
COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 53

Middleware is necessary for developing
distributed systems. Developers com-
pose them from reusable services pro-
vided by standard or proprietary

middleware infrastructures, including the Object
Management Group’s Common Object Request Bro-
ker (CORBA), Microsoft’s Distributed Component
Object Model, Sun Microsystems’ Java
Remote Method Invocation, and
related services, to deal with nonfunc-
tional requirements for distribution,
security, transactional processing, and
fault tolerance.1 The development
process has been made easier by fol-
lowing the object-oriented middleware
paradigm toward the component-
based middleware paradigm, which
includes the CORBA Component
Model, the Microsoft Transaction Server, and Enter-
prise JavaBeans.

Developers can ignore the sometimes considerably
complex composition of middleware services. Instead,
they build middleware components, deploying them
in off-the-shelf middleware containers in order to cus-
tomize the composition of middleware services. Con-
tainers range from base ones with standard and
proprietary middleware infrastructures, to more com-
plex ones from commercial vendors extending the

semantics of the base containers. Base containers typ-
ically provide transparent persistent storage and trans-
actional and secure access to components; complex
containers further combine other proprietary services.

However, assembling off-the-shelf components
into containers is less straightforward then it might
appear. To be able to offer middleware containers,

vendors have to design and implement
architectures combining available mid-
dleware services into flexible and cus-
tomizable structures. Middleware
services are not monolithic; they consist
of a number of elements that, used
appropriately, provide certain nonfunc-
tional properties. Combining more
than one middleware service amounts
to composing the elements of each ser-
vice. In general, various methods are

used to compose these elements to satisfy application
nonfunctional requirements. The resulting composi-
tions should be supported by the configurable mid-
dleware architecture provided by middleware
container vendors, especially to programmers. More-
over, off-the-shelf middleware architectures should
come with a quality assessment of the possible com-
positions they support. This assessment should give
developers clues for selecting the most suitable com-
positions for their particular applications.

Addressing these issues, we have developed an envi-
ronment that facilitates the design and quality analy-
sis of flexible and configurable middleware

This development environment enables the specification,
automated composition, and quality analysis of flexible,
configurable middleware architectures, notably in
distributed systems.

Systematic Aid
for Developing
Middleware Architectures

Valérie Issarny, Christos Kloukinas,
and Apostolos Zarras

TE
R

R
Y

M
IU

R
A

1See www.omg.org/technology/documents/; www.microsoft.com/com/wpaper/
compsvcs.asp; and java.sun.com/products.

architectures, providing three main
features:

Architecture description language
(ADL). Our ADL helps model
middleware architectures.

Repository of architectural descrip-
tions. Our repository is popu-
lated with architectural
descriptions of middleware
infrastructures that can include
the specification of the basic
services provided by the infra-
structure (such as the CORBA
ORB and Common Object Services), as well as
related constraints. For each service, the architec-
tural description also includes the specification of
basic patterns describing the data and control
interaction among the service’s architectural ele-
ments toward provision of certain nonfunctional
properties.

Automated tool support. Our automated support
helps construct all possible valid compositions of a
given set of interaction patterns, each describing
how to use the elements of a middleware service
in the interests of providing a particular nonfunc-
tional property. It also helps generate performance
and reliability analysis models for assessing and
comparing valid compositions. These models
serve as input to existing performance and reliabil-
ity analysis tools integrated into the environment.

Modeling Middleware Architectures
Typical ADLs [8] provide basic modeling constructs
for the specification of a number of architectural ele-
ments, including: components, or units of data or
computation; connectors, or the interaction protocols
among components; and configurations, or the
assembly of components and connectors.

For modeling middleware architectures, our ADL
also provides subtypes of the basic modeling con-
structs representing middleware-specific architectural
abstractions like stubs, interceptors, containers, mes-
sage-oriented connectors, stream connectors, and
remote procedure call (RPC) connectors. Defining
these abstractions is inspired by established middle-
ware standards, including CORBA and the Interna-
tional Organization for Standardization’s Reference

Model for Open Distributed Processing.2

In order to render our ADL compatible with stan-
dard modeling notations, we have investigated the
relationship of its basic constructs and standard ele-
ments of the Unified Modeling Language (UML).3 As
a result, we have defined components, connectors,
and configurations as UML stereotypes extending,
respectively, the semantics of UML subsystems, asso-
ciations, and collaborations among types and
instances of components and connectors. Defining
constraints on the use of basic middleware elements
involves the Object Constraint Language. Patterns of
interaction are given in terms of configurations of
instances of components and connectors.

Since the basic architectural constructs we use are
extensions of standard UML elements, we use any
existing UML modeling tool for specifying middle-
ware architectures. Most of these tools are customiz-
able, enabling integration of add-ins facilitating
specification and validation of models, including
user-defined stereotyped elements. For example, we
designed and implemented an add-in that eases spec-
ification and validation of middleware architectural
descriptions.

Figure 1 outlines how a developer can use a specific
instance of our environment when using the Rational
Rose UML modeling tool;4 boxes represent compo-
nent instances, and lines represent connector
instances. The widget on the right side of the figure is
part of the add-in we developed to enable the specifi-
cation of certain component properties whose values

54 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

Figure 1. Configurations
describing the interaction among

middleware elements used for
secure communication and

fault tolerance.

2See www.iso.ch:8000/RM-ODP.
3See www.omg.org/technology/documents/spec_catalog.htm#modelingspecs.
4See www.rational.com/products/softdev.jsp.

are used in the quality analysis of the architecture.
According to the CORBA security service standard

specification, client requests and server replies pass
through several layers of interceptors from the sender
to the receiver. One of them preserves integrity and
confidentiality via existing cryptographic mecha-
nisms. Figure 1 (upper configuration) abstractly
describes the interaction pattern among these middle-
ware architectural elements.

According to the standard for fault-tolerant
CORBA, a CORBA-compliant infrastructure should
support both passive and active replication styles. In
the former, a client communicates with a replicated
group of servers using simple Internet Inter-ORB
Protocol invocations to the primary member of the
group. In the latter, a client communicates with the
group through a proprietary multicast group commu-
nication protocol. Figure 1 (lower configuration)
abstractly describes the interaction pattern among ele-
ments realizing the group communication protocol.

Composing Middleware Services
Various approaches support the composition of soft-
ware architectures. For example, [9] proposes that
two architectures be composed by merging compo-
nents from each of them; when the initial architec-
tures do not share components, it further proposes a
new “bridge” architecture containing a component
from one architecture and another component from
the other, enabling the two initial systems to com-
municate. Although this is a promising approach to
constructing a single system, it is not effective for
composing middleware architectures.

Applying the approach in [9] to the two patterns in

Figure 1 (assuming the different interceptors
share no features) gives developers building
middleware architectures a pattern with a client
stub and replicated skeletons and two different
connection paths between them. One path
enables secure communication; the other real-
izes the multicast communication protocol.
Unlike composing architectures by merging
components, developers need composition of
previous patterns; the result is a single connec-
tion path providing a secure multicast commu-
nication protocol.

Another promising approach to composi-
tion, proposed in [7], involves a method for
composing linear architectures, or architectures
in which each component has a single input

and a single output port. To compose a new architec-
ture, the developer provides the linear architectures to
be composed and a linear time temporal logic prop-
erty that constrains the structure of the composed
architecture. The method then constructs all possible
compositions matching this property. However, not
all middleware architectures are linear; for example, in
Figure 1, the architecture for secure interaction is lin-
ear, but the one for fault tolerance is not.

Yet another approach, proposed in [10], introduces
a set of operators that transform generic connectors
(such as RPC) to incrementally add new nonfunc-
tional properties. A basic problem with this approach
for our goals in automating composition of middle-
ware architectures is that the related transformations
are built manually by the middleware architect and
that their application results in a single composition.
It would be more worthwhile to obtain all possible
compositions automatically without having to
describe all possible transformation operators. Such
an automated convenience would allow middleware
architects and designers to choose a suitable composi-
tion according to the nonfunctional requirements of
the application they are building while exploring new
and novel ways of using middleware services.

To enable the automated generation of composi-
tion, our environment includes a tool that automati-
cally constructs all compositions of a set of interaction
patterns, each describing the use of elements of a mid-
dleware service in order to provide a certain nonfunc-
tional property. A composition is then selected by the
middleware architect or designer according to the
application’s requirements, which are checked against
the nonfunctional properties of the composed config-

COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 55

Figure 2. Two valid compositions
of the configurations for fault tolerance
and security.

urations via model-checking and quality analysis.
Automated composition of middleware architec-

tures. To compose a set of interaction patterns, a tool
has to find ways to connect the instances of the mid-
dleware elements so they offer all the nonfunctional
properties of their respective patterns. In order to con-
struct all possible compositions in the simple case of
linear architectures (each component has one input
and one output port), the tool examines all possible
connections between the ports of the component
instances used in the patterns. If the total number of
component instances used in the set of patterns is n,

then there are n! ways to
connect them. In the

more general case of nonlinear architectures, for every
component instance having m>1 output ports, the
tool may need to create m component instances for
each component instance used in the other patterns.
For example, in the pattern for fault tolerance in Fig-
ure 1, because of the ForkInterceptor instance, which
replicates request messages, the tool may need to cre-
ate three instances for each middleware component
instance used in the security pattern to secure each
path leaving the ForkInterceptor ; see the resulting
composition A in Figure 2.

However, creating additional instances increases
the complexity of the composition. Specifically, the
upper bound, M, of the number of instances the tool
may need to create is the product of the fan-out
degrees, or number of output ports, of the middle-
ware component instances in the initial patterns.
Consequently, the number of cases the tool has to
examine increases to O((M * n)!). Since covering this
state-space exhaustively is impossible in practice the
tool uses the interaction information in the patterns
to be composed to constrain the state-space. The tool
constructs only the compositions that preserve the
initial flows of interaction (such as those where mes-
sages sent by the ForkInterceptor are eventually
received by the MergeInterceptor). This and other con-
straints derived from the initial patterns substantially
reduce the number of different compositions the tool
has to construct, making it feasible to construct all of

them automatically [5].
When composing the patterns for security and

fault tolerance, as in Figure 1, the tool constructs only
the 23 different compositions abiding by the con-
straints, instead of trying to examine all O((3*12)!)
possibilities, to connect the different component
instances.

Once it constructs the structurally correct compo-
sitions, the tool checks which of them indeed provide
the nonfunctional properties required by the middle-
ware architect, model-checking them with the Simple
Process Meta Language (PROMELA) Interpreter, or
SPIN, model-checker. For this checking process, the
tool uses PROMELA (the modeling language of
SPIN) models of the individual architectural elements
to construct and verify models for each of the com-
positions. The models of the individual elements are
obtained by asking the architect to fill in automati-
cally generated PROMELA skeletons when describ-
ing middleware architectures using our ADL.
Generating the models from the skeletons is based on
two generic mapping relationships:

• For each component, the tool generates a differ-
ent type of PROMELA process, having as many
communication channels as the component has
input/output ports. This way, the architect pro-
vides the behavior of the process.

• For each different connector, the tool generates a
different type of process, as before. These
processes do not, however, have their own chan-
nels for communicating; instead, they use the
channels corresponding to the component ports
they connect.

See [6] for more on how the verification is per-
formed, as well as the techniques needed to speed
the verification process.

Analyzing Quality of
Middleware Architectures
Pioneer work related to the quality analysis of sys-
tems at the architectural level includes Attribute-
based Architectural Styles [4] and the Architecture
Trade-off Analysis Method (ATAM) [3]. Except for
specifying the architecture of the system, quality
analysis at the architectural level involves the follow-
ing steps:

• Identifying quality measures of interest, including
reliability and response time;

• Specifying quality properties of the constituent
architectural elements that might affect the qual-
ity measures, including failure rate, persistence of

56 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

Composition A

(multiversion security service)

Composition A

(single-version security service)

Composition B

Cases No.
transitions

Reliability
(upper bound)

Reliability
(lower bound)

48

24

12

0.80

0.74

0.70

0.79

0.72

0.67

Results from the reliability
analysis.

faults, replication policy, and scheduling policy;
and

• Specifying quality models based on the first two,
such as Markov chains and queuing networks,
which are solved or simulated to approximate the
values of the quality measures.

Specifying quality models is compli-
cated; according to [3], developing
quality models accounts for about
25% of the total time needed
to apply ATAM. The
effort needed to specify qual-
ity models is even greater
for typical middleware
architects and design-
ers with no experi-
ence in formal
modeling and
analysis methods.

To deal with the
time-consuming com-
plexity of specifying qual-
ity models, our environment
includes a tool for generating
quality models for performance and
reliability analysis. The tool accepts (as input)
patterns describing the interaction among elements
provided by middleware infrastructures whose archi-
tectural description is stored in the repository. Mid-
dleware elements are characterized by properties
whose values affect the values of the performance
and reliability measures, as in the reliability proper-
ties associated with the components in Figure 1.

Automating quality analysis of middleware archi-
tectures. Building quality model generators involves
defining the generic mapping relationships among the
patterns describing the interaction among instances of
middleware elements and models [11].

To evaluate reliability, we assume the basic mea-
sure is the probability that a pattern describing the
interaction among middleware elements can take
place during the lifetime of the application using the
pattern. The pattern could fail if instances of mid-
dleware components, connectors, and nodes used in
it fail due to faults causing errors in their state. (By
definition, ADL components are associated with
nodes on which the components are deployed.) Pars-
ing the specification of the pattern allows the gener-
ation of a state-space model that can be used for
approximating the values of the reliability measure.
Such generation relies on the following generic map-
ping relationships:
Substates. A state in the state-space model is com-

posed of substates, each representing the situation
of an instance of a middleware component/con-
nector/node used in the pattern.

Properties. The range of possible situations for a
component/connector/node depends on the
fault and replication properties characterizing
the element; the generator must be customized
accordingly.

States. A state in the state-space model is a death
state if at least one of its substates

represents a situation in which
the corresponding compo-

nent/connector/node
has failed.

Transitions. Transition
from a source to a
target state repre-
sents a change in
the situation of
a component/
connector/node.

Deriving transitions.
Given a source state
and the range of
possible situations for a
particular component/
connector/node, all
possible transitions can
be derived automatically

through the algorithm proposed in [2].

Performance-analysis models are generated in a
similar way, but our environment supports the gener-
ation of queuing network models from patterns
describing the interaction among middleware ele-
ments. Model generation relies on several generic rela-
tionships:

• Queuing network stations representing nodes and
middleware connectors used in the pattern;

• Services provided by stations representing middle-
ware components used in the pattern; and

• Data and control-flow information described in
the pattern used to generate agents circulating
around the stations asking for specific services.

In composition A in Figure 2, a client request is
first replicated. Each replicated request is then
encoded and sent to the replica target server. This
composition is generic and can be used independently
of whether different replicas belong to the same or to
different security domains. If a replica belongs to the
same domain, it would be more efficient to use a mid-
dleware architecture like composition B in Figure 2.

COMMUNICATIONS OF THE ACM June 2002/Vol. 45, No. 6 57

Mastering

and exploiting

the flexible

and reusable

functionality

inherent in

middleware

infrastructures

is time consuming

and problematic,

even for
middleware
experts.

Here, a client request is replicated only after it enters
into the common security domain. Even if composi-
tion B is more appropriate for replicated servers
belonging to the same security domain, we expect it
would be less reliable than composition A; less relia-
bility can be assumed when message losses typically
occur in the connector between the client stub and
the target security domain. Hence, in cases involving
strong reliability requirements, it may be better for
the architect to use A instead of B, even if doing so is
less efficient.

A closer look at composition A reveals that security
interceptors are used to encode replicated requests
producing two interesting cases regarding these inter-
ceptors:

• They are instances of the same implementation
based on functionality provided by a single
implementation of the CORBA security service.

• They are instances of different implementations,
each based on functionality provided by a multi-
version implementation of the CORBA security
service.

In the former, if a replica of the group fails due to
a design fault, the architect can conclude that all the
replicas of the group are likely to fail due to the same
design fault. In the latter, failure of all replicas is
unlikely, as different replicas are based on different
versions of the security service. Following the earlier
discussion of middleware architecture quality analysis
and the patterns in Figure 2, we generated three dif-
ferent state-space models, using them as input to the
reliability tool SURE-ASSIST [1] we integrated into
our environment.

The table lists the upper and lower bounds of the
reliability of both composition A and composition B,
as calculated by the tool. The results indicate it is
worth using composition A in place of composition B
if the architecture provides a multiversion implemen-
tation of the security service. Highlighting the gain
from automatically generating reliability models, the
table includes statistics regarding the number of state
transitions in the generated models.

Conclusion
Existing middleware infrastructures provide highly
flexible and reusable functionality that can be com-
posed in various ways toward satisfying certain non-
functional requirements. But mastering and
exploiting this flexibility is time consuming and
problematic, even for middleware experts. That is
why we are developing an environment to facilitate
the modeling, composition, and quality analysis of

middleware components and architectures.
We’ve been experimenting with the environment

on real-world cases in the context of the European
Commission’s Dependable Systems of Systems proj-
ect. We are now interested in extending the approach
toward the analysis of other aspects of large-scale dis-
tributed systems, including maintainability, openness,
and scalability.

References
1. Butler, R. The SURE approach to reliability analysis. IEEE Transact.

Reliab. 41, 2 (June 1992), 210–218.
2. Johnson, S. Reliability analysis of large complex systems using ASSIST.

In Proceedings of the 8th AIAA/IEEE Digital Avionics Systems Conference
(San Jose, CA, Oct.). IEEE Press, Los Alamitos, CA, 1988, 227–234.

3. Kazman, R., Carriere, S., and Woods, S. Toward a discipline of sce-
nario-based architectural engineering. Annals Software Engin. 9 (2000),
5–33.

4. Klein, M., Kazman, R., Bass, L., Carriere, S., Barbacci, M., and Lip-
son, H. Attribute-based architectural styles. In Proceedings of the 1st
IFIP Working Conference on Software Architecture (San Antonio, TX,
Feb. 22–24). Kluwer Academic Publishers, Boston, 1999, 225–243.

5. Kloukinas, C. and Issarny, V. Automating the composition of middle-
ware configurations. In Proceedings of the 15th IEEE International Con-
ference on Automated Software Engineering (Grenoble, France, Sept.
11–15). IEEE Press, Los Alamitos, CA, 2000, 241–244.

6. Kloukinas, C. and Issarny, V. SPIN-ing software architectures: A
method for exploring complex systems. In Proceedings of the 2nd
IEEE/IFIP Working Conference on Software Architecture (Amsterdam,
The Netherlands, Aug. 28–31). IEEE Press, Los Alamitos, CA, 2001,
67–76.

7. Margaria, T., Steffen, B., and von der Beec, M. Automatic synthesis of
linear process models from temporal constraints: An incremental
approach. In Proceedings of the ACM-SIGPLAN International Workshop
on Automated Analysis of Software (Paris, Jan.). ACM Press, New York,
1997, 127–141.

8. Medvidovic, N. and Taylor, R. A classification and comparison frame-
work for software architecture description languages. IEEE Transact.
Software Engin. 26, 1 (Jan. 2000), 70–93.

9. Qian, X., Moriconi, M., and Riemenschneider, R. Correct architecture
refinement. IEEE Transact. Software Engin. 21, 4 (1995), 356–372.

10. Spitznagel, B. and Garlan, D. A compositional approach for construct-
ing connectors. In Proceedings of the 2nd IEEE/IFIP Working Conference
on Software Architecture (Amsterdam, The Netherlands, Aug. 28–31).
IEEE Press, Los Alamitos, CA, 2001, 148–157.

11. Zarras, A. and Issarny, V. Concurrency in dependable systems. Chapt.
7 in Quality Analysis of Enterprise Information Systems, A. Romanovsky
and P. Ezhilchelvan, Eds. Kluwer Editions, 2002, 127–146.

Valérie Issarny (Valerie.Issarny@inria.fr) is senior research
scientist on the Arles project in the Institut National de Recherche en
Informatique et an Automatique, Chesnay Cedex, France.
Christos Kloukinas (Christos.Kloukinas@inria.fr) is a Ph.D.
student in the Arles project in the Institut National de Recherche en
Informatique et an Automatique, Chesnay Cedex, France.
Apostolos Zarras (apostolos.Zarras@inria.fr) is a post-doctoral
researcher in the Arles project in the Institut National de Recherche en
Informatique et an Automatique, Chesnay Cedex, France.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 0002-0782/02/0600 $5.00

c

58 June 2002/Vol. 45, No. 6 COMMUNICATIONS OF THE ACM

