
oriented software [19]. The interested reader may
refer to [20] and [21] for two detailed surveys of
the cohesion metrics that have been proposed since

6. Appendices available as supplemental material at the journal’s site.

the seminal work of Chidamber and Kemerer. In the
service-oriented paradigm, cohesion was recognized
as an important principle of service design in several
approaches that concern the overall service-oriented
development methodology [2], [3], [4]. The first efforts
for measuring cohesion have been made in the work
of Perepletchikov et al. [5]. The first study that inves-
tigated the issue of cohesion in the case of real-world
services is reported in Athanasopoulos & Zarras [6].
Finally, another interesting work that concerns the
cohesion of services is presented in [22].

In the object-oriented paradigm, the majority of
the cohesion metrics measure the degree to which
the methods of a class are related based on
implementation-level relations (Appendix A, Table 6).
Two class methods are considered as being related
if they use common class attributes (or methods).
In the object-oriented paradigm, we also have cohe-
sion metrics that assess the relatedness of methods
based on interface-level relations. In these metrics,
two methods are considered as being related if they
have parameters of the same type.

In the service-oriented paradigm, the SIIC metric [5]
measures the relatedness of service operations, with
respect to implementation-level relations. The value
of SIIC for a service is the fraction of the number of
the common service implementation elements used
by the service operations, over the total number of
service implementation elements used by the service
operations. Similarly, the SCV metric [22] also relies
on implementation-level relations. The value of SVC
for a service is the normalized sum of the relatedness
values that characterize the business entities, used
by the service operations. A business entity is an
information entity used by the service operation; the
relatedness between business entities is calculated
using a mathematical method called Singular Value
Decomposition (SVD). SIDC and SISC [5] rely on
interface-level relations. In particular, the value of
SIDC for a service is the normalized sum of the
pairs of service operations that have at least one
input parameter type in common, and the pairs of
service operations that have the same return type. The
value of SISC is the fraction of the pairs of service
operations that have sequential dependencies, over
the total number of pairs; a sequential dependency
signifies that the output of one operation satisfies the
input of another operation. The SIUC metric [5], also
operates at the interface-level. The value of SIUC for a
service is the normalized sum of the number of service
operations that are used by the clients of the service.

Our cohesion metrics focus on interface-level re-
lations, because implementation-level information is
typically not exposed by the services. For the same
reason, we do not consider information concerning
the usage of operations by the service clients. LoCmsg

and LoCconv are more closely related with SIDC and
SISC, in the sense that these metrics also focus on the
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input/output parameters of service operations. SIDC
and SISC consider equality between parameter types.
On the other hand, LoCmsg and LoCconv consider
similarity between parameter types. The LoCdom metric
follows a completely different direction for measuring the
cohesion of service interfaces, as it relies on relations
between operations that are characterized by similar
domain-level terms, which are extracted from the
names of the operations.

The specification of service interfaces may further
include ontology-based annotations (e.g., SA-WSDL7).
At this stage, our metrics take into account the parts of
the specification of service interfaces, concerning their
names and input/output parameters. Nevertheless,
the extension of the metrics to account for ontology-
based annotations is an interesting issue for future
research that can be achieved based on the recent
advances in the field of ontology-based similarity and
cohesion metrics (e.g., [23]).

From a broader perspective, our metrics are related
with similarity-based cohesion metrics that have been
employed in document clustering techniques (e.g.,
[24]). Nevertheless, the specification of a service in-
terface is a document that has a specific structure
and semantics and our metrics are tailored to these
aspects.

3 INTERFACE-LEVEL COHESION METRICS

In this section, we focus on the cohesion metrics that
we employ for the decomposition of service interfaces.
In Section 3.1, we introduce a generic cohesion metric,
LoC∗, that quantifies the lack of cohesion of a service
interface, based on a generic similarity function, OpS∗,
between operations. In Section 3.2, we define three
concrete refinements of the generic cohesion metric
that rely on corresponding concrete similarity func-
tions, which account for different kinds of interface-
level relations between operations. In Appendix B,
we validate the metrics with respect to the theoretical
framework of Briand et al. [25].

3.1 Basic Concepts
Our overall approach for measuring cohesion is based
on a generic view of the notion of service interface,
which is given in the following definition.

Definition 1: (Service interface) A service inter-
face, si, is characterized by a name and a set of
operations, si.O (Table 1(1)). An operation is charac-
terized by a name, an input message and an output
message (Table 1(2)). A message is a set of parameters
(Table 1(3)). Each parameter has a name and a type,
which may be either an XML build-in type, or an XML
complex type (Table 1(4)).

To measure cohesion, we further employ the con-
cept of interface-level graph, which represents the

7. www.w3.org/2002/ws/sawsdl/

Fig. 2. The meaning of LoC∗.

interface-level relations between the operations of a
given service interface. In general, two operations are
related if their properties (e.g., names, parameters)
are similar to some extent, according to a particular
similarity function. More formally, the definition of
the interface-level graph, with respect to a generic
similarity function, OpS∗, is given below.

Definition 2: (Interface-level graph) An interface-
level graph, G∗si = (Vsi, Esi, OpS∗), for a service inter-
face, si, and a similarity function, OpS∗ : si.O×si.O →
[0, 1] that reflects the degree to which the operations of
si are related, is a weighted graph with the following
properties (Table 1(5)): (a) the nodes, Vsi, of the graph
represent the operations of si; (b) the edges, Esi, of the
graph represent interface-level relations between pairs
of operations; (c) an edge, (opi, opj), belongs to Esi, iff
OpS∗(opi, opj) > 0; the weight that characterizes the
edge is OpS∗(opi, opj).

TABLE 1
Basic concepts.

si = (name : string,O) (1)
O = {op : operation}

operation = (name : string, (2)
in : message, out : message)

message = {p : parameter} (3)
parameter = (name : string, type : anyType) (4)

G∗
si = (Vsi, Esi, OpS∗) (5)

LoC∗(si, OpS∗) = 1−

∑
(opi,opj)∈Esi

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

(6)

Ideally, a service interface, si, would be fully co-
hesive if every operation of si is related with all
the others and the similarity between every pair of
operations is maximum (Figure 2, left). To this end,
we define an ideal interface-level graph as follows.

Definition 3: (Ideal interface-level graph) The
ideal interface-level graph G∗ideal = (Vsi, Eideal, OpS∗)
for a service interface, si, has two properties:
(1) G∗ideal is complete; (2) for all, (opi, opj) ∈
Eideal, OpS∗(opi, opj) = 1.
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Intuitively, the lack of cohesion for a service inter-
face, si, measures the amount of transformation that
the actual interface-level graph G∗si = (Vsi, Esi, OpS∗)
of si (Figure 2, right) must withstand to become
identical to the ideal graph, G∗ideal (Figure 2, left). This
practically amounts to adding the missing edges and
complementing the weights of the existing edges to
become equal to 1.

Definition 4: (Lack of interface-level cohesion)
The lack of cohesion of a service interface si,
LoC∗(si, OpS∗), is defined as the relative differ-
ence between the ideal interface-level graph, G∗ideal,
and the interface-level graph, G∗si, as follows:

LoC∗(si, OpS∗) =
|Eideal|−

∑
(opi,opj)∈Esi

(OpS∗(opi,opj))

|Eideal| .
Given that |Eideal| = |Vsi|∗(|Vsi|−1)

2 , with simple
algebraic calculations we get the formula that is given
in Table 1(6).

3.2 Metrics Definitions
The proposed cohesion metrics refine the generic
definition of LoC∗ that was given in Section 3.1. In
particular, the definitions of the metrics that we pro-
vide in the following paragraphs employ the notion
of interface-level graph; the interface-level graph that
is used for each metric relies on a different similarity
function between operations.

Message-Level Cohesion
The notion of message-level cohesion assumes that two
operations are related if their input (respectively, out-
put) messages are similar. To measure the similar-
ity between two messages we employ the notion of
message-level graph that is defined below.

Definition 5: (Message-level graph) A message-
level graph, Gm = (Vm, Em), for a message, m, is a
graph representation of the structure of m. The nodes
of Vm are partitioned in three disjoint subsets Vm =
V µ
m ∪ V p

m ∪ V t
m, defined as follows: (a) V µ

m = {vµ}, a
single node representing the message itself, (b) V p

m, a
set of nodes, one per parameter of the message, and,
(c) V t

m, a set of nodes representing the elements of
the structure of the parameter types. All edges of the
graph, Em denote whole-part relationships.

An explanation of Def. 5 is also worth here, concern-
ing the types of the parameters: V t

m includes nodes
that represent primitive XML elements, or complex
XML elements that consist of further (primitive or
complex) XML elements. Bear in mind, that due to
the XML nature of these types, they can contain cycles
(thus, in general, they are graphs and not trees).
Moreover, note that as in [6] nodes that correspond
to generic meta-data elements are not included in a
message-level graph, because they are not related to
a particular service functionality.

Intuitively, two messages are similar if they have
common parameters, or similar types of parame-
ters. As parameter types are complex XML elements,

whose specification comprises references to common
subordinate (primitive or complex) XML elements, the
message-level graphs of two similar messages contain
a common subgraph that reflects the degree to which
they are similar.

Definition 6: (Message similarity) The similarity
between the two messages, mi, mj , (Table 2(1)) is
measured with respect to the message-level graphs,
Gmi , Gmj , of mi, mj . Specifically, let Gmi∩mj =
(Vmi∩mj , Emi∩mj ) denote the maximum common
subgraph of Gmi , Gmj that represents a syntacti-
cally correct XML schema. Moreover, let Gmi∪mj =
(Vmi∪mj , Emi∪mj ) be the union of Gmi , Gmj (i.e.,
Vmi∪mj = Vmi ∪ Vmj and Emi∪mj = Emi ∪ Emj ).
Then, the similarity, MsgS(mi,mj), between mi and
mj is the number of nodes of Gmi∩mj , divided by the
number of nodes of Gmi∪mj .

(a) Messages of the GetQueueAttributes operation.

(b) Messages of the SetQueueAttributes operation.

Fig. 3. Examples of message-level graphs for
MessageQueue.

The maximum common subgraph problem involves
finding the largest subgraph of a graph Gmi that is
isomorphic to a subgraph of a graph Gmj [26]. Solving
the problem for two message-level graphs is simple;
we match each subset of the nodes of Gmi to its
respective subset of Gmj ; as the nodes are uniquely
labeled, the isomorphism is directly deduced by the
nodes’ labels.

Taking a step further, we define the message-level
similarity between two operations as follows.

Definition 7: (Message-level operation similarity)
The message-level similarity, OpSmsg , between two
operations, opi, opj ∈ si.O of a service interface, si,
is the average of (Table 2(2)):

1) the similarity between the input messages of opi
and opj and
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2) the similarity between the output messages of
opi and opj .

Taking the example of Amazon SQS, Figure 3(a)
shows the message-level graph for the input
message of the GetQueueAttributes operation.
The GetQueueAttributesRequestMsg node rep-
resents the message. The GetQueueAttributes
node is a parameter that comprises of sequence
of attributes. The Attribute node represents a
primitive XML string element. Figure 3(a), further
gives the message-level graph for the output mes-
sage of the GetQueueAttributes operation. The
GetQueueAttributesResponseMsg node repre-
sents the message. The GetQueueAttributes node
represents a parameter that comprises a sequence of
attribute value pairs. The AttributedValue node
represents a complex XML element, which consists
of two primitive XML string elements, represented
by the Attribute and the Value nodes. Simi-
larly, Figure 3(b) gives the message-level graphs
for the input and the output messages of the
SetQueueAttributes operation.

The maximum common subgraph for the message-
level graphs of the two input messages comprises
only the Attribute node. The union of the two
graphs consists of 7 nodes. Hence, the similarity
between the two input messages is 1

7 . On the other
hand, the message-level graphs of the two output
messages have nothing in common. Thus, the similar-
ity between the two output messages is 0. Overall, the
message-level similarity between the two operations
is

1
7+0

2 .
Based on the message-level similarity between op-

erations, we refine the LoC∗ metric.
Definition 8: (Lack of message-level cohesion) For

a service interface, si, the lack of message-level co-
hesion, LoCmsg(si), is an alias for LoC∗(si, OpSmsg).
Specifically, LoCmsg(si) measures the relative dif-
ference between the interface-level graph, Gmsg

si =
(Vsi, Esi, OpSmsg), defined based on the message-level
similarity function, OpSmsg , and the ideal interface-
level graph, Gmsg

ideal.

Fig. 4. Gmsg
MessageQueue for MessageQueue.

Figure 4, gives the interface-level graph for the
MessageQueue interface that is derived with re-
spect to OpSmsg. For presentation purposes the edges’
width is proportional to the similarity between the
operations. We see that the graph is not complete.
Moreover, the message-level relations between the
operations are weak; the similarities between the op-
erations range from 0.07 to 0.21. Overall, the lack of
message-level cohesion is LoCmsg(MessageQueue) =
0.98.

TABLE 2
Similarity functions.

MsgS(mi,mj) =
|Vmi∩mj

|

|Vmi∪mj
|

(1)

OpSmsg(opi, opj) =
MsgS(opi.in, opj .in)

2
+ (2)

MsgS(opi.out, opj .out)

2

OpSconv(opi, opj) =
MsgS(opi.in, opj .out)

2
+ (3)

MsgS(opi.out, opj .in)

2

OpSdom(opi, opj) =
|Topi

∩ Topj
|

|Topi
∪ Topj

|
(4)

Conversation-Level Cohesion
The notion of conversation-level cohesion assumes that
an operation is related with another if the former’s
input (respectively output) message is similar with
the latter’s output (respectively input) message. More
formally, we define the conversation-level similarity
between two operations as follows.

Definition 9: (Conversation-level operation simi-
larity) The conversation-level similarity between two
operations, opi, opj ∈ si.O, of a service interface, si, is
the average of (Table 2(3)):

1) the similarity between the input message of opi
and the output message of opj and

2) the similarity between the output message of opi
and the input message of opj .

Returning to our example, the input message of
GetQueueAttributes (Figure 3(a)) and the out-
put message of SetQueueAttributes (Figure 3(b)),
have nothing in common. On the other hand,
the maximum common subgraph for the output
message of GetQueueAttributes and the input
message of SetQueueAttributes includes three
nodes (AttributedValue, Attribute and Value).
Hence, the conversation-level similarity between the
two operations is

3
7+0

2 .
Given the conversation-level similarity between op-

erations, we introduce the following refinement of the
LoC∗ metric.

Definition 10: (Lack of conversation-level cohe-
sion) For a service interface, si, the lack of
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conversation-level cohesion, LoCconv(si), is an alias
for LoC∗(si, OpSconv). In particular, LoCconv(si) mea-
sures the relative difference between the interface-
level graph, Gconv

si = (Vsi, Esi, OpSconv), defined with
respect to the conversation-level similarity function,
OpSconv, and the ideal interface-level graph, Gconv

ideal.

Fig. 5. Gconv
MessageQueue for MessageQueue.

Regarding our example, the interface-level graph
that shows the conversation-level relations for the
MessageQueue interface is given in Figure 5. As in
the case of message-level cohesion, the graph is not
ideal. The overall lack of conversation-level cohesion
is LoCconv(MessageQueue) = 0.98.

Domain-Level Cohesion

The basic intuition behind the notion of domain-level
cohesion is that the names of the operations that are
provided by a service reflect what these operations do.
More specifically, the names of the operations com-
prise terms that correspond to certain actions (e.g., set,
get) and terms that correspond to concepts of the domain
that is targeted by the service (e.g., queue, attribute,
message). Based on this intuition, two operations
are considered as being related if their names share
domain-level terms.

In our approach, we assume that the names of the
operations follow standard naming conventions of
widely adopted coding styles; we extract the domain-
level terms from the names of the operations based on
this assumption. Following standard naming conven-
tions is quite typical in practice in the case of major
service providers. For instance, the Amazon services
follow the PascalCase coding style8 (the names of
operations are sequences of terms with the first letter
of each term being capitalized). On the other hand,
the Yahoo services follow the Java coding style9. Then,
we measure the domain-level similarity between two
operations with the following similarity function.

8. msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx
9. www.oracle.com/technetwork/java/codeconventions-135099.html

Definition 11: (Domain-level operation similarity)
Let Topi and Topj denote the sets of the domain-level
terms that are extracted from the names of two oper-
ations, opi, opj ∈ si.O, of a service interface, si. The
domain-level similarity between the two operations
(Table 2(4)) is the Jaccard similarity for Topi and Topj

(i.e., the size of the intersection divided by the size of
the union of Topi and Topj ).

Getting back to our example, the name of
GetQueueAttributes consists of the action term
Get, which is related with two domain-level
terms, Queue and Attributes. The name of
SetQueueAttributes comprises the action term
Set, which is also related with Queue and
Attributes. Therefore, the domain-level similarity
between the two operations is 2

2 .

Fig. 6. Gdom
MessageQueue for MessageQueue.

The refinement of the LoC∗ metric, with respect to
the domain-level similarity between two operations,
is given below.

Definition 12: (Lack of domain-level cohesion)
The lack of domain-level cohesion, LoCdom(si), for a
service interface, si, is an alias for LoC∗(si, OpSdom).
LoCdom(si) measures the relative difference between
the interface-level graph, Gdom

si = (Vsi, Esi, OpSdom),
defined with respect to the domain-level similarity
function, OpSdom, and the ideal interface-level graph,
Gdom

ideal.

Concerning our example, in Figure 6, we have
the interface-level graph that shows the domain-
level relations for the MessageQueue interface. As
in Figures 4 and 5 the graph is not complete. How-
ever, the domain-level relations are generally strong;
the similarities between operations range from 0.3
to 1. Overall, the lack of domain-level cohesion is
LoCdom(MessageQueue) = 0.81.
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Algorithm 1: decomposeInterface()

Input: si : Interface /* An interface that is decomposed in more
cohesive interfaces */

Output: RI = {r : Interface} /* The produced set of interfaces */
1. var Q : Queue /* A queue that stores intermediate interfaces */
2. RI ← ∅; Q.enqueue(si)
3. repeat
4. var ri : Interface /* holds an intermediate interface picked from

the queue Q */
5. var rs : Interface /* the splinter interface that comprises

operations removed from ri */
6. var rr : Interface /* the interface that comprises the remaining

operations of ri */
7. ri ← Q.dequeue(); rs ← null; rr ← null
8. (rs, rr)← createSplinter(ri) /* Phase 1: Returns the splinter rs

and rr . */
9. if rs = null then

10. RI ← RI ∪ {ri} /* LoC∗(ri) can not be further improved. */
11. else
12. (rs, rr)← populateSplinter(rs, rr, ri) /* Phase 2: Populate

rs. */
13. Q.enqueue(rr); Q.enqueue(rs)
14. end if
15. until Q.size() = 0
16. return RI

4 COHESION-DRIVEN DECOMPOSITION

In this section, we detail the method that exploits
the metrics defined in Section 3 for the cohesion-
driven decomposition of service interfaces. Moreover,
in Appendix C we provide a complementary analysis
that concerns the stopping criteria and the complexity
of the method.

From a broader perspective, the decomposition of a
given service interface, si, into a set of more cohesive
interfaces is a combinatorial optimization problem.
The complexity of finding the optimal solution to this
problem is exponential, since the powerset, 2si.O, of
the set of operations of si should be examined. To
deal with this issue, we employ a greedy approach,
which progressively splits si in more cohesive inter-
faces (Algorithm 1). Note that although we assume
as input a single service interface, the method can be
easily applied in the case of a service that provides
multiple interfaces. In such a case, the interfaces of
the service can be merged into a single interface. Then,
this interface can be given as input to the cohesion-
driven decomposition method. As the decomposition
proceeds, si is split in several interfaces, all of which
are candidates to be further divided. To this end, we
employ a queue, Q, which contains the interfaces that
are candidates for decomposition (Algorithm 1, line
1). Initially, Q contains only the given interface, si
(Algorithm 1, line 2). During each step (Algorithm 1,
lines 4-16), the method dequeues from Q an interme-
diate interface ri and checks whether it is possible
to improve the cohesion of ri, by removing a set of
operations, which form a new interface rs. Hereafter,
we use the term splinter interface to refer to rs, while
rr denotes the interface that comprises the rest of the
operations of ri.

The construction of the splinter interface takes place
in two phases. The first phase, called createSplinter,

Algorithm 2: createSplinter()
Input: ri : Interface /* An intermediate interface picked from Q */
Output: rs : Interface /* The splinter interface that is created */

rr : Interface /* The interface that contains the remaining
operations of ri */

1. var ops : Operation /* The operation, whose removal maximizes the
cohesion improvement of ri */

2. var δmax : Float /* The max cohesion improvement that can be
achieved by removing an operation from ri */

3. var rtmp /* A temporary interface used to simulate the interface that
results from the removal of an operation from ri */

4. rs ← null; rr ← null; δmax ← 0; ops ← null; rtmp ← null
5. for all opi ∈ ri.O do
6. rtmp ← new Interface
7. rtmp.O ← ri.O − {opi}
8. if LoC∗(ri)− LoC∗(rtmp) > δmax then
9. δmax ← LoC∗(ri)− LoC∗(rtmp)

10. ops ← opi

11. end if
12. end for
13. if δmax > 0 then
14. rs ← new Interface; rs.O ← {ops}
15. rr ← new Interface; rr.O ← ri.O − {ops}
16. end if
17. return (rs, rr)

checks if it is possible to improve the cohesion of ri,
by removing an operation (Algorithm 1, line 8). If this
phase fails to find such an operation, ri is inserted in
the results set, RI (Algorithm 1, lines 9-10). Otherwise,
the splinter interface, rs, that contains the operation is
returned as a result of createSplinter, along with the
interface rr that contains the remaining operations of
ri. The second phase, called populateSplinter, further
improves the cohesion of rs and rr, by moving oper-
ations from rr to rs (Algorithm 1, line 12). Finally, the
two interfaces, rs, rr are inserted in Q (Algorithm 1,
line 13).

In further detail, the two phases of the decomposi-
tion are discussed below.

The createSplinter phase accepts as input the in-
termediate interface, ri, that is picked from Q (Al-
gorithm 2). Following, it iterates over the operations
of ri (lines 5-12). Each iteration checks whether the
removal of a single operation, opi, from ri improves
the cohesion of the interface (line 8). To this end,
the removal of opi is simulated with the help of a
temporary interface, rtmp. Moreover, each iteration
keeps track of the maximum cohesion improvement,
δmax, that can be achieved, and of the operation, ops,
that should be removed to achieve this improvement
(lines 8-11). After this iterative process, if δmax > 0, the
splinter interface, rs, that contains ops is created, along
with the interface, rr that contains the remaining
operations of ri (lines 13-16). The two new interfaces
are returned as the results of createSplinter (line 17).
On the other hand, if is not possible to improve
the cohesion of ri, by removing an operation (i.e.,
δmax = 0), the results of createSplinter are null.

The populateSplinter phase accepts as input the
intermediate interface, ri, and the newly created inter-
faces, rs, rr (Algorithm 3). Then, it repeatedly moves
operations from rr to rs (lines 8-27) as follows:
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• The populateSplinter iterates over the operations
of rr (lines 11-23). Each iteration checks if an
operation, opi, can be moved from rr to rs. To
perform this check, the movement of the oper-
ation is simulated with the help of two tempo-
rary interfaces, rrtmp , rstmp . In particular, rrtmp is
employed to calculate the cohesion improvement,
δrr , that can be achieved for rr, if the operation is
moved (lines 12-14). Similarly, rstmp

is employed
to calculate the cohesion improvement, δrs , that
can be achieved for rs (lines 15-17). The opera-
tion, opi, is considered as a candidate to be moved
if the following conditions hold (line 18): (a) the
cohesion of rr, after the move, is improved, i.e.,
δrr > 0, (b) the cohesion of rs, after the move,
is also improved, i.e., δrs > 0, and (c) the lack of
cohesion of rs, after the move, is smaller than the
lack of cohesion of the intermediate interface ri
that was picked from Q. Each iteration further
keeps track of the total cohesion improvement
that can be achieved, by moving opi, from rr to
rs. Moreover, it keeps track of the operation ops
that maximizes the total cohesion improvement
that can be achieved (lines 19-21).

• The operation, ops, that maximizes the total co-
hesion improvement, δtotal, is moved from rr to
rs (lines 24-26).

• The whole process stops when ops = null (line
27) and the updated rs, rr are returned (line 28).

Back to our example, Figures 7, 8 and 9, give
the three different decompositions of MessageQueue
that result based on LoCmsg , LoCconv and LoCdom,
respectively 10. In particular, the message-level decom-
position of MessageQueue consists of 6 interfaces.
The average lack of message-level cohesion of the
interfaces is 0,92. Hence, an improvement has been
made compared to the initial interface (Figure 4), but
the improvement is small. This result is anticipated
because the message-level relations between the op-
erations of MessageQueue are not strong (Figure 4).
The conversation-level decomposition consists of 7
interfaces. The average lack of conversation-level co-
hesion in this case is 0.88. Again, the improvement
compared to the initial interface is small, because the
conversation-level relations between the operations
of MessageQueue are not strong (Figure 5). The
domain-level decomposition of MessageQueue con-
sists of 4 interfaces and the average lack of domain-
level cohesion is 0.13. The improvement in this case
is high, since the domain-level relations between the
operations of MessageQueue are quite strong (Fig-
ure 6).

In the case of LoCdom, the detailed execution
of Algorithm 1 consists of 3 main steps. In

10. The input to the method was the 2007 version of the interface,
aws.amazon.com/articles/Amazon-SQS/1148

Algorithm 3: populateSplinter()
Input: ri : Interface /* An intermediate interface picked from Q */

rs : Interface /* The splinter interface that was created in Phase 1 */
rr : Interface /* The interface that contains the remaining
operations of ri */

Output: rs : Interface /* The populated splinter interface that comprises
operations removed from rr */
rr : Interface /* The interface that contains the remaining
operations of ri */

1. var δrr : Float /* The cohesion improvement that can be achieved
by removing an operation from rr */

2. var δrs : Float /* The cohesion improvement that can be achieved
by adding an operation to rs */

3. var δtotal : Float /* The total cohesion improvement (δrr + δrs )
that can be achieved by moving an operation from rr to rs */

4. var ops : Operation /* The operation that is moved from rr to rs */
5. var rrtmp , rstmp : Interface /* Temporary interfaces used to

simulate the interfaces that result after moving an operation from rr
to rs */

6. rrtmp ← null; rstmp ← null
7. /* Move operations from rr to rs */
8. repeat
9. ops ← null; δrr ← 0; δrs ← 0; δtotal ← 0

10. /* Find the operation ops that improves the cohesion of rr and rs,
and maximizes δtotal */

11. for all opi ∈ rr.O do
12. rrtmp ← new Interface
13. rrtmp .O ← rr.O − {opi}
14. δrr ← LoC∗(rr)− LoC∗(rrtmp )
15. rstmp ← new Interface
16. rstmp .O ← rs.O ∪ {opi}
17. δrs ← LoC∗(rs)− LoC∗(rstmp )
18. if ((δrr > 0) ∧ (δrs > 0) ∧ (LoC∗(rstmp ) < LoC∗(ri)))

then
19. if δrs + δrr > δtotal then
20. δtotal ← δrs + δrr ; ops ← opi

21. end if
22. end if
23. end for

/* Move the operation ops */
24. if ops ̸= null then
25. rr.O ← rr.O − {ops}; rs.O ← rs.O ∪ {ops}
26. end if
27. until ops = null
28. return (rs, rr)

Fig. 7. Decomposition of MessageQueue, based on
LoCmsg.

the first step, the general queue management
operations (DeleteQueue, SetQueueAttributes
and GetQueueAttributes) are removed from
MessageQueue. These operations constitute
the splinter interface, rs1 (in Figure 1, this
interface appears with the name QueueMgt).
The remaining operations form rr1 . Overall, the
lack of cohesion of rs1 is 0.33, while the lack
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Fig. 8. Decomposition of MessageQueue, based on
LoCconv.

Fig. 9. Decomposition of MessageQueue, based on
LoCdom.

of cohesion of rr1 is 0.72. In the second step,
rr1 is decomposed. In particular, the timeout
management operations (GetVisibilityTimeout
and SetVisibilityTimeout) are removed from
rr1 , and the splinter interface, rs2 , is formed (in
Figure 1, this interface is called TimeoutMgt). The
rest of the operations of rr1 , form rr2 . The lack of
cohesion of rs2 is 0, while the lack of cohesion of
rr2 is 0.61. In the last step, rr2 is decomposed, by
removing the access rights management operations
(AddGrant, RemoveGrant and ListGrants),
which constitute the splinter interface, rs3 (in
Figure 1, this interface is named GrantsMgt).
The rest of the operations (SendMessage,
ReceiveMessage, PeekMessage, DeleteMessage
and ChangeMessageVisibility) are related to
messaging and form rr3 (in Figure 1, this interface
appears as MsgMgt). The lack of cohesion of rs3 is 0,
while the lack of cohesion of rr3 is 0.2. To sum up,
the results of the decomposition of MessageQueue
are RI = {rs1 , rs2 , rs3 , rr3}.

5 VALIDATION

To validate the proposed approach we developed
a prototype tool in Java which is available, upon
request, under a GPL license 11. Our validation is
based on real-world services, provided by Amazon
and Yahoo. Specifically, we selected services that pro-
vide interfaces with at least 10 operations. Overall,
we used 11 Amazon services and 11 Yahoo services12.
Hereafter, we use identifiers A1-A11 and Y1-Y11 to
refer, respectively, to the interfaces of the Amazon
and the Yahoo services that we used. Table 3 provides
the mapping between the identifiers and the service
interfaces, along with the sizes of the interfaces (i.e.,
the number of provided operations) and the values of
LoCmsg, LoCconv and LoCdom for the interfaces.

In the rest of this section we detail our findings.
In Section 5.1 we concentrate on the effectiveness of
the proposed approach from a quantitative perspec-
tive. In Section 5.2, we discuss the usefulness of the
approach from the developers’ perspective. Finally, in
Section 5.3 we discuss threats to validity.

TABLE 3
Amazon & Yahoo case studies.

(a) Amazon: aws.amazon.com/

Service Interface
Name Size ID LoCmsg LoCconv LoCdom

AmazonEC2PortType 87 A1 0.98 0.99 0.94
MechanicalTurkRequesterPortType 27 A2 0.92 0.84 0.83

AmazonFPSPortType 27 A3 0.92 0.97 0.96
AmazonRDSv2PortType 23 A4 0.91 0.96 0.56
AmazonVPCPortType 21 A5 0.95 0.98 0.82

AmazonFWSInboundPortType 18 A6 0.93 0.96 0.73
AmazonS3 16 A7 0.89 0.97 0.75

AmazonSNSPortType 13 A8 0.96 0.97 0.84
ElasticLoadBalancingPortType 13 A9 0.93 0.97 0.72

MessageQueue 13 A10 0.98 0.98 0.81
AutoScalingPortType 13 A11 0.96 0.98 0.79

(b) Yahoo:developer.searchmarketing.yahoo.com/docs/V6/reference/

Service Interface
Name Size ID LoCmsg LoCconv LoCdom

KeywordService 34 Y1 0.84 0.93 0.91
AdGroupService 28 Y2 0.84 0.94 0.65

UserManagementService 28 Y3 0.96 0.97 0.91
TargetingService 23 Y4 0.74 0.96 0.74
AccountService 20 Y5 0.92 0.98 0.88

AdService 20 Y6 0.79 0.89 0.88
CampaignService 19 Y7 0.83 0.91 0.91

BasicReportService 12 Y8 0.91 0.99 0.92
TargetingConverterService 12 Y9 0.84 0.80 0.53

ExcludedWordsService 10 Y10 0.72 0.81 0.54
GeographicalDictionaryService 10 Y11 0.79 0.99 0.65

5.1 Effectiveness

To assess the effectiveness of the approach from a
quantitative perspective we focus on the following
research questions:

RQ1: To what extent is cohesion improved by adopting
the proposed method ?

RQ2: Is the number of produced interfaces reasonable
with respect to the size of the decomposed inter-
face ?

11. For information on requesting a copy of the tool see
www.cs.uoi.gr/˜dathanas/software/software.htm

12. The WSDL specifications of the Amazon and the Yahoo services can
be found at: www.cs.uoi.gr/˜zarras/WS-Decomp-Material/
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To respond to these questions we decomposed
the examined service interfaces, based on the met-
rics that we defined in Section 3, and the method
that we detailed in Section 4. To address RQ1, we
measured the cohesion improvement, CI(si), that is
achieved for a service interface si. Formally, for
a set of interfaces, RI , produced by the proposed
method for si, the cohesion improvement is: CI(si) =

LoC∗(si,OpS∗)−

∑
r∈RI

(LoC∗(r,OpS∗))

|RI |
LoC∗(si,OpS∗)

∗ 100%. To address
RQ2, we measured the number of interfaces, DS(si) =
|RI |, produced by the proposed method for si. We
further examined the relation between the number of
operations offered by si (the independent variable)
and DS(si) (the dependent variable), using ordinary
least squares regression (OLS). Hereafter, we use the
term, decomposition of si, to refer to the set of interfaces,
RI , that is produced by the proposed method for si.
Moreover, we use to term, size of decomposition, to refer
to DS(si).

RQ1: Figure 10(left col.), gives the values of CI
that we obtained for the examined service interfaces.
Concerning our first question, the combination of
the proposed method with the domain-level cohesion
metric (i.e., LoCdom) was effective in all cases. The
cohesion improvement for the domain-level decom-
positions is medium-high (CI ranges from 38% to
100%). The combination of the proposed method with
the message-level cohesion metric (i.e., LoCmsg) was
also effective in all cases. The cohesion improvement
for the message-level decompositions is medium (CI
is up to 41.9%). Finally, the combination of the pro-
posed method with the conversation-level cohesion
metric (i.e., LoCconv) was effective in 77% of the cases.
The cohesion improvement for the conversation-level
decompositions is low. In 5 cases (A9, Y2, Y4, Y7,
Y10), the similarities between the operations of the
examined interfaces were such that the conversation-
level cohesion of the initial interfaces could not be
further improved.

RQ2: Figure 10(middle col.), gives the values of DS
that resulted for the examined interfaces. Moreover,
Figure 10(right col.) gives the results of the OLS
analysis; in the x-axis of the scatter plots we have the
number of the operations that are offered by the ex-
amined interfaces, in the y-axis we have the values of
DS, and at the lower left corner of the scatter plots we
have the regression equations and the values of the R2

statistic. In general, the values of the R2 statistic range
from 0 to 1; high R2 values indicate that a regression
equation explains well the relationship between the
variables involved in the equation. In our analysis, the
values of the R2 statistic are quite high (ranging from
0.71 to 0.89). Thus, the size of the decompositions,
produced by the proposed method, linearly increases
with the number of operations that are offered by
the decomposed interfaces. The regression equations

that we obtained for the different cohesion metrics
are similar. The maximum value of the regression
coefficients that could result from the OLS analysis
is 1. A regression coefficient that equals to 1, would
mean that the number of interfaces that are produced
by the decomposition method equals to the number
of operations of the decomposed interface. In our
analysis, the regression coefficients are quite small,
ranging from 0.33 to 0.35. Hence, the size of the
produced decompositions is reasonable, with respect
to the number of operations of the decomposed in-
terface. Nevertheless, there are certain cases where
the size of the produced decompositions is relatively
high – see Fig. 10(middle col.). For instance, for the
combination of the decomposition method with the
domain-level cohesion metric we have the cases of
A3 and Y3. Similarly, for the combination of the de-
composition method with the message-level cohesion
metric we have the cases of A3 and Y7. Finally, for
the combination of the decomposition method with
the conversation-level cohesion metric we have the
cases of A2 and Y5.

5.2 The Developers’ Opinions
To evaluate the usefulness of the approach from the
developers’ perspective we investigate the following
research questions:

RQ1: Does the proposed approach produce useful re-
sults for the developers ?

RQ2: What are the developers’ preferences (if any)
concerning the metrics that are employed ?

RQ3: To what extent should the results be refined to
fully satisfy the developers’ needs ?

To address the aforementioned questions we looked
for volunteers with the following skills: software
development experience; knowledge of the service-
oriented computing paradigm, related technologies
and standards. Overall, 10 volunteers participated in
our study. The participants had 3 to 15 years experi-
ence in software development. They were all familiar
with the service-oriented computing paradigm. We
organized the participants in two groups. The first
group assessed the decompositions of the Amazon
service interfaces, while the second group assessed the
decompositions of the Yahoo service interfaces.

In a first meeting with the participants, we ex-
plained the overall purpose of the study, without
giving any details, concerning the metrics and the
method used for the decomposition of the examined
service interfaces. Following, we gave to each partic-
ipant a document 13 that contained the following in-
formation for each one of the examined interfaces: (a)
a high-level description (represented as a UML class)
of the interface; (b) the domain-level, the message-
level and the conversation-level decompositions of the

13. The documents can be found at
www.cs.uoi.gr/˜zarras/WS-Decomp-Material/
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Cohesion Improvement (CI) Decomposition Size (DS) Regression Analysis

Domain
level
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level
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Conv.-
level
decomp.
(LoCconv)

Fig. 10. Effectiveness Assessment.

interface. The decompositions were given in random
order. The document further contained detailed in-
structions concerning the assessment tasks that should
be performed for each one of the examined service in-
terfaces. In the first task, the participants had to choose
whether a service interface should be decomposed,
or remain as is. In the second task, the participants
had to report which of the provided decompositions
is closest to their preferences; in this task the partic-
ipants could also report that none of the provided
decompositions is satisfactory. The third task was to
suggest, if necessary, further changes on a selected
decomposition.

(a) The choices made for each service.

(b) The choices made by each participant.

Fig. 11. Usefulness from the developers’ perspective.

In a second meeting with each of the participants,
we collected the documents and we analyzed the
participants’ feedback. The participants’ feedback is
summarized in Figure 11. In this figure we use the

following notations that correspond to the possible
choices that could be made by a participant for a par-
ticular service interface: NO-SPLIT - the participant
suggested that the interface should not be decom-
posed; NONE - none of the provided decompositions
was selected by the participant; Msg - the participant
selected the message-level decomposition; Conv - the
participant selected the conversation-level decompo-
sition; Dom - the participant selected the domain-level
decomposition. Figure 11(a), gives for each service the
percentage of the participants that made a particular
choice. Finally, Figure 11(b) gives for each participant
the percentage of the services for which he/she made
a particular choice.

RQ1: Concerning the first question, the participants
suggested to decompose most of the examined in-
terfaces. The only exceptions are Y3, Y6, Y7 and
Y11 (Figure 11(a)). For Y3, Y7 and Y11, one of the
participants suggested to leave the interface as is,
while the others were in favor of decomposing the
interface. For Y6, two of the participants suggested
to leave the interface as is. For most of the service
interfaces, the participants selected decompositions
that were among the ones that we provided. In the
Amazon services, we have 4 cases (A3, A6, A7, A11
in Figure 11(a)), for which one of the participants was
not satisfied by any of the provided decompositions.
For A6 and A7, the participants proposed their own
decompositions. Specifically, the proposed decompo-
sition for A6 was: ”3 interfaces to manage fulfilment,
items and shipments”. For A7 the suggestion was: ”3
interfaces for objects, buckets, access policies”. In the
Yahoo services, we have the case of Y1 (Figure 11(a)),
for which two of the participants were not satisfied by
any of the provided decompositions. The participants
pointed out that the proposed decompositions do not
separate clearly the underlying concepts (keywords,
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bids, adGroups, optimization guidelines). Moreover,
in the Yahoo services we have the case of Y5 (Fig-
ure 11(a)), for which one of the participants proposed
his own decomposition: ”three sets of operations one
for the standard accounts, one for the mobile accounts
and one for the credit cards”.

RQ2: Regarding the second question, the domain-
level cohesion metric worked very well for the par-
ticipants. Specifically, in 63% of the services, more
than 80% of the participants selected the domain-
level decomposition (Figure 11(a)). Concerning each
one of the participants, the percentage of the services
for which the domain-level decomposition was se-
lected ranges from 36% to 100% (Figure 11(b)). On
the other hand, the percentage of the services for
which the message-level decomposition was selected
ranges from 0% to 36% (Figure 11(b)). Finally, the
percentage of the services for which the conversation-
level decomposition was selected ranges from 0% to
9% (Figure 11(b)).

RQ3: Concerning the third question, in several cases
the participants did not suggest any changes in the
selected decompositions. In the 55 decompositions
that have been chosen for the Amazon services (5
participants × 11 services) there were 21 such occur-
rences; in the 55 decompositions of the Yahoo services
this amounted to 18 occurrences. However, we also
have several cases for which the participants moved
certain operations between interfaces. In the 55 de-
compositions that have been chosen for the Amazon
services there were 20 such occurrences; in the 55 Ya-
hoo decompositions, this amounted to 14 occurrences.
Moreover in several cases the participants decreased
the size of the decompositions by merging certain
interfaces. Specifically, we had 21 occurrences for the
Amazon services and 24 occurrences for the Yahoo
services. The details of the individual participants’
suggestions are found in Appendix D.

TABLE 4
X2 test for the overall results.

NO-SPLIT NONE Msg Conv Dom
Observed 4.50% 5.40% 13.51% 2.70% 73.87%
Expected 20.00% 20.00% 20.00% 20.00% 20.00%
Squared diffs. 12.00 10.65 2.10 14.95 145.11
X2 184.83
ρ value 6.81E-39

To conclude this study, we performed a X2 test, so
as to check the statistical significance of the results.
The goal of the test was to examine the following null
hypothesis:
H0: The choices that have been made by the partici-
pants are not significantly different from the ones that
we would have by chance alone.

Table 4 provides the details for the X2 test that we
performed. In particular, the first row of Table 4 gives
the percentages of NO-SPLIT, NONE, Msg, Conv and
Dom that we observed in the study in the overall 110

choices that have been made by the participants (22
services × 5 participants per service). The second row
of Table 4 gives the percentages of NO-SPLIT, NONE,
Msg, Conv and Dom, that we would have by chance
alone. Based on the squared differences between the
expected and the observed percentages, the overall X2

value that we got is 184.83. Then, according to the X2

distribution, the probability of having a X2 as large
as 184.83, by chance alone, is too small (ρ ≪ 0.001).
Therefore, we rejected H0.

5.3 Threats to Validity
A possible threat to the internal validity of the re-
sults that we obtained from the developers’ involved
in the validation is the developers’ fatigue or bore-
dom. To reduce this threat we arranged our study
according to the developers’ availability, instead of
imposing a strict schedule. To avoid effects caused
by interactions between the developers, we made
clear that the required tasks should not be performed
in a collaborative manner. Finally, to avoid learning
effects, the different decompositions of each interface
were provided to the developers in a random order.
Regarding external validity, our validation is among
the very few ones [27], [6] that involve real services.
Specifically, we used a representative set of services,
provided by two major service providers; the services
offer diverse functionalities and their interfaces vary
in size and complexity. Moreover, we employed a
representative set of developers that have knowledge
of the service-oriented computing paradigm, related
technologies and standards. On the other hand, a
possible limitation is that the validation was not based
on a large number of developers. Nevertheless, the
number of developers that we considered is compa-
rable with other similar studies [5], [9], [7].

6 CONCLUSION

Take away: In this paper, we have proposed an
approach that enables the cohesion-driven decompo-
sition of service interfaces, without information on
how the services are implemented. Our experimental
findings showed that the proposed approach is able to
improve cohesion. The number of interfaces produced
by the approach linearly increases with the size of
the decomposed interface. In general, the developers
found the proposed approach useful.

Limitations & future perspectives: As anticipated,
the decompositions produced by the method are not
perfectly adjusted to the developers’ needs. In certain
cases, the developers would prefer smaller and more
cohesive decompositions, therefore there is further
room to improve the proposed method. Future work
can be pursued towards avoiding unnecessary splits
and accounting for the user’s positive/negative feed-
back. At the same time, although our approach is
based on the practical assumption that only service
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interface specifications are available, future research
can address the problem of service interface decom-
position, based on semantic annotations that could
allow a better assessment of the functional relations
between operations. Moreover, whereas we investi-
gate the effect of different kinds of relations to service
cohesion, one can possibly improve the results, via a
combination of naming and structure similarity; find-
ing the right combination involves studying several
potential alternatives like linear/non-linear aggregate
functions, single/multi-objective aggregate functions,
etc. Finally, the decomposition of service interfaces
could take into consideration other practical criteria
like management costs and reusability.
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