
14 Global Journal of Advanced Software Engineering, 2014, 1, 14-28

© 2014 Avanti Publishers

An Architectural Style for the Development of Choreographies in
the Future Internet

Dionysis Athanasopoulos1, Marco Autili2,*, Nikolaos Georgantas3, Valérie Issarny3,
Massimo Tivoli2 and Apostolos Zarras4

1
Politecnico di Milano, Italy

2
Università degli Studi di L’Aquila, Italy

3
Inria Paris-Rocquencourt, France

4
University of Ioannina, Greece

Abstract: Accounting for the challenges posed by the Future Internet (FI), we revisit the traditional definitions of

component, connector and coordination protocol, and propose the CHOReOS Architectural Style (CAS) for the
development of choreographies in the FI. Components enable leveraging the diversity of services that integrate in the FI
as well as the ultra large service base envisioned for the FI. Connectors bring together the highly heterogeneous

interaction paradigms that are now used in today’s increasingly complex distributed systems and further support
interoperability across heterogeneous paradigms. Coordination protocols foster choreography-based coordination for the
sake of scalability, while preventing service interactions that would violate a specified choreography. A key aspect of

CAS is to introduce novel abstractions for all its elements, which enable leveraging the wide diversity of the FI, in all its
dimensions of scale, heterogeneity and mobility.

Keywords: Service Composition, Choreography, Synthesis, Distributed Systems, Service Discovery, Service-

oriented Middleware.

1. INTRODUCTION

A software architecture style characterizes the types

of components, connectors, and possibly configura-

tions that serve building a given class of systems [1].

The style elements altogether specify the abstractions

that need to be modeled, from design to implemen-

tation, as well as supported by the runtime to enact the

target systems.

With in the European project CHOReOS

(www.choreos.eu), we leveraged the Service, and

related Service Oriented Architecture (SOA) and Ser-

vice Computing paradigms for the Future Internet (FI).

In other words, networked systems of the FI are

exposed as (software) service providers and/or

consumers (with service prosumer standing for a

service that acts both as a consumer and a provider) in

the networking environment. The service abstraction

specifically serves characterizing functionalities that are

provided and required in the networked environment so

as to enable dynamic lookup and further binding

between matching service consumer and producer.

The SOA style may then be briefly defined as:

• components map to services, which may be

refined into consumer, producer or prosumer

services;

*Address correspondence to this author at the Università degli Studi di
L’Aquila, Italy; Tel: +39 0862 433186; Fax: +39 0862 433131;
E-mail: marco.autili@di.univaq.it

• connectors map to traditional client-service

interaction protocols;

• configurations map to compositions of services

through (service-oriented) connectors, i.e.,

choreography in the most general form, and

orchestration as a specific composition structure

that is commonly adopted in today’s Internet.

The SOA style, as defined above, has led to many

refinements, and further development of associated

middleware technologies. Then, acknowledging the

diversity of services to be composed, the Enterprise

Service Bus (ESB) paradigm has been largely adopted

in SOA, thereby introducing a connector type oriented

toward interoperability across heterogeneous service-

oriented middleware.

While the SOA style is well suited to support the

development of Internet-based distributed systems, it is

largely challenged by the Future Internet, aka FI, that

poses new demands in terms of sustaining the

following “ities” [2].

Scalability: the FI calls for novel service abstractions

that shall serve characterizing and further locating all

the component systems that will get networked at a

massive scale. Scalability further advocates for weakly

coupled interactions. Centralization shall be the

exception, hence calling for choreography-based

service composition.

An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1 15

Heterogeneity: service abstractions are already

much heterogeneous in today’s Internet, where both

SOAP and REST-full services co-exist [3]. They will be

even more so as highly heterogeneous services,

ranging from Business to Thing-based ones, will be

integrated within the FI. The heterogeneity of

networked services further leads to account for various

connector types implementing different interaction

paradigms, as well as for interoperability across

interaction paradigms.

Mobility: mobility directly affects all the architectural

elements, as it calls for system architectures whose

components may be highly volatile and hence requires

dealing with service substitution within composition.

Awareness & adaptability: it must be considered

that services that get composed have not been

designed in conjunction and thus may exhibit

erroneous behavior when choreographed.

Purpose of the Paper: By discussing part of our work

done within the CHOReOS project, the next three

sections define the CHOReOS Architectural Style

(CAS) that we have elaborated to address the above

challenges, and embed a comparison with related

work. Indeed, the CAS definition has been one of the

main outcomes of the CHOReOS project. A complete

formal definition of CAS is provided in [4], while in this

paper, we summarize the CAS definition and do not go

into formal details. However, we strive to keep a clear

description of the key concepts and notions constituting

the CAS.

Specifically, Section II defines CHOReOS service

components in a technology-agnostic way and allows

for abstracting Business as well as Thing-based

services. The main innovation of the section comes

from the definition of new abstractions for services that

enables hierarchical structuring and, hence, scalable

abstraction-oriented service bases.

Section III tackles the issue of interoperability

across heterogeneous interaction paradigms, from

strongly to weakly coupled ones. It introduces: (i) base

connector types that abstract core interaction

paradigms implemented by state-of-the-art middleware

solutions, and (ii) a Generic Application (GA) connector

type that realizes interoperability in a way similar to a

service bus, but across interaction paradigms. The

main contribution of the section lies in enabling cross-

paradigm interoperability, while preserving the

behavioral (at middleware-level) semantics of the

connected components.

Section IV focuses on the formalization of the notion

of CHOReOS coordination protocol that abstracts

choreography behavior. The section defines a specific

configuration to be imposed on the choreography-

based system to suitably coordinate the composed

services, and further enable the automated synthesis of

the coordination protocol. The main novelty of the

section derives from the efficient production of a

decentralized choreographer, while avoiding those

interactions that do not belong to the set of interactions

modeled by the choreography specification, i.e.,

undesired interactions.

Section V concludes and discusses possible future

work.

2. CHOREOS COMPONENTS: ABSTRACTING FI
SERVICES

Dealing with the impact of the FI challenges on

service-oriented components is one of the main issues

dealt with in CAS. Regarding heterogeneity and

mobility, CAS provides a unified formal definition of

services that abstracts details related to the particular

paradigms, standards and technologies on which

services are based and further accounts for the

specificities of Things-based services. An earlier

attempt in this direction was the NEXOF reference

architecture [5]. However, the NEXOF definition of

services is rather informal and it does not account for

services’ behavior. Considering scalability, awareness

& adaptability, CAS formally defines the concept of

service abstractions. They represent groups of

alternative services that provide similar functional and

non-functional properties through different interfaces.

Previous attempts in this direction were represented by

semantic descriptions of services such as DAML-S

(www.ai.sri.com/daml/services/owl-s/) and its

successor OWL-S (www.w3.org/Submission/OWL-S/).

Differently from them, CAS takes one step further since

the CHOReOS service abstractions can be

hierarchically structured.

2.1. Services in the FI

From an architectural point of view, the main

features of components include the components’

interfaces, semantics, constraints and properties [6]. In

CHOReOS, we consider these main features as the

basic constituents of the CHOReOS definition of

services. Still, such a definition shall account for the

heterogeneity of services to be aggregated in the FI,

while acknowledging that services are essentially (if not

uniquely) Web-based at the FI level. However, Web-

16 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Athanasopoulos et al.

based Services are called to evolve to face the FI

challenges when diverse interaction paradigms must

be explicitly accounted for. Moreover, according to the

Internet of Things overall view [7], in the near future it is

expected that an ultra large number of devices will

encompass computing and communication capabilities

that will allow them to interact with their surrounding

environment (including the physical world) and the

inverse.

The SOAP and RESTful paradigms [3] offer two

different alternatives for the realization of Thing-based

services. Specifically, RESTful services are considered

as the preferable approach for the realization of Thing-

based services in the cases where the functionalities

offered by Things are quite simple and atomic, in the

sense that there are no complex conversations

involved between Things and their surrounding

environment [8].

On the other hand, for Things that offer more

complex functionalities, SOAP services are considered

as a better option. Nevertheless, Things in general

have limited computational/communication capabilities

and resources [8]. Consequently, it is expected that

Thing-based services would comply with a limited

subset of standards that can be supported by Things

[9].

Based on the above discussion, within CAS we

consider paradigm-independent definitions of

CHOReOS components, which span Business and

Thing-based services. These definitions concern the

notions of service type, interface, operation, and

service instance.

A service type specifies: (i) the service profile, as a

user-intuitive explanation of the service (e.g., see

DAML/OWL-S/SAWSDL), (ii) the service style, which

can be SOAP or RESTful, and (iii) a set of interfaces

that specify the functionalities provided by the service.

A service interface defines: (i) a set of operations,

that correspond to different functionalities provided

through the interface, (ii) a (optional) behavioral

specification which, independently of specific standards

(e.g., BPEL, WSCL), can be seen abstractly as a

Labeled Transition System (LTS), and (iii) a (optional)

set of constraints related to requirements over the

environment where the interface functionalities

execute.

An operation has input/output parameters and can

optionally specify pre- and post-conditions.

A service instance implements some interfaces, has

an endpoint address plus optionally a behavioral

description (e.g., an LTS) of its interaction protocol, and

a (optional) description of non-functional properties

given in terms of quality indicators, and associated

measures. We can distinguish between runtime quality

indicators (e.g., reliability, availability, reputation, price,

performance), design quality indicators (e.g., different

kinds of cohesion for service interfaces), and physical

properties that typically characterize Thing-based

services. In the following, we use a concrete example

to briefly illustrate the notions given above and refer to

[4] for a complete formalization of them.

Browsing the RemoteMethods registry

(www.remotemethods.com/), we found various services

that allow sending SMS messages to mobile phones.

SMS-TXT is such a service that follows the SOAP

paradigm. In the WSDL specification of the service

interface we have a single operation named SendSms.

The operation accepts as input message, five string

parameters. The output message of the operation is

empty. With respect to CAS, the service interface is

specified as showed in the tabular representation given

in Figure 1a. The interface does not include profile

specifications since there is no such information

available in the registry where the service was found.

For the same reason, there are no behavioral

specifications and constraints.

An example of the CHOReOS representation of a

RESTful service interface is given in Figure 1b. The

example is based on the Yahoo news search

application [10]. This application consists of a single

resource that provides a single method called search.

Consequently, in the CHOReOS representation, we

have an interface that defines a corresponding

operation.

Finally, another example of an SMS service

interface, GlobalSMSPro, is given in Figure 1c. It also

follows the SOAP paradigm and offers a more complex

interface. As in the previous case, the interface does

not include information regarding semantics, behavior,

constraints and non-functional properties, since there is

no such information available in the registry where the

service was found. The interface consists of 6

operations. The SendMessage and SendMessages

Bulk operations that are given in Figure 1c are the

ones that actually send SMS messages to mobile

phones, while the rest of the operations (omitted in

Figure 1c for reasons of simplicity) serve for monitoring

the status of SMS messages, or finding information

An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1 17

concerning different country codes, network standards,

etc.

2.2. Abstractions for FI Services

CAS provides formally grounded service

abstractions that can be hierarchically structured.

Moreover, CAS distinguishes between two different

types of interrelated service abstractions: functional

(resp., non-functional) abstractions that represent

groups of services that offer similar functional (resp.,

non-functional) properties. The CAS service

abstractions are considered as core elements that are

mined from services that become available over time

and assist the task of service discovery and the

subsequent tasks of service composition and

adaptation. The discovery process amounts to: (i)

finding a functional abstraction that satisfies any or

most of the functional requirements; (ii) returning the

matching functional abstraction along with the services

that are described by it. It may return too many

functionally equivalent services, thus complicating the

selection of the appropriate service. This issue

becomes even more important considering that the

actual service selection may take place at runtime.

Hence, we need to provide extra selection criteria; we

do this by utilizing the non-functional properties of

services (e.g., response time, availability, throughput

etc.). So, the selection of an actual service from the set

of services elicited in the previous step consists of: (i)

browsing or searching for the suitable non-functional

abstraction that meets certain non-functional

requirements; (ii) selecting any of the services of the

selected non-functional abstraction.

Getting back to our example of Figure 1, an

interesting observation is that although these two SMS

services come from two different providers their

interfaces offer at least a pair of very similar operations.

Specifically, the SendSms operation of SMS-TXT and

the SendMessage operation of GlobalSMSPro realize

semantically compatible functionalities (i.e., sending an

SMS message) and further have very similar input

parameters. This observation points out an opportunity

for defining a service abstraction that represents these

two services.

Figure 1: SMS-TXT (a), Yahoo newSearch (b), GlobalSMSPro (c).

18 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Athanasopoulos et al.

A possible interface for this abstraction is given in

Figure 2. The abstract service interface that represents

the interfaces of the two services comprises a single

operation named Send and requires 4 string

parameters. The mapping of this abstract interface to

the interfaces of the two services is rather

straightforward and is given in Figure 3a and b. Finally,

Figure 3c gives an example of a mapping between the

input parameters of the abstract operation Send and

the input parameters of the SendSms operation.

Although the definition of a functional abstraction

seems trivial for the two services of our example, in the

general case, where the given set of available services

is large and the services much more complex, this task

is challenging. To deal with this challenge in [11] we

proposed a hierarchical clustering approach for mining

functional service abstractions from sets of existing

services, while in [12] we elaborated on a clustering

approach that mines non-functional service

abstractions. In the context of CHOReOS, we

employed the concept of service abstractions for

indexing service specifications in a service base and

we demonstrated the benefits of this indexing method

in terms of service querying execution time in large

service base instances with up to 10
7
 service

specifications [12]. The main outcome was that

querying over service abstractions is much (80% to

90% in our experimental settings) faster than querying

over concrete service specifications. On the less bright

side, the query execution time speedup may come at

the expense of recall [13]. In the context of CHOReOS,

we further employed the concept of service abstraction

for the development of a reflective service adaptation

mechanism that allows to substitute services that are

represented by the same service abstraction [13].

3. CHOREOS CONNECTORS: INTEROPERABILITY
IN THE FI

Complex distributed applications in the FI (including

the Internet of Things constituent) will be to a large

extent based on the open integration of extremely

heterogeneous systems, such as lightweight

Figure 2: Example of a service functional abstraction.

Figure 3: Operation (a,b) and parameter (c) mappings.

An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1 19

embedded systems (e.g., sensors, actuators and

networks of them), mobile systems (e.g., smartphone

applications), and resource-rich IT systems (e.g.,

systems hosted on enterprise servers and Cloud

infrastructures). These heterogeneous system domains

differ significantly in terms of interaction paradigms,

communication protocols, and data representation

models, which are most often provided by supporting

middleware platforms. In particular with regard to

middleware-supported interactions, the client/server

(CS), publish/subscribe (PS), and tuple space (TS)

paradigms are among the most widely employed ones

today, with numerous related middleware platforms,

such as: Web Services, Java RMI for CS; WS-

Eventing, JMS, SIENA for PS [14]; and JavaSpaces,

Lime for TS [15]. In light of the above, the connector

types associated with CAS shall: (i) leverage the

diversity of interaction paradigms associated with

today’s and future distributed systems, as well as (ii)

enable cross-paradigm interaction to sustain

interoperability in the highly heterogeneous FI.

As surveyed in [16,17], existing cross-domain

interoperability efforts are based on, e.g., bridging

communication protocols [18], wrapping systems

behind standard technology interfaces [19], and/or

providing common API abstractions [20]. In particular,

such techniques have been applied by the two core

system integration paradigms adopted by CHOReOS,

that is, SOA and ESB [18]. However, state of the art

interoperability efforts commonly cover part of the

heterogeneity issues (regarding interaction,

communication, data) and are applicable to specific

cases [21]. In particular, existing solutions do not or

only poorly address interaction paradigm

interoperability. Specifically, SOA and ESB are

primarily based on the CS paradigm. Even if

extensions have been proposed, such as event-driven

SOA or ESB supporting the PS paradigm [18], these

remain partial. This means that systems integrated via

SOA and ESB solutions have their interaction

semantics transformed to the CS paradigm. Then,

potential loss of interaction semantics can result in

suboptimal or even problematic system integration.

To overcome the limitation of today’s ESB-based

connectors for cross-domain interoperability in the FI,

we introduce a new connector type, called Generic

Application (GA) connector. GA relies on the service

bus paradigm, but, in contrast to classical ESB

connectors, it particularly addresses interaction

paradigm interoperability by paying special attention to

the preservation – as much as possible – of semantics

when bridging across heterogeneous paradigms. GA is

based on the abstraction and semantics-preserving

merging of the common high-level features of base

interaction paradigms. This solution serves rethinking

the typical SOA- and ESB- based composition of

heterogeneous distributed systems so as to meet the

requirements of the FI.

Figure 4 depicts our overall approach to

interoperability across interaction paradigms. While

networked services rely on legacy protocols and hence

use their associated API to interact with their

environment, these legacy protocols are mapped onto

corresponding primitives of the GA connector. Then,

internally to the GA connector, possible architectural

mismatches are solved based on the pairwise matching

of GA’s input primitives with GA’s output primitives.

3.1. Base Connector Types

Before introducing GA, we provide a brief

description of the base connectors.

The CS connector type integrates a wide range of

semantics, covering both the direct (i.e., non queue-

based) messaging and remote operation call

paradigms. It also enables both blocking and non-

blocking reception semantics. CS imposes space

coupling between the two interacting entities, i.e., at

least the sending entity must know the receiving entity

Figure 4: GA-based connector interoperability.

20 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Athanasopoulos et al.

and hold a reference of it, as well as time coupling, i.e.,

both entities must be connected at the time of the

interaction. A message carrying data is sent directly

from the sending entity to the receiving entity.

In the PS paradigm, multiple peer entities interact

via an intermediate broker entity. Publishers produce

events carrying data, which are received by peers that

have previously subscribed for receiving the specific

events. The PS connector type abstracts in a

comprehensive way the different types of

publish/subscribe systems, such as queue-, topic- and

content-based systems [22]. It further enables rich

reception semantics: synchronous pull by the

subscriber, which may be blocking or non-blocking, or

asynchronous push by the broker. PS enables space

decoupling between interacting peers: peers do not

know each other; with the exception of queue-based

PS, where at least the publisher holds a reference of

the subscriber. Moreover, PS enables time decoupling:

peers do not need to be present at the same time,

subscribers maybe disconnected at the time of the

interaction; they can receive the pending events when

reconnected. The broker maintains an event until all

related subscribers have received it or until the event

expires.

In the TS paradigm abstracted by the TS connector

type, multiple peer entities interact via a shared data

space. Data take the form of tuples; a tuple is an

ordered list of typed elements. Peers can post data into

the space and also synchronously retrieve data from it,

either by taking a copy or removing the data. Data are

retrieved by matching based on a tuple template, which

may define values or expressions for some of the

elements. Bulk primitives [15] enable retrieving all the

matching tuples. Peers can alternatively set up a

callback function that is triggered asynchronously by

the data space when matching data appear. This call

does not carry the data; the action of taking or reading

the data should be executed by the peer. TS enables

both space and time decoupling between interacting

peers. Nevertheless, TS has a number of specifics.

Peers have access to a single, commonly shared copy

of the data. Also, peers do not need to subscribe for

data, they can retrieve data spontaneously and at any

time. The data space maintains data until they are

removed by some peer or until the data expire.

Additionally, concurrency semantics of the data space

are non-deterministic: among a number of peers trying

to access the data concurrently, the order is

determined arbitrarily.

3.2. Generic Application Connector Type

We now introduce the CHOReOS Generic

Application (GA) connector type. Our objective is to

devise a single generic connector that comprehensively

incorporates the end-to-end interaction semantics of

application entities that employ any of the three above

base, i.e., CS, PS and TS, middleware connectors.

This leads us to identify two principal high-level

primitives for the GA connector enabling service

interaction with the environment:

1) A post() primitive employed by a peer for sending

data to one or more other peers (i.e., production of

information), where data may represent CS messages,

PS events, or TS tuples. For example, a PS publish()

primitive can be abstracted by a post().

2) A get() primitive employed by a peer for receiving

data (i.e., consumption of information).

Then, following the definition of the base connector

types, a producer/post - consumer/get end-to-end

interaction may be characterized by one of the

following three types of coupling: strong coupling

corresponding to the CS paradigm; weak coupling for

PS; or very weak coupling for TS.

GA connector API: The complete set of GA primitives

is given at the top of Figure 5, where we have applied a

pseudo C-like syntax. They are defined as follows:

• post() produces data in the networking

environment according to the semantics set by

coupling (i.e., strong, weak, very weak as

defined above). We introduce the explicit

scoping parameter scope to generalize

addressing for the different types of coupling.

Hence, scope may represent: the address and

message/operation qualifier of a CS receiving

entity; the address and event qualifier of a PS

broker; or the address and tuple qualifier for a

TS tuplespace. lease determines the lifetime of

the data before their expiration.

• set_get() sets up reception resources at the GA

connector. handle is returned by the connector

and serves identifying the reception setup.

• get_async() enables asynchronous reception of

data via a callback called by the connector when

data are ready. scope may additionally be

returned by the callback to identify the sending

entity.

An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1 21

• get_sync() executes synchronous (blocking)

reception of data with a timeout. We introduce

policy to specialize this primitive in the case of

very weak coupling (TS paradigm). Thus, policy

may be remove, copy, remove_all, copy_all,

which correspond to the various TS data retrieval

fashions. For strong or weak coupling, policy is

remove by default.

• end_get_async() ends asynchronous reception.

• end_set_get() closes a reception setup.

GA interaction semantics: The behaviors of the GA

connector roles are specified with a graphical LTS

representation at the bottom of Figure 5. Precisely, the

Figure specifies the behaviors that enable to produce

and consume information to/from the networked

environment using the connector API. In particular, we

note that the LTS actions are labeled according to the

operations of the connector API that they abstract, and

that ! (resp. ?) denotes an output (resp. input action).

The production of information is synchronous, although

space and time decoupling with the consumer is

possible, depending on the actual parameters of post.

On the other hand, we distinguish between

synchronous and asynchronous consumption of

information. Additionally, we identify two forms of

asynchronous consumption, depending on whether the

consumption is in the push (role I) or pull (role II) mode.

The above presented GA connector type provides

an abstract union of the base CS, PS and TS

connector types, thus preserving by construction their

interaction semantics. We employ this desirable feature

for enabling interoperability across the CS, PS and TS

paradigms in the next section.

3.3. Interoperability Across Interaction Paradigms

The GA connector glue process must ensure proper

coordination of semantically matching producers and

consumers despite heterogeneity of the actual

interaction paradigms executed by the services. In

other words, we want to enable a get and a post action

of GA to coordinate if they semantically match in terms

of the application semantics they carry although

mismatching from the standpoint of the interaction

paradigms they abstract. By its construction, as

presented in the previous section, GA merges in a

semantics-preserving way the common high-level

features of base interaction paradigms. Nevertheless,

certain semantics are different across paradigms, and,

in this case, a mapping is required that respects the

individual semantics as much as possible. The principal

semantic differences between paradigms are

concentrated in their applied coupling. Hence, the GA

glue shall realize the necessary mediation between

heterogeneous coupling semantics for a piece of data

to be properly exchanged between the sender (poster)

and its semantically matching receiver(s) (getter(s)).

Figure 5: GA connector API (top) and interaction semantics (bottom).

post(coupling, scope, data, lease)

set_get(coupling, scope, *handle)

get_async(handle, *callback(*scope, *data))

get_sync(handle, policy, *data, timeout)

end_get_async(handle)

end_set_get(handle)

22 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Athanasopoulos et al.

Based on our definition of coupling, coordination

may occur only if the related actions of the getter and

poster intersect in space and time. Overlap in space

relates to the definition of the respective scopes by the

getter and poster, which set the peer(s) that may get

the posted data via the GA connector. As for overlap in

time, it depends on the time at which the related

actions are executed by the getter and poster, and the

associated timeout and lease parameters. Figure 6

informally depicts the time synchronization constraints

applying to the coordination semantics implemented by

the GA glue according to the respective semantics of

the getter and poster, where the getter applies strong

coupling and the poster applies each one of the three

couplings. Since it is not crucial for the purposes of the

paper, we do not show here the other two cases for the

getter’s coupling. More precisely in the figure, a getter

under strong coupling is connected after executing

get_sync/get_async and before get_sync times out or

end_get_async is executed (active interval). The getter

synchronizes successfully in time with a poster under

strong coupling if the post action is executed inside its

active interval, since the data expire immediately. In the

case of a poster under weak coupling, the data are

maintained for lease time, only if the getter has already

manifested its interest when the data are posted.

However, this means again that, for successful

synchronization, the getter should be inside its active

interval when the data are posted. Finally, in the case

of a poster under very weak coupling, the data are

maintained for lease time anyway. This means that the

post action may be executed also in advance of the

getter’s active interval (certainly not after), but in any

case the posted data should not expire before the

getter gets activated.

Based on the key concepts of CAS regarding

architectural connectors that were introduced in the

whole Section III, the coordination semantics of GA

was formalized in [4]. Furthermore, in [23], we

designed and developed an extended service bus that

applies the GA abstraction to concretely enable

interoperability among heterogeneous distributed

systems. Finally, in [24], we modeled and analyzed

some of the non-functional semantics of the base

connectors and the GA connector. The contribution of

this paper precisely lies in making clear our

interoperability approach from the software architecture

point of view.

4. CHOREOS COORDINATION PROTOCOLS:
ABSTRACTING CHOREOGRAPHY BEHAVIOR

Accounting for the definitions of CHOReOS

component and connector, we conclude the definition

of CAS by adding the notion of CHOReOS coordination

protocol that abstracts choreography behavior.

Specifically, the CHOReOS coordination protocol

introduces a higher, application-layer connector that

defines system-wide behavior, based on the

Figure 6: GA coordination semantics (glue with get under string coupling).

An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1 23

connection of CHOReOS components through the

middleware-layer connectors introduced in the previous

section.

4.1. Choreography-Based Coordination in the FI

A choreography can be seen as a network of

collaborating services, i.e., CHOReOS components, S

= {S1,…,Sn}, that can simultaneously run. As described

in Section III, components communicate/interact by

means of the CHOReOS connectors, which implement

various communication/interaction paradigms that are

abstracted by the GA connector type for the sake of

interoperability in the FI. In this setting, the notion of

coordination protocol is crucial since, although a given

set of services, if coordinated in the right way, can be

used to achieve the specified choreography’s goal and

requirements, they can completely miss the goal or the

requirements if coordinated in a different way. In order

to deal with this problem, we use additional software

entities and interpose them among the services

participating to the specified choreography. The intent

of these additional entities, hereafter referred to as

Coordination Delegates (CDs), is to coordinate the

interaction of the participant services (functionally and

non-functionally abstracted as CHOReOS components)

in a way that the resulting collaboration complies with

the desired choreography. This is done by relying on

the GA connector type, which connects the CHOReOS

components and enables communication among them.

Thus, CDs perform “pure coordination”, at application

layer, by exploiting an LTS-based behavioral

specification of the participant services (Section II) and

considering heterogeneous communication already

mediated by means of the GA connector (middleware

layer). Moreover, by relying on the service’s functional

and non-functional abstractions described in Section II,

possible adaptation at the service interface level is

already solved.

In light of several choreography problems discussed

in the literature [25-29] (just to mention a few) related to

issues such as conformance check, realizability

analysis, and realizability enforcement, we consider the

choreography-based coordination problem as a

choreography synthesis problem that can be phrased

as follows: Given a choreography specification C and a

set of CHOReOS components S = {S1, …, Sn}, derive

(when possible) a set of coordination delegates CD =

{CD1, …, CDn} that, after suitably assembled with the

components in S, constitute a distributed realization of

C.

In the next section, we characterize the main

“ingredients” required to tackle the choreography-

based coordination problem from an architectural point

of view. That is, we give an overall description of CAS

by putting its constituent entities all together, i.e.,

CHOReOS components, CHOReOS connectors, and

CHOReOS coordination delegates; and characterize

the notion of FI choreography-based coordination.

Differently from what is done in this paper, our previous

work in [30-32] addresses the choreography-based

coordination problem mainly focusing on issues

concerning the adopted development process [32] and

the implementation of algorithms needed for distributed

coordination purposes [30,31], hence completely

disregarding the software architecture perspective. This

perspective is crucial since it serves as enabler for the

work described in [30-32].

4.2. Abstractions for FI Choreography-Based
Coordination

CAS is made of CHOReOS components where

consumers and providers are composed with (e.g.,

wrapped by) their CDs. A CD is connected to other

CDs, through CHOReOS connectors, in an

asynchronous way. Furthermore, CDs can be

connected to providers/consumers by CHOReOS

connectors. Figure 7 illustrates an example of a CAS

architecture.

Our choreography-based coordination style logically

distinguishes between (i) standard and (ii) additional

communication. The former denotes the operations that

the components perform as described by their interface

specification.

Figure 7: CAS architecture sample.

The latter denotes additional information that the

CDs asynchronously exchange in order to coordinate

each other. CDs prevent undesired interactions

(violating the specified choreography) by coordinating

24 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Athanasopoulos et al.

standard communication through the exchange of

additional communication, when needed.

More specifically, sharing some similarities with

[29], additional communication serves to keep track of

the information about the “global state” of the

coordination protocol (as implied by the specified

choreography) that each CD can deduce from the

observed standard communication flow. As better

explained later, additional communication is exchanged

only when synchronization is needed, i.e., when there

is more than one component that is allowed to perform

some action according to the current global state of the

choreography model. Note that this limits the overhead

due to the exchange of additional communication to the

strictly necessary minimum.

We do not report the complete formal description of

the abstractions that we use to characterize and reason

on the entities of the CAS style. The full description can

be found in [31,32]. In brief, we adopt an LTS-based

specification to model the behavior of CHOReOS

components observable from outside. Transitions are

labeled with typed operation names so that ?a (resp.,

!a) denotes a provided (resp., required) operation

named a (see LS in Figure 8a).

We also use an LTS-based specification of the

choreography, where the notions of role and operation

abstract the notions of participant and task,

respectively, of a BPMN2 choreography specification.

Role names are used to label transitions in addition to

operation names (see Figure 8b).

A choreography LTS LC can be then projected to

one of its roles, denoted as r(LC), which is obtained by

replacing every transition where r is neither the

consumer nor the provider by a -transition. States

linked by -transitions can be collapsed to a single state

whose label denotes the set of collapsed states. Figure

8b shows a Choreography LTS LC, Figure 8c shows its

projection r1(LC), and Figure 8d shows r1(LC) with

collapsed states.

Indeed, as detailed in [30], within CHOReOS such

LTS-based models are used to discover services

whose behavior fulfills roles in the choreography. This

is done by adopting a suitable notion of refinement

based on trace containment check. For instance, the

service model shown in Figure 8d refines the projection

r1(LC), i.e., the service can play r1.

The goal is to distribute LC in a way that each CD

knows which operation the supervised component is

allowed to execute (allowed operations). Allowed

operations are used by the CDs as a basis for correctly

synchronizing with each other by exchanging additional

communication. In other words, CDs interact with each

other to restrict the components’ standard

communication by allowing only the part of the

communication that is correct with respect to LC.

According to the transitions of LC, we record the

allowed operations that can be required by the

component Ci (playing the role ri) from a global state s

of LC. We also record the other active components in s,

i.e., the ones that can also require some (possibly

different) allowed operation from s. Similarly, for each

allowed operation we record the set of active

components in the reaching state s , i.e., the ones that

can require or provide some allowed operation from s .

Thus, if a component Ci is going to perform an allowed

operation from the state s of LC, then all the other

active components in s are blocked by sending a

blocking message to the corresponding CDs; this is

needed because otherwise, e.g., two different

components could simultaneously proceed in two

different states of LC hence leading to a global state

that is inconsistent with respect to LC. Once Ci has

performed the operation, all the components that can

move in the new state s of LC are unblocked and they

are made aware of the new current state s of LC; this is

needed because some components that now can move

could have been previously blocked. It is worth to note

that, from the current state s, it is sufficient to block

components only upon required operations.

Components upon provided operations do not need to

Figure 8: A behavior LTS model (a), a choreography LTS (b), its projection onto r1 (c), with collapsed states (d).

An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1 25

be blocked because they are already waiting for the

operation request. Contrarily, once the new current

state s has been reached, components have to be

unblocked upon both required and provided operations

because, e.g., a component, that in s provides an

allowed operation, might have been blocked in s upon

some other required operation.

Blocking and unblocking messages (together with

acknowledging messages) concern the additional

communication that is asynchronously exchanged

among CDs for coordination purposes. It is worth to

mention that the distribution of LC into the various CDs,

one for each component, can be efficiently obtained by

means of a depth-first visit of LC and, hence, its

computational complexity is polynomial in the number

of states of LC. This computational complexity reveals

that the elicitation of the distributed coordination logic

out of the choreography LTS can be performed for

large-scale contexts (with respect to the size of the

choreography LTS).

As described in [31], within CHOReOS, we have

implemented the distributed coordination algorithm that

is performed by the CDs. The algorithm leverages on

the happened-before relation, partial ordering of events

and time-stamp method [33]. In this way an ordering

among dependent blocking and unblocking messages

is established and starvation problems are addressed.

In [31], we fully formalize the algorithm, further proving

its correctness and analyzing the negligible overhead

due to the exchange of additional communication.

Illustrative example: Now, by means of a small

example, we better show how CDs use, at run-time,

additional communication according to the synthesized

coordination information, to correctly and distributively

interact with each other, hence ensuring the behavior

globally specified by LC. We consider the development

of a choreography-based travel agency system that

can be realized by choreographing four services: a

Booking Agency service, two Flight Booking services,

and a Hotel Booking service.

As shown in Figure 9, starting from their initial

states 0, Booking Agency makes requests to Flight

Booking 1, Flight Booking 2, and Hotel Booking in order

to book a flight and a hotel. The agency search for a

flight by exploiting two different flight booking services.

As soon as one of the two booking services answers by

sending flight information (i.e., !flightInfo1 or

!flightInfo2), the agency cancels the search on the

other booking service (i.e., !cancel1 or !cancel2).

Figure 10: LFH: a choreography LTS sample.

The choreography LTS LFH, shown in Figure 10,

specifies that (i) flight booking has to be performed

before hotel booking and (ii) only the answer from one

of the two flight booking services is taken into account.

Figure 11 shows how Flight Booking 2, playing the role

fb2, is blocked whenever Flight Booking 1, playing the

role fb1, is faster in collecting the information to be

provided to Booking Agency, playing the role ba.

Figure 9: LTSs for travel agency services.

26 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Athanasopoulos et al.

The shown scenario concerns an excerpt of the co-

ordination enforced by the synthesized CDs. It starts

when the two allowed operations flightInfo1 and

flightInfo2, required by Flight Booking 1 and Flight

Booking 2 respectively, concurrently occur while in the

current state 2 of LFH. At state 2, the timestamps for

Flight Booking 1 and Flight Booking 2 are 1 and 2,

respectively.

5. CONCLUSIONS AND FUTURE WORK

This paper reports a description of the architectural

style defined within the CHOReOS EU project, namely

the CHOReOS Architectural Style (CAS), to

characterize choreography-based systems in the FI

hence supporting their development and enactment.

The main contributions of CAS can be summarized as

follows:

• The CHOReOS service abstractions introduced

in Section II enable sustaining the ultra large

number of services aggregated in the FI, as well

as their heterogeneity, in particular considering

Business and Thing-based services that get

inter-connected. The CHOReOS service

abstraction specifically serves de- signing

abstraction-oriented service bases for the

support of service discovery and adaptation in

the FI.

• The GA connector type that is defined in Section

III enables revisiting the Enterprise Service Bus

paradigm to enable cross-paradigm interaction

and, in particular, interoperability across the

Business and Thing domains.

• The formal abstractions for FI choreography-

based coordination elaborated in Section IV

paves the way for the automated synthesis of

concrete distributed coordination protocols, from

abstract choreography specifications, e.g.,

BPMN2 specification, and associated concrete

services discovered in the FI.

As a result, CAS revisits the SOA paradigms to

cope with the FI challenges, i.e., scalability,

heterogeneity, mobility, and awareness & adaptability.

CAS has been validated against three industrial use

cases considered by CHOReOS, namely the

“Passenger-Friendly Airport”, the “Mobile-enabled

coordination of people”, and “DynaRoute” (see

www.choreos.eu for details). Last but not least, the

CAS specification informed the implementation of a

supporting Integrated Development and Runtime

Environment, aka the CHOReOS IDRE, whose

components are released under open source license

and promoted by the dedicated OW2 FISSi initiative on

Future Internet Software Services. See

https://www.ow2.org/view/Future_Internet for details.

Figure 11: Synthesized choreography-based distributed coordination.

An Architectural Style for the Development of Choreographies Global Journal of Advanced Software Engineering, 2014, Vol. 1 27

As further work, we have identified some pending

issues among which: accounting for continuous

interactions, while this paper has concentrated on

discrete ones; dealing with data-flow coordination,

while this paper is mainly focused on control-flow

coordination; and addressing choreography dynamic

adaptation and evolution.

In this direction, several challenges, with respect to

the current state of the art of CHOReOS, need to be

addressed. Specifically, synthesis techniques are

needed in order to infer an enhanced collaboration

logic that, in addition to pure coordination, enables run-

time choreography evolution in response of possible

adaptations. The choreography synthesis problem is in

general hard in the sense that not all possible

collaborations can be effectively realized. Thus, the

enhanced synthesis techniques we plan to develop in

the future have to deal with a combination of specific

choreography or integration patterns that correspond to

service collaborations tractable via exogenous

coordination. This approach also allows to produce

parameterized coordination patterns off line that can

adapted at run-time by providing dynamically sensed

data. In particular, enhanced CDs will be interposed

among the constituent services in order to enforce

correct coordination logic with respect to the specified

choreography and, by leveraging modularity, to enable

dynamic adaptation and evolution according to possible

changes. In this direction, we will make use of

dedicated model transformations to generate, out of the

choreography specification and the participant services

interaction behavior, a model for each needed CD. The

aim of an enhanced CD is twofold. On the one hand, it

precisely describes the complex coordination logic

implied by the choreography specification, and

distributes it among the constituent services. On the

other hand, by “projecting” the goal specification on the

models of the service interaction behavior, it

instantiates the inferred adaptation and evolution logic

into a set of concrete adaptors, one for each

constituent service, that dynamically and correctly filter

service behavior in response of changes. All the above

future issues will be the main subject of study of

another European project called CHOReVOLUTION
1

that basically is a sequel of the CHOReOS project. This

also means that, within CHOReVOLUTION, some

1
CHOReVOLUTION: Automated Synthesis of Dynamic and Secured

Choreographies for the Future Internet. Call: H2020-ICT-2014-1. Type of
Action: RIA. Project no: 644178. Duration: 36 months. Start Date: 2015-01-01.
Requested EU Contribution: 3,057,547.00.

members of the CHOReOS consortium will continue to

collaborate on topics related to the automated

synthesis of dynamic (aka adaptable and evolvable)

choreographies for the FI.

ACKNOWLEDGEMENTS

This work was partly supported by the European

Community’s FP7/2007-2013 under Grant Agreement

257178 (project CHOReOS - www.choreos.eu).

REFERENCES

[1] Shaw M, Garlan D. Software architecture: perspectives on an
emerging discipline. Prentice Hall 1996.

[2] Issarny V, Georgantas N, Hachem S, Zarras A, Vassiliadis
P. Autili M, MA Gerosa A, Hamida B. Service-oriented

middleware for the Future Internet: state of the art and
research directions. J. Internet Services and Applications
2011; 2(1): 23-45.
http://dx.doi.org/10.1007/s13174-011-0021-3

[3] Pautasso C, Zimmermann O, Leymann F. Restful Web

Services vs. big Web Services: Making the Right
Architectural Decision. In Proceedings of the 17th IEEE
International Conference on World Wide Web 2008; 805-814.
http://dx.doi.org/10.1145/1367497.1367606

[4] CHOReOS Project. Final CHOReOS Architectural Style and
its Relation with the CHOReOS Development Process and
IDRE - Deliverable D1.4b. September 2011.

[5] NEXOF-RA Project. The NEXOF-RA Ref. Model v3.
www.nexofra.eu.

[6] Medvidovic N, Taylor R. A classification and comparison

framework for software architecture description languages.
TSE 2000; 26(1).

[7] Weber RH, Weber R. Internet of Things. Springer 2010.

[8] Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D.
Interacting with the SOA-based Internet of Things: Discovery
query selection and on-demand provisioning of web services.
TSC 2010; 3.

[9] Jammes F, Smit H. Service-oriented paradigms in industrial
automation. TII 2005; 1(1).

[10] W3C. Web application description language. Tech Rep 2009.
http://www.w3. org/Submission/wadl/.

[11] Athanasopoulos D, Zarras A, Vassiliadis P. Service Selection
for Happy Users: Making User-Intuitive Quality Abstractions.
In Proceedings of the 20th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE) 2012; 32-36.

[12] CHOReOS Project. ntegrated CHOReOS Middleware -

Enabling Large-Scale, QoS-Aware Adaptive Choreographies
D3. 3. September 2013.

[13] CHOReOS Project. CHOReOS Dynamic Development
Process: Methods and Tools- Deliverable D2.3. September
2013.

[14] Carzaniga A, Wolf A. Content-based Networking: A New
Communication Infrastructure. LNCS 2002.

[15] Murphy AL, Picco GP, Roman GC. LIME: A Coordination
Model and Middleware Supporting Mobility of Hosts and
Agents. TOSEM 2006; 15(3).

[16] Issarny V, Bennaceur A, Bromberg YD. Middleware- layer
connector synthesis: Beyond state of the art in middle- ware
interoperability. in SFM 2011; 217-255.

[17] CHOReOS Project. CHOReOS State of the Art, Baseline and
Beyond - Deliverable D1.1. December 2010.

28 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Athanasopoulos et al.

[18] Papazoglou MP, Heuvel WJ. Service oriented architectures:

approaches, technologies and research issues. The VLDB J
2007; 16.

[19] Avilés-López E, García-Macías J. TinySOA: a Service-
oriented Architecture for Wireless Sensor Networks. Service
Oriented Computing and Applications 2009; 3(2): 99-108.
http://dx.doi.org/10.1007/s11761-009-0043-x

[20] Ceriotti M, Murphy AL, Picco GP. Data shar- ing vs. message
passing: Synergy or incompatibility?: An implementation-
driven case study. in SAC ’08: Proceedings of the 2008 ACM

symposium on Applied computing. New York NY USA: ACM
2008; 100-107.

[21] Blair G, Bennaceur A, Georgantas G, Grace P, Issarny V,
Nundloll V, Paolucci M. The Role of Ontologies in Emergent
Middleware: Supporting Interoperability in Complex
Distributed Systems. in Middleware 2011.

[22] Eugster, Patrick Th, Felber, Pascal A, Guerraoui, Rachid,
Kermarrec, Anne-Marie. The many faces of
publish/subscribe. ACM Comput Surv 2003; 35(2): 114-131.
http://dx.doi.org/10.1145/857076.857078

[23] Georgantas N, Bouloukakis G, Beauche S, Issarny V.

Service-oriented Distributed Applications in the Future
Internet: The Case for Interaction Paradigm Interoperability.
In European Conference on Service-Oriented and Cloud

Computing (ESOCC) 2013.
http://dx.doi.org/10.1007/978-3-642-40651-5_11

[24] Kattepur A, Georgantas N, Issarny V. QoS Analysis in
Heterogeneous Choreography Interactions, in 11th
International Conference on Service Oriented Computing

(ICSOC). Berlin, Germany. December 2013.
http://dx.doi.org/10.1007/978-3-642-45005-1_3

[25] Marconi A, Pistore M, Traverso P. Automated composition of

web services: the astro approach. IEEE Data Eng. Bull 2008;
31:(3).

[26] Melliti T, Poizat P, Mokhtar SB. Distributed be- havioural
adaptation for the automatic composition of seman- tic
services. in FASE 2008.

[27] Ben S, Mokhtar N, Georgantas, Issarny V. COCOA:

Conversation-based service composition in pervasive
computing environments with QoS support. JSS 2007; 80.

[28] Salaün G. Generation of service wrapper protocols from
choreography specifications. In SEFM 2008.

[29] Basu S, Bultan T. Choreography conformance via
synchronizability. in WWW, 2011.

[30] Autili M, Inverardi P, Tivoli M. Automated Synthesis of
Service Choreographies. IEEE SOFTWARE. Special Issue

on Software Engineering for Internet Computing:
Internetware and Beyond 2014 (to appear).

[31] Autili M, Tivoli M. Distributed Enforcement of Service
Choreographies, in: 13th International Workshop on

Foundations of Coordination Languages and Self-Adaptive
Systems (FOCLASA’14).

[32] Autili M, Di Ruscio D, Di Salle A, Inverardi P, Tivoli M. A
Model-Based Synthesis Process for Choreography
Realizability Enforcement. In: Fundamental Approaches to

Software Engineering (FASE’13). LECTURE NOTES IN
COMPUTER SCIENCE 2013; 7793: 37-52: ISBN: 978-3-642-
37056-4, ISSN: 0302-9743.

[33] Lamport L. Ti clocks, and the ordering of events in a
distributed system. Commun. ACM 1978; 21.

Received on 05-10-2014 Accepted on 01-11-2014 Published on 18-11-2014

© 2014 Athanasopoulos et al.; Avanti Publishers.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

