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Abstract: Accounting for the challenges posed by the Future Internet (FI), we revisit the traditional definitions of 

component, connector and coordination protocol, and propose the CHOReOS Architectural Style (CAS) for the 
development of choreographies in the FI. Components enable leveraging the diversity of services that integrate in the FI 
as well as the ultra large service base envisioned for the FI. Connectors bring together the highly heterogeneous 

interaction paradigms that are now used in today’s increasingly complex distributed systems and further support 
interoperability across heterogeneous paradigms. Coordination protocols foster choreography-based coordination for the 
sake of scalability, while preventing service interactions that would violate a specified choreography. A key aspect of 

CAS is to introduce novel abstractions for all its elements, which enable leveraging the wide diversity of the FI, in all its 
dimensions of scale, heterogeneity and mobility.  
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1. INTRODUCTION 

A software architecture style characterizes the types 

of components, connectors, and possibly configura-

tions that serve building a given class of systems [1]. 

The style elements altogether specify the abstractions 

that need to be modeled, from design to implemen-

tation, as well as supported by the runtime to enact the 

target systems. 

With in the European project CHOReOS 

(www.choreos.eu), we leveraged the Service, and 

related Service Oriented Architecture (SOA) and Ser-

vice Computing paradigms for the Future Internet (FI). 

In other words, networked systems of the FI are 

exposed as (software) service providers and/or 

consumers (with service prosumer standing for a 

service that acts both as a consumer and a provider) in 

the networking environment. The service abstraction 

specifically serves characterizing functionalities that are 

provided and required in the networked environment so 

as to enable dynamic lookup and further binding 

between matching service consumer and producer. 

The SOA style may then be briefly defined as: 

• components map to services, which may be 

refined into consumer, producer or prosumer 

services; 
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• connectors map to traditional client-service 

interaction protocols; 

• configurations map to compositions of services 

through (service-oriented) connectors, i.e., 

choreography in the most general form, and 

orchestration as a specific composition structure 

that is commonly adopted in today’s Internet. 

The SOA style, as defined above, has led to many 

refinements, and further development of associated 

middleware technologies. Then, acknowledging the 

diversity of services to be composed, the Enterprise 

Service Bus (ESB) paradigm has been largely adopted 

in SOA, thereby introducing a connector type oriented 

toward interoperability across heterogeneous service-

oriented middleware. 

While the SOA style is well suited to support the 

development of Internet-based distributed systems, it is 

largely challenged by the Future Internet, aka FI, that 

poses new demands in terms of sustaining the 

following “ities” [2]. 

Scalability: the FI calls for novel service abstractions 

that shall serve characterizing and further locating all 

the component systems that will get networked at a 

massive scale. Scalability further advocates for weakly 

coupled interactions. Centralization shall be the 

exception, hence calling for choreography-based 

service composition. 
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Heterogeneity: service abstractions are already 

much heterogeneous in today’s Internet, where both 

SOAP and REST-full services co-exist [3]. They will be 

even more so as highly heterogeneous services, 

ranging from Business to Thing-based ones, will be 

integrated within the FI. The heterogeneity of 

networked services further leads to account for various 

connector types implementing different interaction 

paradigms, as well as for interoperability across 

interaction paradigms. 

Mobility: mobility directly affects all the architectural 

elements, as it calls for system architectures whose 

components may be highly volatile and hence requires 

dealing with service substitution within composition. 

Awareness & adaptability: it must be considered 

that services that get composed have not been 

designed in conjunction and thus may exhibit 

erroneous behavior when choreographed. 

Purpose of the Paper: By discussing part of our work 

done within the CHOReOS project, the next three 

sections define the CHOReOS Architectural Style 

(CAS) that we have elaborated to address the above 

challenges, and embed a comparison with related 

work. Indeed, the CAS definition has been one of the 

main outcomes of the CHOReOS project. A complete 

formal definition of CAS is provided in [4], while in this 

paper, we summarize the CAS definition and do not go 

into formal details. However, we strive to keep a clear 

description of the key concepts and notions constituting 

the CAS. 

Specifically, Section II defines CHOReOS service 

components in a technology-agnostic way and allows 

for abstracting Business as well as Thing-based 

services. The main innovation of the section comes 

from the definition of new abstractions for services that 

enables hierarchical structuring and, hence, scalable 

abstraction-oriented service bases. 

Section III tackles the issue of interoperability 

across heterogeneous interaction paradigms, from 

strongly to weakly coupled ones. It introduces: (i) base 

connector types that abstract core interaction 

paradigms implemented by state-of-the-art middleware 

solutions, and (ii) a Generic Application (GA) connector 

type that realizes interoperability in a way similar to a 

service bus, but across interaction paradigms. The 

main contribution of the section lies in enabling cross-

paradigm interoperability, while preserving the 

behavioral (at middleware-level) semantics of the 

connected components. 

Section IV focuses on the formalization of the notion 

of CHOReOS coordination protocol that abstracts 

choreography behavior. The section defines a specific 

configuration to be imposed on the choreography-

based system to suitably coordinate the composed 

services, and further enable the automated synthesis of 

the coordination protocol. The main novelty of the 

section derives from the efficient production of a 

decentralized choreographer, while avoiding those 

interactions that do not belong to the set of interactions 

modeled by the choreography specification, i.e., 

undesired interactions. 

Section V concludes and discusses possible future 

work. 

2. CHOREOS COMPONENTS: ABSTRACTING FI 
SERVICES 

Dealing with the impact of the FI challenges on 

service-oriented components is one of the main issues 

dealt with in CAS. Regarding heterogeneity and 

mobility, CAS provides a unified formal definition of 

services that abstracts details related to the particular 

paradigms, standards and technologies on which 

services are based and further accounts for the 

specificities of Things-based services. An earlier 

attempt in this direction was the NEXOF reference 

architecture [5]. However, the NEXOF definition of 

services is rather informal and it does not account for 

services’ behavior. Considering scalability, awareness 

& adaptability, CAS formally defines the concept of 

service abstractions. They represent groups of 

alternative services that provide similar functional and 

non-functional properties through different interfaces. 

Previous attempts in this direction were represented by 

semantic descriptions of services such as DAML-S 

(www.ai.sri.com/daml/services/owl-s/) and its 

successor OWL-S (www.w3.org/Submission/OWL-S/). 

Differently from them, CAS takes one step further since 

the CHOReOS service abstractions can be 

hierarchically structured. 

2.1. Services in the FI 

From an architectural point of view, the main 

features of components include the components’ 

interfaces, semantics, constraints and properties [6]. In 

CHOReOS, we consider these main features as the 

basic constituents of the CHOReOS definition of 

services. Still, such a definition shall account for the 

heterogeneity of services to be aggregated in the FI, 

while acknowledging that services are essentially (if not 

uniquely) Web-based at the FI level. However, Web-
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based Services are called to evolve to face the FI 

challenges when diverse interaction paradigms must 

be explicitly accounted for. Moreover, according to the 

Internet of Things overall view [7], in the near future it is 

expected that an ultra large number of devices will 

encompass computing and communication capabilities 

that will allow them to interact with their surrounding 

environment (including the physical world) and the 

inverse. 

The SOAP and RESTful paradigms [3] offer two 

different alternatives for the realization of Thing-based 

services. Specifically, RESTful services are considered 

as the preferable approach for the realization of Thing-

based services in the cases where the functionalities 

offered by Things are quite simple and atomic, in the 

sense that there are no complex conversations 

involved between Things and their surrounding 

environment [8]. 

On the other hand, for Things that offer more 

complex functionalities, SOAP services are considered 

as a better option. Nevertheless, Things in general 

have limited computational/communication capabilities 

and resources [8]. Consequently, it is expected that 

Thing-based services would comply with a limited 

subset of standards that can be supported by Things 

[9]. 

Based on the above discussion, within CAS we 

consider paradigm-independent definitions of 

CHOReOS components, which span Business and 

Thing-based services. These definitions concern the 

notions of service type, interface, operation, and 

service instance. 

A service type specifies: (i) the service profile, as a 

user-intuitive explanation of the service (e.g., see 

DAML/OWL-S/SAWSDL), (ii) the service style, which 

can be SOAP or RESTful, and (iii) a set of interfaces 

that specify the functionalities provided by the service. 

A service interface defines: (i) a set of operations, 

that correspond to different functionalities provided 

through the interface, (ii) a (optional) behavioral 

specification which, independently of specific standards 

(e.g., BPEL, WSCL), can be seen abstractly as a 

Labeled Transition System (LTS), and (iii) a (optional) 

set of constraints related to requirements over the 

environment where the interface functionalities 

execute. 

An operation has input/output parameters and can 

optionally specify pre- and post-conditions. 

A service instance implements some interfaces, has 

an endpoint address plus optionally a behavioral 

description (e.g., an LTS) of its interaction protocol, and 

a (optional) description of non-functional properties 

given in terms of quality indicators, and associated 

measures. We can distinguish between runtime quality 

indicators (e.g., reliability, availability, reputation, price, 

performance), design quality indicators (e.g., different 

kinds of cohesion for service interfaces), and physical 

properties that typically characterize Thing-based 

services. In the following, we use a concrete example 

to briefly illustrate the notions given above and refer to 

[4] for a complete formalization of them. 

Browsing the RemoteMethods registry 

(www.remotemethods.com/), we found various services 

that allow sending SMS messages to mobile phones. 

SMS-TXT is such a service that follows the SOAP 

paradigm. In the WSDL specification of the service 

interface we have a single operation named SendSms. 

The operation accepts as input message, five string 

parameters. The output message of the operation is 

empty. With respect to CAS, the service interface is 

specified as showed in the tabular representation given 

in Figure 1a. The interface does not include profile 

specifications since there is no such information 

available in the registry where the service was found. 

For the same reason, there are no behavioral 

specifications and constraints. 

An example of the CHOReOS representation of a 

RESTful service interface is given in Figure 1b. The 

example is based on the Yahoo news search 

application [10]. This application consists of a single 

resource that provides a single method called search. 

Consequently, in the CHOReOS representation, we 

have an interface that defines a corresponding 

operation. 

Finally, another example of an SMS service 

interface, GlobalSMSPro, is given in Figure 1c. It also 

follows the SOAP paradigm and offers a more complex 

interface. As in the previous case, the interface does 

not include information regarding semantics, behavior, 

constraints and non-functional properties, since there is 

no such information available in the registry where the 

service was found. The interface consists of 6 

operations. The SendMessage and SendMessages 

Bulk operations that are given in Figure 1c are the 

ones that actually send SMS messages to mobile 

phones, while the rest of the operations (omitted in 

Figure 1c for reasons of simplicity) serve for monitoring 

the status of SMS messages, or finding information 
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concerning different country codes, network standards, 

etc. 

2.2. Abstractions for FI Services 

CAS provides formally grounded service 

abstractions that can be hierarchically structured. 

Moreover, CAS distinguishes between two different 

types of interrelated service abstractions: functional 

(resp., non-functional) abstractions that represent 

groups of services that offer similar functional (resp., 

non-functional) properties. The CAS service 

abstractions are considered as core elements that are 

mined from services that become available over time 

and assist the task of service discovery and the 

subsequent tasks of service composition and 

adaptation. The discovery process amounts to: (i) 

finding a functional abstraction that satisfies any or 

most of the functional requirements; (ii) returning the 

matching functional abstraction along with the services 

that are described by it. It may return too many 

functionally equivalent services, thus complicating the 

selection of the appropriate service. This issue 

becomes even more important considering that the 

actual service selection may take place at runtime. 

Hence, we need to provide extra selection criteria; we 

do this by utilizing the non-functional properties of 

services (e.g., response time, availability, throughput 

etc.). So, the selection of an actual service from the set 

of services elicited in the previous step consists of: (i) 

browsing or searching for the suitable non-functional 

abstraction that meets certain non-functional 

requirements; (ii) selecting any of the services of the 

selected non-functional abstraction. 

Getting back to our example of Figure 1, an 

interesting observation is that although these two SMS 

services come from two different providers their 

interfaces offer at least a pair of very similar operations. 

Specifically, the SendSms operation of SMS-TXT and 

the SendMessage operation of GlobalSMSPro realize 

semantically compatible functionalities (i.e., sending an 

SMS message) and further have very similar input 

parameters. This observation points out an opportunity 

for defining a service abstraction that represents these 

two services.  

 

Figure 1: SMS-TXT (a), Yahoo newSearch (b), GlobalSMSPro (c). 
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A possible interface for this abstraction is given in 

Figure 2. The abstract service interface that represents 

the interfaces of the two services comprises a single 

operation named Send and requires 4 string 

parameters. The mapping of this abstract interface to 

the interfaces of the two services is rather 

straightforward and is given in Figure 3a and b. Finally, 

Figure 3c gives an example of a mapping between the 

input parameters of the abstract operation Send and 

the input parameters of the SendSms operation. 

Although the definition of a functional abstraction 

seems trivial for the two services of our example, in the 

general case, where the given set of available services 

is large and the services much more complex, this task 

is challenging. To deal with this challenge in [11] we 

proposed a hierarchical clustering approach for mining 

functional service abstractions from sets of existing 

services, while in [12] we elaborated on a clustering 

approach that mines non-functional service 

abstractions. In the context of CHOReOS, we 

employed the concept of service abstractions for 

indexing service specifications in a service base and 

we demonstrated the benefits of this indexing method 

in terms of service querying execution time in large 

service base instances with up to 10
7
 service 

specifications [12]. The main outcome was that 

querying over service abstractions is much (80% to 

90% in our experimental settings) faster than querying 

over concrete service specifications. On the less bright 

side, the query execution time speedup may come at 

the expense of recall [13]. In the context of CHOReOS, 

we further employed the concept of service abstraction 

for the development of a reflective service adaptation 

mechanism that allows to substitute services that are 

represented by the same service abstraction [13]. 

3. CHOREOS CONNECTORS: INTEROPERABILITY 
IN THE FI 

Complex distributed applications in the FI (including 

the Internet of Things constituent) will be to a large 

extent based on the open integration of extremely 

heterogeneous systems, such as lightweight 

 

Figure 2: Example of a service functional abstraction. 

 

Figure 3: Operation (a,b) and parameter (c) mappings. 



An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1      19 

embedded systems (e.g., sensors, actuators and 

networks of them), mobile systems (e.g., smartphone 

applications), and resource-rich IT systems (e.g., 

systems hosted on enterprise servers and Cloud 

infrastructures). These heterogeneous system domains 

differ significantly in terms of interaction paradigms, 

communication protocols, and data representation 

models, which are most often provided by supporting 

middleware platforms. In particular with regard to 

middleware-supported interactions, the client/server 

(CS), publish/subscribe (PS), and tuple space (TS) 

paradigms are among the most widely employed ones 

today, with numerous related middleware platforms, 

such as: Web Services, Java RMI for CS; WS-

Eventing, JMS, SIENA for PS [14]; and JavaSpaces, 

Lime for TS [15]. In light of the above, the connector 

types associated with CAS shall: (i) leverage the 

diversity of interaction paradigms associated with 

today’s and future distributed systems, as well as (ii) 

enable cross-paradigm interaction to sustain 

interoperability in the highly heterogeneous FI. 

As surveyed in [16,17], existing cross-domain 

interoperability efforts are based on, e.g., bridging 

communication protocols [18], wrapping systems 

behind standard technology interfaces [19], and/or 

providing common API abstractions [20]. In particular, 

such techniques have been applied by the two core 

system integration paradigms adopted by CHOReOS, 

that is, SOA and ESB [18]. However, state of the art 

interoperability efforts commonly cover part of the 

heterogeneity issues (regarding interaction, 

communication, data) and are applicable to specific 

cases [21]. In particular, existing solutions do not or 

only poorly address interaction paradigm 

interoperability. Specifically, SOA and ESB are 

primarily based on the CS paradigm. Even if 

extensions have been proposed, such as event-driven 

SOA or ESB supporting the PS paradigm [18], these 

remain partial. This means that systems integrated via 

SOA and ESB solutions have their interaction 

semantics transformed to the CS paradigm. Then, 

potential loss of interaction semantics can result in 

suboptimal or even problematic system integration. 

To overcome the limitation of today’s ESB-based 

connectors for cross-domain interoperability in the FI, 

we introduce a new connector type, called Generic 

Application (GA) connector. GA relies on the service 

bus paradigm, but, in contrast to classical ESB 

connectors, it particularly addresses interaction 

paradigm interoperability by paying special attention to 

the preservation – as much as possible – of semantics 

when bridging across heterogeneous paradigms. GA is 

based on the abstraction and semantics-preserving 

merging of the common high-level features of base 

interaction paradigms. This solution serves rethinking 

the typical SOA- and ESB- based composition of 

heterogeneous distributed systems so as to meet the 

requirements of the FI. 

Figure 4 depicts our overall approach to 

interoperability across interaction paradigms. While 

networked services rely on legacy protocols and hence 

use their associated API to interact with their 

environment, these legacy protocols are mapped onto 

corresponding primitives of the GA connector. Then, 

internally to the GA connector, possible architectural 

mismatches are solved based on the pairwise matching 

of GA’s input primitives with GA’s output primitives. 

3.1. Base Connector Types 

Before introducing GA, we provide a brief 

description of the base connectors. 

The CS connector type integrates a wide range of 

semantics, covering both the direct (i.e., non queue-

based) messaging and remote operation call 

paradigms. It also enables both blocking and non-

blocking reception semantics. CS imposes space 

coupling between the two interacting entities, i.e., at 

least the sending entity must know the receiving entity 

 

Figure 4: GA-based connector interoperability. 
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and hold a reference of it, as well as time coupling, i.e., 

both entities must be connected at the time of the 

interaction. A message carrying data is sent directly 

from the sending entity to the receiving entity. 

In the PS paradigm, multiple peer entities interact 

via an intermediate broker entity. Publishers produce 

events carrying data, which are received by peers that 

have previously subscribed for receiving the specific 

events. The PS connector type abstracts in a 

comprehensive way the different types of 

publish/subscribe systems, such as queue-, topic- and 

content-based systems [22]. It further enables rich 

reception semantics: synchronous pull by the 

subscriber, which may be blocking or non-blocking, or 

asynchronous push by the broker. PS enables space 

decoupling between interacting peers: peers do not 

know each other; with the exception of queue-based 

PS, where at least the publisher holds a reference of 

the subscriber. Moreover, PS enables time decoupling: 

peers do not need to be present at the same time, 

subscribers maybe disconnected at the time of the 

interaction; they can receive the pending events when 

reconnected. The broker maintains an event until all 

related subscribers have received it or until the event 

expires. 

In the TS paradigm abstracted by the TS connector 

type, multiple peer entities interact via a shared data 

space. Data take the form of tuples; a tuple is an 

ordered list of typed elements. Peers can post data into 

the space and also synchronously retrieve data from it, 

either by taking a copy or removing the data. Data are 

retrieved by matching based on a tuple template, which 

may define values or expressions for some of the 

elements. Bulk primitives [15] enable retrieving all the 

matching tuples. Peers can alternatively set up a 

callback function that is triggered asynchronously by 

the data space when matching data appear. This call 

does not carry the data; the action of taking or reading 

the data should be executed by the peer. TS enables 

both space and time decoupling between interacting 

peers. Nevertheless, TS has a number of specifics. 

Peers have access to a single, commonly shared copy 

of the data. Also, peers do not need to subscribe for 

data, they can retrieve data spontaneously and at any 

time. The data space maintains data until they are 

removed by some peer or until the data expire. 

Additionally, concurrency semantics of the data space 

are non-deterministic: among a number of peers trying 

to access the data concurrently, the order is 

determined arbitrarily. 

3.2. Generic Application Connector Type 

We now introduce the CHOReOS Generic 

Application (GA) connector type. Our objective is to 

devise a single generic connector that comprehensively 

incorporates the end-to-end interaction semantics of 

application entities that employ any of the three above 

base, i.e., CS, PS and TS, middleware connectors. 

This leads us to identify two principal high-level 

primitives for the GA connector enabling service 

interaction with the environment: 

1) A post() primitive employed by a peer for sending 

data to one or more other peers (i.e., production of 

information), where data may represent CS messages, 

PS events, or TS tuples. For example, a PS publish() 

primitive can be abstracted by a post(). 

2) A get() primitive employed by a peer for receiving 

data (i.e., consumption of information). 

Then, following the definition of the base connector 

types, a producer/post - consumer/get end-to-end 

interaction may be characterized by one of the 

following three types of coupling: strong coupling 

corresponding to the CS paradigm; weak coupling for 

PS; or very weak coupling for TS. 

GA connector API: The complete set of GA primitives 

is given at the top of Figure 5, where we have applied a 

pseudo C-like syntax. They are defined as follows: 

• post() produces data in the networking 

environment according to the semantics set by 

coupling (i.e., strong, weak, very weak as 

defined above). We introduce the explicit 

scoping parameter scope to generalize 

addressing for the different types of coupling. 

Hence, scope may represent: the address and 

message/operation qualifier of a CS receiving 

entity; the address and event qualifier of a PS 

broker; or the address and tuple qualifier for a 

TS tuplespace. lease determines the lifetime of 

the data before their expiration. 

• set_get() sets up reception resources at the GA 

connector. handle is returned by the connector 

and serves identifying the reception setup. 

• get_async() enables asynchronous reception of 

data via a callback called by the connector when 

data are ready. scope may additionally be 

returned by the callback to identify the sending 

entity. 
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• get_sync() executes synchronous (blocking) 

reception of data with a timeout. We introduce 

policy to specialize this primitive in the case of 

very weak coupling (TS paradigm). Thus, policy 

may be remove, copy, remove_all, copy_all, 

which correspond to the various TS data retrieval 

fashions. For strong or weak coupling, policy is 

remove by default. 

• end_get_async() ends asynchronous reception. 

• end_set_get() closes a reception setup. 

GA interaction semantics: The behaviors of the GA 

connector roles are specified with a graphical LTS 

representation at the bottom of Figure 5. Precisely, the 

Figure specifies the behaviors that enable to produce 

and consume information to/from the networked 

environment using the connector API. In particular, we 

note that the LTS actions are labeled according to the 

operations of the connector API that they abstract, and 

that ! (resp. ?) denotes an output (resp. input action). 

The production of information is synchronous, although 

space and time decoupling with the consumer is 

possible, depending on the actual parameters of post. 

On the other hand, we distinguish between 

synchronous and asynchronous consumption of 

information. Additionally, we identify two forms of 

asynchronous consumption, depending on whether the 

consumption is in the push (role I) or pull (role II) mode. 

The above presented GA connector type provides 

an abstract union of the base CS, PS and TS 

connector types, thus preserving by construction their 

interaction semantics. We employ this desirable feature 

for enabling interoperability across the CS, PS and TS 

paradigms in the next section. 

3.3. Interoperability Across Interaction Paradigms 

The GA connector glue process must ensure proper 

coordination of semantically matching producers and 

consumers despite heterogeneity of the actual 

interaction paradigms executed by the services. In 

other words, we want to enable a get and a post action 

of GA to coordinate if they semantically match in terms 

of the application semantics they carry although 

mismatching from the standpoint of the interaction 

paradigms they abstract. By its construction, as 

presented in the previous section, GA merges in a 

semantics-preserving way the common high-level 

features of base interaction paradigms. Nevertheless, 

certain semantics are different across paradigms, and, 

in this case, a mapping is required that respects the 

individual semantics as much as possible. The principal 

semantic differences between paradigms are 

concentrated in their applied coupling. Hence, the GA 

glue shall realize the necessary mediation between 

heterogeneous coupling semantics for a piece of data 

to be properly exchanged between the sender (poster) 

and its semantically matching receiver(s) (getter(s)). 

 

Figure 5: GA connector API (top) and interaction semantics (bottom). 

post(coupling, scope, data, lease) 

set_get(coupling, scope, *handle) 

get_async(handle, *callback(*scope, *data)) 

get_sync(handle, policy, *data, timeout) 

end_get_async(handle) 

end_set_get(handle) 
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Based on our definition of coupling, coordination 

may occur only if the related actions of the getter and 

poster intersect in space and time. Overlap in space 

relates to the definition of the respective scopes by the 

getter and poster, which set the peer(s) that may get 

the posted data via the GA connector. As for overlap in 

time, it depends on the time at which the related 

actions are executed by the getter and poster, and the 

associated timeout and lease parameters. Figure 6 

informally depicts the time synchronization constraints 

applying to the coordination semantics implemented by 

the GA glue according to the respective semantics of 

the getter and poster, where the getter applies strong 

coupling and the poster applies each one of the three 

couplings. Since it is not crucial for the purposes of the 

paper, we do not show here the other two cases for the 

getter’s coupling. More precisely in the figure, a getter 

under strong coupling is connected after executing 

get_sync/get_async and before get_sync times out or 

end_get_async is executed (active interval). The getter 

synchronizes successfully in time with a poster under 

strong coupling if the post action is executed inside its 

active interval, since the data expire immediately. In the 

case of a poster under weak coupling, the data are 

maintained for lease time, only if the getter has already 

manifested its interest when the data are posted. 

However, this means again that, for successful 

synchronization, the getter should be inside its active 

interval when the data are posted. Finally, in the case 

of a poster under very weak coupling, the data are 

maintained for lease time anyway. This means that the 

post action may be executed also in advance of the 

getter’s active interval (certainly not after), but in any 

case the posted data should not expire before the 

getter gets activated. 

Based on the key concepts of CAS regarding 

architectural connectors that were introduced in the 

whole Section III, the coordination semantics of GA 

was formalized in [4]. Furthermore, in [23], we 

designed and developed an extended service bus that 

applies the GA abstraction to concretely enable 

interoperability among heterogeneous distributed 

systems. Finally, in [24], we modeled and analyzed 

some of the non-functional semantics of the base 

connectors and the GA connector. The contribution of 

this paper precisely lies in making clear our 

interoperability approach from the software architecture 

point of view.  

4. CHOREOS COORDINATION PROTOCOLS: 
ABSTRACTING CHOREOGRAPHY BEHAVIOR 

Accounting for the definitions of CHOReOS 

component and connector, we conclude the definition 

of CAS by adding the notion of CHOReOS coordination 

protocol that abstracts choreography behavior. 

Specifically, the CHOReOS coordination protocol 

introduces a higher, application-layer connector that 

defines system-wide behavior, based on the 

 

Figure 6: GA coordination semantics (glue with get under string coupling). 
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connection of CHOReOS components through the 

middleware-layer connectors introduced in the previous 

section. 

4.1. Choreography-Based Coordination in the FI 

A choreography can be seen as a network of 

collaborating services, i.e., CHOReOS components, S 

= {S1,…,Sn}, that can simultaneously run. As described 

in Section III, components communicate/interact by 

means of the CHOReOS connectors, which implement 

various communication/interaction paradigms that are 

abstracted by the GA connector type for the sake of 

interoperability in the FI. In this setting, the notion of 

coordination protocol is crucial since, although a given 

set of services, if coordinated in the right way, can be 

used to achieve the specified choreography’s goal and 

requirements, they can completely miss the goal or the 

requirements if coordinated in a different way. In order 

to deal with this problem, we use additional software 

entities and interpose them among the services 

participating to the specified choreography. The intent 

of these additional entities, hereafter referred to as 

Coordination Delegates (CDs), is to coordinate the 

interaction of the participant services (functionally and 

non-functionally abstracted as CHOReOS components) 

in a way that the resulting collaboration complies with 

the desired choreography. This is done by relying on 

the GA connector type, which connects the CHOReOS 

components and enables communication among them. 

Thus, CDs perform “pure coordination”, at application 

layer, by exploiting an LTS-based behavioral 

specification of the participant services (Section II) and 

considering heterogeneous communication already 

mediated by means of the GA connector (middleware 

layer). Moreover, by relying on the service’s functional 

and non-functional abstractions described in Section II, 

possible adaptation at the service interface level is 

already solved. 

In light of several choreography problems discussed 

in the literature [25-29] (just to mention a few) related to 

issues such as conformance check, realizability 

analysis, and realizability enforcement, we consider the 

choreography-based coordination problem as a 

choreography synthesis problem that can be phrased 

as follows: Given a choreography specification C and a 

set of CHOReOS components S = {S1, …, Sn}, derive 

(when possible) a set of coordination delegates CD = 

{CD1, …, CDn} that, after suitably assembled with the 

components in S, constitute a distributed realization of 

C. 

In the next section, we characterize the main 

“ingredients” required to tackle the choreography-

based coordination problem from an architectural point 

of view. That is, we give an overall description of CAS 

by putting its constituent entities all together, i.e., 

CHOReOS components, CHOReOS connectors, and 

CHOReOS coordination delegates; and characterize 

the notion of FI choreography-based coordination. 

Differently from what is done in this paper, our previous 

work in [30-32] addresses the choreography-based 

coordination problem mainly focusing on issues 

concerning the adopted development process [32] and 

the implementation of algorithms needed for distributed 

coordination purposes [30,31], hence completely 

disregarding the software architecture perspective. This 

perspective is crucial since it serves as enabler for the 

work described in [30-32].  

4.2. Abstractions for FI Choreography-Based 
Coordination 

CAS is made of CHOReOS components where 

consumers and providers are composed with (e.g., 

wrapped by) their CDs. A CD is connected to other 

CDs, through CHOReOS connectors, in an 

asynchronous way. Furthermore, CDs can be 

connected to providers/consumers by CHOReOS 

connectors. Figure 7 illustrates an example of a CAS 

architecture. 

Our choreography-based coordination style logically 

distinguishes between (i) standard and (ii) additional 

communication. The former denotes the operations that 

the components perform as described by their interface 

specification. 

 

Figure 7: CAS architecture sample. 

The latter denotes additional information that the 

CDs asynchronously exchange in order to coordinate 

each other. CDs prevent undesired interactions 

(violating the specified choreography) by coordinating 
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standard communication through the exchange of 

additional communication, when needed. 

More specifically, sharing some similarities with 

[29], additional communication serves to keep track of 

the information about the “global state” of the 

coordination protocol (as implied by the specified 

choreography) that each CD can deduce from the 

observed standard communication flow. As better 

explained later, additional communication is exchanged 

only when synchronization is needed, i.e., when there 

is more than one component that is allowed to perform 

some action according to the current global state of the 

choreography model. Note that this limits the overhead 

due to the exchange of additional communication to the 

strictly necessary minimum. 

We do not report the complete formal description of 

the abstractions that we use to characterize and reason 

on the entities of the CAS style. The full description can 

be found in [31,32]. In brief, we adopt an LTS-based 

specification to model the behavior of CHOReOS 

components observable from outside. Transitions are 

labeled with typed operation names so that ?a (resp., 

!a) denotes a provided (resp., required) operation 

named a (see LS in Figure 8a). 

We also use an LTS-based specification of the 

choreography, where the notions of role and operation 

abstract the notions of participant and task, 

respectively, of a BPMN2 choreography specification. 

Role names are used to label transitions in addition to 

operation names (see Figure 8b). 

A choreography LTS LC can be then projected to 

one of its roles, denoted as r(LC), which is obtained by 

replacing every transition where r is neither the 

consumer nor the provider by a -transition. States 

linked by -transitions can be collapsed to a single state 

whose label denotes the set of collapsed states. Figure 

8b shows a Choreography LTS LC, Figure 8c shows its 

projection r1(LC), and Figure 8d shows r1(LC) with 

collapsed states. 

Indeed, as detailed in [30], within CHOReOS such 

LTS-based models are used to discover services 

whose behavior fulfills roles in the choreography. This 

is done by adopting a suitable notion of refinement 

based on trace containment check. For instance, the 

service model shown in Figure 8d refines the projection 

r1(LC), i.e., the service can play r1. 

The goal is to distribute LC in a way that each CD 

knows which operation the supervised component is 

allowed to execute (allowed operations). Allowed 

operations are used by the CDs as a basis for correctly 

synchronizing with each other by exchanging additional 

communication. In other words, CDs interact with each 

other to restrict the components’ standard 

communication by allowing only the part of the 

communication that is correct with respect to LC. 

According to the transitions of LC, we record the 

allowed operations that can be required by the 

component Ci (playing the role ri) from a global state s 

of LC. We also record the other active components in s, 

i.e., the ones that can also require some (possibly 

different) allowed operation from s. Similarly, for each 

allowed operation we record the set of active 

components in the reaching state s , i.e., the ones that 

can require or provide some allowed operation from s . 

Thus, if a component Ci is going to perform an allowed 

operation from the state s of LC, then all the other 

active components in s are blocked by sending a 

blocking message to the corresponding CDs; this is 

needed because otherwise, e.g., two different 

components could simultaneously proceed in two 

different states of LC hence leading to a global state 

that is inconsistent with respect to LC. Once Ci has 

performed the operation, all the components that can 

move in the new state s  of LC are unblocked and they 

are made aware of the new current state s  of LC; this is 

needed because some components that now can move 

could have been previously blocked. It is worth to note 

that, from the current state s, it is sufficient to block 

components only upon required operations. 

Components upon provided operations do not need to 

 

Figure 8: A behavior LTS model (a), a choreography LTS (b), its projection onto r1 (c), with collapsed states (d). 
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be blocked because they are already waiting for the 

operation request. Contrarily, once the new current 

state s  has been reached, components have to be 

unblocked upon both required and provided operations 

because, e.g., a component, that in s  provides an 

allowed operation, might have been blocked in s upon 

some other required operation. 

Blocking and unblocking messages (together with 

acknowledging messages) concern the additional 

communication that is asynchronously exchanged 

among CDs for coordination purposes. It is worth to 

mention that the distribution of LC into the various CDs, 

one for each component, can be efficiently obtained by 

means of a depth-first visit of LC and, hence, its 

computational complexity is polynomial in the number 

of states of LC. This computational complexity reveals 

that the elicitation of the distributed coordination logic 

out of the choreography LTS can be performed for 

large-scale contexts (with respect to the size of the 

choreography LTS). 

As described in [31], within CHOReOS, we have 

implemented the distributed coordination algorithm that 

is performed by the CDs. The algorithm leverages on 

the happened-before relation, partial ordering of events 

and time-stamp method [33]. In this way an ordering 

among dependent blocking and unblocking messages 

is established and starvation problems are addressed. 

In [31], we fully formalize the algorithm, further proving 

its correctness and analyzing the negligible overhead 

due to the exchange of additional communication. 

Illustrative example: Now, by means of a small 

example, we better show how CDs use, at run-time, 

additional communication according to the synthesized 

coordination information, to correctly and distributively 

interact with each other, hence ensuring the behavior 

globally specified by LC. We consider the development 

of a choreography-based travel agency system that 

can be realized by choreographing four services: a 

Booking Agency service, two Flight Booking services, 

and a Hotel Booking service.  

As shown in Figure 9, starting from their initial 

states 0, Booking Agency makes requests to Flight 

Booking 1, Flight Booking 2, and Hotel Booking in order 

to book a flight and a hotel. The agency search for a 

flight by exploiting two different flight booking services. 

As soon as one of the two booking services answers by 

sending flight information (i.e., !flightInfo1 or 

!flightInfo2), the agency cancels the search on the 

other booking service (i.e., !cancel1 or !cancel2). 

 

Figure 10: LFH: a choreography LTS sample. 

The choreography LTS LFH, shown in Figure 10, 

specifies that (i) flight booking has to be performed 

before hotel booking and (ii) only the answer from one 

of the two flight booking services is taken into account. 

Figure 11 shows how Flight Booking 2, playing the role 

fb2, is blocked whenever Flight Booking 1, playing the 

role fb1, is faster in collecting the information to be 

provided to Booking Agency, playing the role ba. 

 

Figure 9: LTSs for travel agency services. 
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The shown scenario concerns an excerpt of the co- 

ordination enforced by the synthesized CDs. It starts 

when the two allowed operations flightInfo1 and 

flightInfo2, required by Flight Booking 1 and Flight 

Booking 2 respectively, concurrently occur while in the 

current state 2 of LFH. At state 2, the timestamps for 

Flight Booking 1 and Flight Booking 2 are 1 and 2, 

respectively. 

5. CONCLUSIONS AND FUTURE WORK 

This paper reports a description of the architectural 

style defined within the CHOReOS EU project, namely 

the CHOReOS Architectural Style (CAS), to 

characterize choreography-based systems in the FI 

hence supporting their development and enactment. 

The main contributions of CAS can be summarized as 

follows: 

• The CHOReOS service abstractions introduced 

in Section II enable sustaining the ultra large 

number of services aggregated in the FI, as well 

as their heterogeneity, in particular considering 

Business and Thing-based services that get 

inter-connected. The CHOReOS service 

abstraction specifically serves de- signing 

abstraction-oriented service bases for the 

support of service discovery and adaptation in 

the FI. 

• The GA connector type that is defined in Section 

III enables revisiting the Enterprise Service Bus 

paradigm to enable cross-paradigm interaction 

and, in particular, interoperability across the 

Business and Thing domains. 

• The formal abstractions for FI choreography-

based coordination elaborated in Section IV 

paves the way for the automated synthesis of 

concrete distributed coordination protocols, from 

abstract choreography specifications, e.g., 

BPMN2 specification, and associated concrete 

services discovered in the FI. 

As a result, CAS revisits the SOA paradigms to 

cope with the FI challenges, i.e., scalability, 

heterogeneity, mobility, and awareness & adaptability. 

CAS has been validated against three industrial use 

cases considered by CHOReOS, namely the 

“Passenger-Friendly Airport”, the “Mobile-enabled 

coordination of people”, and “DynaRoute” (see 

www.choreos.eu for details). Last but not least, the 

CAS specification informed the implementation of a 

supporting Integrated Development and Runtime 

Environment, aka the CHOReOS IDRE, whose 

components are released under open source license 

and promoted by the dedicated OW2 FISSi initiative on 

Future Internet Software Services. See 

https://www.ow2.org/view/Future_Internet for details. 

 

Figure 11: Synthesized choreography-based distributed coordination. 
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As further work, we have identified some pending 

issues among which: accounting for continuous 

interactions, while this paper has concentrated on 

discrete ones; dealing with data-flow coordination, 

while this paper is mainly focused on control-flow 

coordination; and addressing choreography dynamic 

adaptation and evolution.  

In this direction, several challenges, with respect to 

the current state of the art of CHOReOS, need to be 

addressed. Specifically, synthesis techniques are 

needed in order to infer an enhanced collaboration 

logic that, in addition to pure coordination, enables run-

time choreography evolution in response of possible 

adaptations. The choreography synthesis problem is in 

general hard in the sense that not all possible 

collaborations can be effectively realized. Thus, the 

enhanced synthesis techniques we plan to develop in 

the future have to deal with a combination of specific 

choreography or integration patterns that correspond to 

service collaborations tractable via exogenous 

coordination. This approach also allows to produce 

parameterized coordination patterns off line that can 

adapted at run-time by providing dynamically sensed 

data. In particular, enhanced CDs will be interposed 

among the constituent services in order to enforce 

correct coordination logic with respect to the specified 

choreography and, by leveraging modularity, to enable 

dynamic adaptation and evolution according to possible 

changes. In this direction, we will make use of 

dedicated model transformations to generate, out of the 

choreography specification and the participant services 

interaction behavior, a model for each needed CD. The 

aim of an enhanced CD is twofold. On the one hand, it 

precisely describes the complex coordination logic 

implied by the choreography specification, and 

distributes it among the constituent services. On the 

other hand, by “projecting” the goal specification on the 

models of the service interaction behavior, it 

instantiates the inferred adaptation and evolution logic 

into a set of concrete adaptors, one for each 

constituent service, that dynamically and correctly filter 

service behavior in response of changes. All the above 

future issues will be the main subject of study of 

another European project called CHOReVOLUTION
1
 

that basically is a sequel of the CHOReOS project. This 

also means that, within CHOReVOLUTION, some 

                                            

1
CHOReVOLUTION: Automated Synthesis of Dynamic and Secured 

Choreographies for the Future Internet. Call: H2020-ICT-2014-1. Type of 
Action: RIA. Project no: 644178. Duration: 36 months. Start Date: 2015-01-01. 
Requested EU Contribution: 3,057,547.00. 

members of the CHOReOS consortium will continue to 

collaborate on topics related to the automated 

synthesis of dynamic (aka adaptable and evolvable) 

choreographies for the FI. 
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