
Adaptation to Connectivity Loss in Pervasive Computing Environments

Manel Fredj Nikolaos Georgantas Valérie Issarny
INRIA-Rocquencourt, France

{Manel.Fredj, Nikolaos.Georgantas, Valerie.Issarny}@inria.fr

Apostolos Zarras
Dept. of Computer Science, University of Ioannina, Greece

zarras@cs.uoi.gr

Abstract

Pervasive computing environments aim at providing
users with advanced services, dynamically composed our
of networked services. In these open environments, avail-
ability of specific networked service instances cannot be
guaranteed over time as users move and services leave and
join the network accordingly. A major challenge in perva-
sive environments is thus to maintain services functionali-
ties despite the dynamics of the environment, which induces
connectivity loss with service instances. In this paper, we
analyse the requirements to make distributed composite ser-
vices able to face connectivity loss, i.e., able to dynamically
adapt their configuration according to the networking envi-
ronment. We then discuss the adaptation of relevant tech-
niques that originate in the fault tolerance domain to the
specifics of pervasive computing.

1 . Introduction

Pervasive computing systems are among today’s most at-
tractive vision of the future of distributed computing sys-
tems. Computational power will be available everywhere.
Mobile and stationary devices will dynamically connect and
coordinate to seamlessly help people in accomplishing their
tasks. For this vision to become a reality, services must
adapt themselves according to the constantly changing con-
ditions that characterize the environment within which they
operate.

In this paper, we consider a pervasive computing envi-
ronment as an open space populated of mobile and possi-
bly stationary devices (e.g., PDAs, laptops, smartphones,
PCs, etc) hosting services and communicating through the
use of an IP network. The network that connects the de-
vices may be a pure MANet (Mobile Ad-Hoc Network) or
infrastructure-based. The main characteristics of mobile de-
vices is that they arbitrarily join and leave the environment’s
network as their owner changes their location.

In our open, dynamic pervasive environment, devices ex-
pose networked services according to the Service-Oriented
Architecture (SOA) paradigm [9]. Servicesare self-

describing. They are computational elements that sup-
port rapid, low-cost composition of distributed applications.
Services perform functions, which can be anything varying
from simple requests to complicated collaboration. Services
are offered by service providers that procure the service im-
plementations, supply service descriptions, and provide re-
lated conversation schema to service requester. Since ser-
vices may be offered by different devices available in the
environment and communicate through the network, they
provide a distributed computing infrastructure for applica-
tion composition and collaboration. Services can be simple
or composite. Asimple servicehas a pre-defined function-
ality. The requester interacts with a simple service without
a third part intervention.Composite servicesinvolve assem-
bling existing – simple or composite – services that access
and combine information and functions from possibly mul-
tiple service providers.

Service composition consists in selecting the services to
be composed, to decide how they are going to coordinate
with each other (i.e., sequential, parallel, transactional, etc).
Services are composed dynamically towards realizing ad-
vanced functionalities. There are two essential models for
service composition are: (i)service orchestration, where a
customer invokes a set of services in a coordinated way, and
(ii) service choreography, where a set of services interact
with each other in a peer-to-peer fashion. In this paper, we
focus more specifically on service orchestration.

In the pervasive computing environment, the orches-
tration may loose connectivity with some component ser-
vice(s) due to, e.g., mobility of service hosts. Our goal is
to guaranteecontinuity of composite servicesdespite con-
nectivity loss, including maintaining consistency of com-
posite and component services. In this context, relevant so-
lutions to connectivity loss were introduced in the nomadic
computing domain [6], where the connection between ser-
vice provider and requester is intermittent. However, unlike
nomadic computing systems, pervasive computing systems
cannot assume/expect eventual reconnection of the discon-
nected service. Specifically, nomadic computing systems
enable users to be mobile and to carry around wireless de-
vices. The key concept in such systems is that a service



requester is connected to some given remote server provid-
ing required services. Connectivity between the service re-
quester and provider may be intermittent due to insufficient
wireless network coverage or limited bandwidth shared be-
tween multiple users. However, it is assumed that the re-
quester, eventually will reconnect to the same server or
some replica of the server. Then, the objective is to enable
users to use their mobile devices even during periods of low
or non-connectivity. The distinctive feature that differenti-
ates pervasive systems is that service instances making up
the environment do not have anya priori knowledge of each
other before their dynamic composition. Bindings between
services are ad hoc and temporary. Thus, after a disconnec-
tion, a service requester is unlikely to reconnect to the same
service provider or even a replica of it. It will rather connect
to another provider. Nevertheless, disconnection is a com-
mon event in nomadic computing systems, which makes the
experience gained from the nomadic system solutions use-
ful.

This paper adresses the dynamics of pervasive comput-
ing environments, focusing on dynamic discovery and com-
position of networked services (§ 2). In order to maintain
service composition despite mobility of services hosts and
thus connectivity loss, we analyse different techniques of
dynamic adaptation, originating from the fault tolerance do-
main, and discuss their adaptation to the requirements of
pervasive computing environments (§ 3). Finally, we con-
clude with a summary of tour contribution, and point out
open issues and future work (§ 4).

2 . Service Discovery and Composition in Per-
vasive Computing Environments

To illustrate in more details the connectivity loss prob-
lem in SOA-based environments, we employ a motivating
scenario inspired by [10]. Based on this scenario, we intro-
duce a service-oriented pervasive environment supporting
dynamic service composition.

2.1 . An Illustrative Scenario

In our scenario, we are placed in the near territory of
an island where Richard lives. Richard takes the ferry boat
every day, to go from the island to his work place on the
mainland and to return back home after work. Our pervasive
environment consists of several services offering tourist in-
formation, hotel reservation, car reservation, etc. These ser-
vices execute on stationary hosts located onshore. The en-
vironment that we consider, further comprises mobile hosts
located on ferries, yachts, etc. At a short distance from the
mainland, services residing on mobile hosts may have ac-
cess to the services located onshore through a wireless net-
work. If moving further from the mainland, however, their
only possibility to access the services is through satellite-
based connections, which are usually expensive and inef-
ficient (especially in the case of GEO networks). To con-
front this problem, the mainland’s local authorities realized

the following setup. The stationary hosts located onshore
may actually recruit volunteer mobile hosts that can serve
as their proxies. Proxies provide indirect wireless access
to the onshore services to mobile entities that do not have
direct access to these services. As an exchange, the crew
members and the travellers onboard may take benefit from
more favourable transport, hotel, restaurant and car rental
prices.

Richard targets to plan his holidays while travelling. He
has a specification of a ”holiday planner” service on his
PDA. The service composes three simple services:airline
tickets booking, car rentalandhotel bookingservices. The
composite service orchestration is expressed as follow. The
airline tickets booking service gives the list of available
flights from which Richard can choose a flight, the corre-
sponding airport and the departure and arrival dates. After-
wards, the car rental service provides a list of companies
near/in the chosen airport from which Richard selects the
car and the price that suit him. Finally, according to whether
Richard has chosen to rent a car or not, the hotel booking
service provides a list of hotels in the destination city that
favour public transport availability or touristic areas or both
of them if possible.

Figure 1. Composite service specification in
terms of simple services

The ”holiday planner” service is specified at Richard’s
device as an orchestration of three simple services (Fig-
ure 1). When Richard invokes the ”holiday planner” ser-
vice, a service composition process is triggered, which
consists of: performing Service Discovery (SD) and then
running the Service Configurator (SC) that actually com-
poses/integrates the discovered services to match the or-
chestration specification. During the execution of the com-
posite service, the Reconfiguration Manager (RM) supports
the adaptation of the composition to potential connectivity
losses with the services participating in the orchestration,
due to the inherent mobility of mobile service providers and
consumers.

Figure 2. Adaptation support level



As depicted in Figure 2, the SD, SC and RM components
are implemented at the middleware level and are deployed
on each service host taking part in the orchestration.

2.2 . Service Discovery and Composition

As illustrated above, in the open pervasive computing
environment, it is important that users can discover new
services on-the-fly and use them as means to share informa-
tion/computation with other users. In our scenario, Richard
should be able to execute the ”holiday planner” service ac-
cording to the services available in his environment. Con-
sequently, the service discovery process initiated on his de-
vice should locate services that are suitable for the realiza-
tion of the ”holiday planner” orchestration from Richard’s
specification. At the time when Richard joins a pervasive
environment, Richard’s SD obtains information about ser-
vices provided by his neighbours – mobile and stationary –
devices (i.e., devices in the network(s) to which he has ac-
cess). More specifically, building on the WSAMI middle-
ware [5] enabling mobile Web services for pervasive com-
puting environments, SD periodically checks the environ-
ment for other instances of SD services hosted by neighbour
devices. This task is realized by multicasting a discovery re-
quest using a standard discovery protocol (e.g., SLP [14]).
Then, SD provides an operation for syntactic service search.
Building upon the Web service architecture, the syntactic
search takes as input the WSDL [13] interface specification
of a required servicews. When invoked, SD makes corre-
sponding calls to the neighbour SD services. The replies of
all neighbours concerning provided services that syntacti-
cally matchws are merged into a single setRESws, which
is returned back to requesting SD. Caching the most recent
replies further enables optimising service discovery latency
and bandwidth consumption. We assume that Richard’s SD
discovers in the environment an ”Airline tickets booking”
service and a ”Car rental & hotel booking” service. This
leads the service configurator,SC, to instantiate the ”holiday
planner” composition as depicted in Figure 3. Afterwards,
the ”holiday planner” service instance starts its orchestra-
tion.

Figure 3. Composite service deployment in
the environment

We are conscious that syntactic discovery of services
has some limits in open pervasive computing environments;
supporting semantic description and matching of services is
an essential requirement [2, 8]. Indeed, enforcing an agree-
ment on a common syntax for denoting common semantics

is impossible to achieve in open environments, such as per-
vasive computing environments. Thus, the latest tendency
is towards adopting semantic representation paradigms for
specifying and matching services even when these differ
in their syntactic interfaces. Such paradigms employ on-
tologies to represent concepts and related well-founded for-
malisms to enable machine reasoning about them, which we
plan to adopt in our future work.

While Richard interacts with the ”Car rental & hotel
booking” service, the deviceD on which the service is de-
ployed is switched off. The service is no longer available.
Richard’s RM have to deal with this situation to let Richard
fulfilling his ”holiday planning” despite the disconnection,
whilst D’s RM has to restore the ”Car rental & hotel book-
ing” service to a consistent state. For instance,D’s RM have
to deal with the problem of validating or not the result of the
interaction with Richard, e.g., if Richard has validated his
booking for a flight,D’s RM has to take into consideration
Richard’s validation.

In fact, in an open, dynamic, ad hoc environment, ser-
vices are not aware of their future collaborations. Thus, re-
configuration cannot rely on a central manager that would
supervise all service collaborations and perform all adap-
tations needed by the services in the environment. Indeed,
the central manager can be a bottleneck as the number of
collaborations increases. Furthermore, the central manager
would have to be informed of each new collaboration as
soon as it is initiated, which is not feasible in an open envi-
ronment such as the one we consider.

3 Adaptation to Pervasive Computing Envi-
ronment

In order to introduce the reconfiguration techniques that
meet the specifics of pervasive computing environments,
we define a generic reconfiguration process, which we call
reconfiguration cycle. This cycle introduces the general
phases of reconfiguration starting from change occurrence
and ending by returning back to execution after performing
reconfiguration.

3.1 . Reconfiguration Cycle

We callreconfiguration cyclethe sequence of phases that
take place during the execution of the composite service, re-
configuring the service and taking it from a consistent state
to another. We introduce the reconfiguration cycle, depicted
in Figure 4, where boxes denote reconfiguration phases, and
arrows denote events that take the system from one recon-
figuration phase to another.

In Phase 1, the composite service executes normally
while RM monitors the service’s execution, including its
conversations with the orchestrated services, i.e., at which
point the execution of the composite service is and which
services are in interaction with the requester. In Phase 2, a
cause for reconfiguration emerges, generated by either the
composite service or its environment. An example of the



Figure 4. Reconfiguration cycle

former case may be the disconnection or failure of a com-
posed service, or drop in the available bandwidth, while an
example of the latter case may be the availability of a new
service that offers enhanced quality of service. This phase
triggers a reconfiguration. In Phase 3, RM decides to re-
configure the composed service according to the execution
stage and the role/importance of disconnected service(s). In
order to accomplish this aim, RM triggers the most suited
technique to face the problem. Reconfiguration techniques
are predefined means to face occurrence of connectivity
loss. For instance, depending on the case of stateful or state-
less disconnected service and the service state availability,
RM can invoke a state transfer technique or not. In the next
section, we investigate four techniques from the fault toler-
ance domain that allow dealing with system reconfiguration
and adress their relevance to our pervasive computing vi-
sion. In Phase 4, RM applies the sequence of actual recon-
figuration actions and updates the composite service config-
uration according to the new constituent services.

3.2 . Techniques of Dynamic Reconfiguration

Building upon dependability means [7], there are four
means to face connectivity loss: (1)Change preventiontar-
gets preventing the loss of connectivity with services, (2)
Change eliminationtargets reducing the number of connec-
tivity losses and the negative effects of their impact, (3)
Fault toleranceprovides to the system the ability to ful-
fill system function despite the connectivity loss, and (4)
Change anticipationestimates the presence and the impact
of a connectivity loss on the composite service.

Change preventionandelimination(removal) can be en-
compassed in the notion ofchange avoidance. In fact,
preventing users mobility or networked services disconnec-
tion is not realizable in pervasive computing environments.
Change prevention introduces constraints on the environ-
ment, e.g., limiting user mobility or services that can be in-
voked by users (e.g., only local services) to guarantee con-
nectivity in all situations, whilst, we aim at dealing with
the environment’s dynamicity and heterogeneity rather than
constraining them. Thus, we do not consider change pre-
vention as a way to face connectivity loss. Similarly, for
change elimination, we consider that it is difficult to reduce
the number of disconnections since disconnections are usu-
ally caused by users mobility or services crashes. Thus, re-
ducing the number of disconnections includes limiting users

mobility and services types, which constitutes a heavy con-
straint on the composition and adaptation processes.

Because of the aforementioned reasons, we will only
considerchange anticipationandtoleranceas means to deal
with connectivity loss. In change anticipation, we investi-
gate two techniques:state transfer(if the service is stateful)
andreplicationsince these techniques require some actions
to be performed without having any prior awareness of the
potential changes that may emerge in the environment, such
as invoking two equivalent services to perform the same
functionality so that if one of them is disconnected the other
service can proceed the conversation with the requester. In
change tolerance, we investigate arollback technique and
a technique that derives from it, which is thereplay tech-
nique. Both rollback and replay techniques are performed
when change anticipation techniques fail or can not be ap-
plied. They target returning back to a point of execution
from which the composite service can resume its execution
without any negative effect of the disconnection on the con-
sistency of service states.

3.3 . Change Anticipation

A state transfertechnique consists in transferring the
conversation stateof the requester with the disconnected
service. The conversation state gives the internal state of the
service instance relevant to the execution of a given conver-
sation together with the related execution point. In case of
concurrency within the service, we assume that the internal
state of the service instance is subdivided into independent
session states, where each session corresponds to an active
conversation.

There are three necessary requirements for state trans-
fer. First, both the disconnected and its substitute services
must provide state transfer capabilities, i.e., operations to
export and import their state. Second requirement consists
of transferring the state of the disconnected service before
its disconnection, which is a form of anticipation of con-
nectivity loss. Third, both the disconnected and its substi-
tute services must be state-compatible in order to initiate the
substitute service with the transferred state and proceed the
execution from the point where the last version of the state
was saved.

In order to satisfy the first requirement, we assume that
stateful services give the option to transfer their internal
state by providing state transfer operations, e.g.,Export-
State(), which includes packaging the latest consistent ses-
sion state of the service and sending it to the appropriate
storage service and,ImportState(), which allows synchro-
nizing the internal state of the substitute service with the
disconnected service state for a given conversation.

The second requirement can be satisfied by saving peri-
odically the conversation state between the service requester
and the service provider on an elected host. The election
process can concern more than one host to increase the
chances to not loose the state. The elected host is, by de-
fault, the requester host. In case of resource limit, another



host must be elected based on resource availability in the
environment. The environment can further provide users
with storage services (e.g., surrogate service [11]).

Replicationof computation is an effective way to achieve
change anticipation in distributed systems. In our perva-
sive computing environment, replication is defined as an
invocation of two or more equivalent services available in
the environment. Replicas selection is performed from the
functional specification of the service to replicate. Since,
we consider syntactic replacement, two equivalent services
must have the same interface specification but not neces-
sarily the same implementation. Thus, the result type of
the services is the same but the result itself can be differ-
ent. For example, two ”Airline tickets booking” services
may return two different lists of flights, depending on the
associated flying companies. We call this kind of replica-
tion, loose replication. Loose replication is decided at run-
time and have to be managed by the RM, in opposition to
strong replicationor built-in replication, where replicated
services are by design and construction. In the latter case,
replication management is already implemented within the
application, thus, the adaptation is integrated and can be
used without external intervention. Focusing on enabling
reconfigurable orchestration that does not necessarily sup-
port service replication, we are interested in loose replica-
tion. Replication is managed by RM, which sends the client
messages to all the replicas and adapts client interaction ac-
cordingly. However, in loose replication, the problem of
modifying provider state emerges from the multiple inter-
actions with independent replicas. This issue can be illus-
trated by the problem of validation change. Indeed, if a
requester validates his choice, e.g., a reservation or a pay-
ment, the validation must be effective only once. Hence,
critical operationssuch as payment or validation of a reser-
vation cannot be replicated. Services must specify critical
operations that can be performed only once in order to avoid
multiple validations. For such operations, replication is ap-
plicable only if all replicas synchronize their internal states
at the validated operation and resume their execution based
on the validated results.

Replication can be applied to all services that take part
in a composite service or only to some of them. In fact,
replicating all service is costly in terms of resources con-
sumption, whilst the devices populating pervasive comput-
ing environments mostly suffer from resources limits. Thus,
selecting services that play important role in the composite
service and replicating only the critical services is more ef-
ficient [4].

Although the aforementioned techniques prepare ser-
vices to face the occurrence of connectivity loss, there still
be many cases that cannot be supported by the change antic-
ipation. Thus, in such cases, reconfiguration must be man-
aged after change occurrence, calling for change tolerance
means.

3.4 . Change Tolerance

Rollback [3] is a change tolerance technique that al-
lows returning back the orchestration into apreviouscon-
sistent state when inconsistencies occur because of connec-
tivity loss. Rollback is a checkpoint-based technique that
stores – at pre-defined phases of the execution – compo-
nent services states. The recovery information includes, at a
minimum, the states of participating services, calledcheck-
points. Upon a connectivity loss, the composite service’s
RM uses the saved information to resume the computation
from a previous state, thereby reducing the amount of lost
computation. However, considering an orchestration, com-
ponent services may have input/output dependencies. These
dependencies may force some connected services partici-
pating to the orchestration to roll back, even though they are
not concerned by the disconnection, creating, thus, what is
calledrollback propagation. An example of service depen-
dency in the ”holiday planner” service can be illustrated as
follows. The ”airline tickets booking” service has, among
its outputs, the arrival airport where the ”car rental” ser-
vice will provide the chosen car when Richard arrives to the
destination country. A Rollback at the ”airline tickets book-
ing” leads the ”car rental” to reconsider its inputs according
to the new landing airport. Rollback propagation is an im-
portant issue, in pervasive computing environments, specif-
ically when services hosts are mobile. Returning back to
a previous state of a service may be complex if the service
host is no longer available in the environment. In this case,
a state transfer needs to be performed to synchronize the
substitute of an unavailable service with the rest of the or-
chestration participants, which assumes service state avail-
ability. In case of unavailability of the disconnected ser-
vice state, rollback has to be applied on an earlier check-
point (e.g., before the unavailable service was invoked) or
the substitute service can be executed separately according
to on its dependencies with the other services. Further-
more, rollback propagation is an important issue concerning
provider state modification (e.g., performing critical opera-
tions). In this case, the service providers must bemobility-
aware to allow requesters fulfilling their orchestration de-
spite the previous validations. Mobility awareness can be
related to atomicity. Specifically, service providers validate
user choices only at the orchestration termination. The or-
chestration defines an ending checkpoint where all the in-
termediate validations are actually validated by sending a
validation requestto all component services. Atime out
process can manage the waiting period for the final valida-
tion request, at the service provider side.

Replay is a log-based rollback-recovery technique [12],
which uses checkpointing and logging to allow services to
replay their execution after connectivity loss from the most
recent checkpoint. Checkpointing enables the reconfigura-
tion manager to return back to the last consistent state, tak-
ing into consideration the connectivity loss. For instance,
a selected checkpoint can be situated just before the first
invocation of the disconnected service. Logging enables



RM to have the exchanged messages related to the check-
point, and the exchanged messages until the connectivity
loss. The first part of the exchanged messages is used to
restore a consistent orchestration state, and the second part
is used to replay offline the lost computation. Indeed, log-
ging enables to replay messagesoffline, i.e., without the user
intervention, by invoking equivalent services to the discon-
nected ones, and replaying the execution in order to reach
the point where the execution has stopped before the con-
nectivity loss.

3.5 Implementation issues

We plan to extend WSAMI with the aforementioned re-
configuration techniques. An important issue is selecting
the appropriate technique for a given configuration of the or-
chestration. For instance, the state transfer technique cannot
be applied between two services unless the substitute ser-
vice can understand the conversation state received in order
to resume the interaction from the point where it is stopped.
Furthermore, taking the example of hotel booking, the sub-
stitute service should be able to interact with the same hotels
in order, for example, to continue a virtual tour conversation
that the user was having with the substituted service.

So far, we have been studying algorithms of distributed
checkpointing for composite services that deal with the is-
sue of selecting the point at which the execution of the or-
chestration can be resumed taking into consideration con-
sistency between – provider and requester – services, i.e.,
compatibility concerning the validated operations.

4 Conclusion and Future Work

In pervasive computing environments, several problems
can emerge from dynamicity (e.g, mobility). In this paper,
we analysed the requirements to make distributed compos-
ite services, specifically orchestrations and orchestrated ser-
vices, able to face connectivity loss and adapt their config-
uration to the networking environment. Then, we discussed
four techniques to adress these requirements. The presented
techniques relate to change anticipation and tolerance. In
change anticipation, we investigated the state transfer and
replay techniques, while in change tolerance, we investi-
gated the rollback and replay techniques. All the aforemen-
tioned techniques are mainly based on state availability of
the disconnected service, which we will develop and exper-
iment, in the WSAMI middleware for pervasive web ser-
vices.

A number of issues are still open, which we will adress
in our future work. First, service discovery employed in
our scenario is basically syntactic and thus restrictive. Se-
mantic service discovery has to be supported to enlarge the
domain of component services that can be used in a ser-
vice composition/orchestration. We are currently working
on a more flexible approach, where interfaces and conversa-
tions required by orchestration processes can be adapted in
an ad hoc way to interfaces and conversations provided by

available services [1]. Also, till now, we have only consid-
ered service compositions in the form of orchestrated pro-
cesses. In a service choreography, a set of services interact
with each other in a peer-to-peer fashion and collaborate to-
wards the achievement of a common objective. In a such
case, service substitution is harder to perform and requires
distributed coordination mechanisms for service discovery,
changes detection and state transfer, and process adaptation.

References

[1] S. Ben Mokhtar, J. Liu, N. Georgantas, and V. Issarny. Qos-
aware dynamic service composition in ambient intelligence
environments. InProceedings of the 20th IEEE/ACM Int.
Conf. on Automated software engineering (ASE ’05), pages
317–320, 2005.

[2] T. Berners-Lee, J. Hendler, and O. Lassila.The Semantic
Web. In Scientific American, 2001.

[3] E. N. M. Elnozahy, A. Lorenzo, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems.ACM Comput. Surv., 34(3), 2002.

[4] Z. Guessoum, N. Faci, and J.-P. Briot. Adaptive replication
of large-scale multi-agent systems: towards a fault-tolerant
multi-agent platform. InProceedings of the 4th int. work-
shop on softawre engeneering for large-scale multi-agent
systems (SELMAS ’05), 2005.

[5] V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chi-
bout, N. Levy, and A. Talamona. Developing ambient in-
telligence systems: A solution based on web services.In
Automated Software Engineering, 12, 2005.

[6] A. D. Joseph, A. F. deLespinasse, J. A. Tauberand, D. K.
Gifford, and M. F. Kaashoek. Rover: a toolkit for mobile
information access. InProceedings of the 15th ACM Sym-
posium on Operating Systems Principles (SOSP ’95), 1995.

[7] B. Lussier, R. Chatila, F. Ingrand, M. Killijian, and D. Pow-
ell. On fault tolerance and robustness in autonomous sys-
tems. InProceedings of the 3rd IARP-IEEE/RAS-EURON
Joint Workshop on Technical Challenges for Dependable
Robots in Human Environments, 2004.

[8] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Se-
mantic matching of web services capabilities. In1rst Int.
Semantic Web Conference, 2002.

[9] P. Papazoglou and D. Georgakopoulos, editors.Service-
oriented computing, volume 46. In Communications of the
ACM, 2003.

[10] T. Pitkranta, O. Riva, and S. Toivonen. Designing and im-
plementing a system for the provision of proactive context-
aware services. InProceedings of the Workshop on Context
Awareness for Proactive Systems (CAPS), 2005.

[11] M. Satyanarayanan. The evolution of coda.ACM Trans.
Comput. Syst., 20, 2002.

[12] R. Strom and S. Yemini. Optimistic recovery in distributed
systems.ACM Trans. Comput. Syst., 3(3), 1985.

[13] W3C. Web Services Description Language (WSDL) v1.1.
Technical report, W3C, 2001. http://www.w3c.org/TR/wsdl.

[14] W. Zhao and H. Schulzrinne. Enhancing service location
protocol for efficiency, scalability and advanced discovery.
Journal of Systems and Software, 75(1-2), 2005.


