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Abstract. Dependable systems are characterized by a number of at-
tributes including: reliability, availability, safety and security. For some
attributes (namely for reliability, availability, safety), there exist probabi-
lity-based theoretic foundations, enabling the application of dependabil-
ity analysis techniques. The goal of dependability analysis is to forecast
the values of dependability attributes, based on certain properties (e.g.
failure rate, MTBF, etc.) that characterize the system’s constituent ele-
ments.

Nowadays, architects, designers and developers build systems based on
an architecture-driven approach. They specify the system’s software ar-
chitecture using Architecture Description Languages or other standard
modeling notations like UML. Given the previous, we examine what we
need to specify at the architectural level to enable the automated gen-
eration of models for dependability analysis. In this paper, we further
present a prototype implementation of the proposed approach, which re-
lies on UML specifications of dependable systems’ software architectures.
Moreover, we exemplify our approach using a case study system.

1 Introduction

To characterize a system as a dependable one, it must be trustworthy. In other
words, the users of the system must be able to rely on the services it provides.
The less the system fails in providing correct service the more dependable it
is. A system failure is the manifestation of a fault, which leads the system into
an erroneous state. Building dependable systems amounts in building systems
that do not fail, or building systems whose failure can be tolerated. In order
to achieve the previous there are several techniques that have been proposed.
These techniques can be classified into the following categories [22]:

– Fault prevention techniques, aiming at the avoidance of fault creation within
the system.

– Fault tolerance techniques aiming at the provision of correct service, despite
the presence of faults.

– Fault removal techniques, whose main objective is to reduce the presence of
faults in the system.
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– Fault forecasting techniques, whose goal is to analyze and estimate the num-
ber of faults in the system and their consequences.

Developing dependable systems relies on a software development process that
consists of a set of typical engineering work-flows. This set of work-flows is usually
performed in an iterative manner. Namely, the work-flows we consider are:

– The requirements elicitation work-flow.
– The analysis and design work-flow.
– The implementation work-flow.
– The test work-flow.
– The deployment work-flow.

The development process further comprises work-flows that aim at manag-
ing the execution of the engineering work-flows. The previous consist of several
tasks for managing workers (i.e., architects, designers, developers), the activi-
ties performed by those workers and the artifacts produced after the execution
of the activities. Applying fault prevention, fault removal, fault tolerance and
fault forecasting techniques requires introducing corresponding activities in the
engineering work-flows of the software development process. Moreover, using the
aforementioned techniques has also implications on the management work-flows.

Fault prevention involves applying specific design methodologies and con-
struction rules. Consequently, there are activities to be added in the analysis
and design work-flow and in the implementation work-flow. The management
work-flows must further contain activities that constraint the workers participat-
ing in the aforementioned engineering work-flows to apply the fault prevention
activities introduced in the engineering work-flows.

Fault tolerance techniques consist of: error recovery and error compensation
techniques. Error recovery aims at taking the system from an erroneous state
to an error-free state, while error compensation involves enhancing the system
with redundant entities so as to be able to deliver correct service from an er-
roneous state. Based on the previous, the analysis and design work-flow must
include activities that introduce fault detectors, fault notifiers, redundancy man-
agement, logging and recovery elements in the architecture of the dependable
system. The implementation work-flow must contain activities that deal with
the integration of the previous elements with the rest of the system’s entities.
Finally, the deployment work-flow must contain activities for properly deploying
redundant elements on hardware nodes.

Fault removal techniques are composed of three basic steps: verification, diag-
nosis and correction. The verification step aims at checking whether the system’s
behavior is coherent with the system’s expected behavior. If it is not, the other
two steps must be performed. In general, during the verification step a number
of constraints are checked against the system’s actual behavior. The constraints
may be either generic in that they are required for many different families of
systems (dead-lock freedom, absence of starvation, absence of memory leaks), or
specific to the particular system. System-specific constraints are deduced from
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the users’ functional requirements on the system (e.g., the system is able to
successfully execute specific scenarios). Verification may be either static, or dy-
namic. In static verification, the constraints on the system behavior are checked
against a model of the system (e.g., model checking techniques). Static verifica-
tion techniques involve introducing specific activities in the analysis and design
work-flow for building the system model in terms of a formalism like PROMELA
[14], FSP [27], etc. Dynamic verification amounts in testing the runtime behav-
ior of the system using random or deterministic test cases. Naturally, dynamic
verification imposes performing specific activities in the testing work-flow.

By definition [22], dependability is a quite wide concept, which is charac-
terized by a number of attributes including reliability, availability, security and
safety. Depending on the system, our interest is usually narrowed into some of
those attributes. The goal of fault forecasting is to estimate-predict the values of
dependability attributes, based on certain properties (e.g., failure rate, MTBF,
service rate, etc.) that characterize the system’s constituent elements. From now
on, we refer to fault forecasting techniques as dependability analysis techniques.
Reliability analysis, for instance, aims at calculating the probability that the sys-
tem provides correct service for a particular time period. Traditional techniques
for dependability analysis rely on specifying constraints describing either what
it means for the system to provide error-free service (Block Diagrams), or what
it means for the system to provide erroneous service (Fault Trees). More so-
phisticated analysis techniques require modeling the system’s failure and repair
behavior using state space models.

Regarding the software development process, dependability analysis requires
specifying related properties (e.g., failure rate, MTBF) characterizing the ele-
ments that make up the system. Consequently, we need to enhance the analysis
and design work-flow to include such activities. Moreover, we have to enhance the
deployment work-flow with activities that allow achieving the previous for the
nodes used for executing the system’s elements. Finally, constraints for error-free
or erroneous service delivery and state space models must be specified during
the analysis and design work-flow. The values of the properties that characterize
the system’s constituent elements may be assumed, or they may be based on
measures gathered during the testing work-flow of a previous iteration.

In this paper, we present an approach for automating the previous activities.
More specifically, in Section 2, we present general concepts related to the spec-
ification of software architectures and the dependability analysis of systems at
the architectural level. Then, in Section 3, we examine what we need to specify
at the architectural level to enable the automated generation of models for de-
pendability analysis and how to generate them from architectural descriptions.
Section 4 presents a prototype implementation of the proposed approach, which
relies on UML to specify the architecture of dependable systems. In Section 5,
we give details related to a case study we use for the assessment of the solution
we propose. Finally, in Section 6, we summarize with our contribution and the
future perspectives of this work.
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2 Software Architecture and Dependability Analysis

As we mentioned in Section 1, our main goal is to facilitate the generation of
constraints and state space models for the dependability analysis of systems,
from the systems’ architectural descriptions. Specifying software architectures
involves using a notation. Architecture Description Languages (ADLs) are nota-
tions enabling the rigorous specification of the structure and behavior of software
systems.

ADLs come along with tools supporting the analysis and the construction
of software systems, whose architecture is specified using them. Several ADLs
have been proposed so far (e.g., Aster[17], Conic [28], C2 [40], Darwin [26],
Dcl [4], Durra [5], Rapide [24], Sadl [33], Unicon [38], Wright [2]); they
are more or less based on the same principles [7, 15, 30]. In particular, the
architecture of software systems is specified using components, connectors and
configurations.

Before getting into the semantics of components, connectors and configura-
tion, it should be noted that ADLs are widely known and used in academia,
but their use in the industry is quite limited. Industrials, nowadays, prefer using
object-oriented notations for specifying the architecture of their software sys-
tems. UML, in particular, is becoming an industrial standard notation for the
definition of a family of languages (i.e., UML profiles) for modeling software
systems. However, there is a primary concern regarding the imprecision of the
semantics of UML.

One way to increase the impact of ADLs in the real world and decrease the
ambiguity of UML is to define an ADL that provides a set of core extensible
UML-based language constructs for the specification of components, connectors
and configurations. This core set of extensible constructs shall further facilitate
future attempts for mapping existing ADLs into UML.

2.1 Components

A component is a unit of data or computation and the basic features that char-
acterize it are its interface, type and properties.

A component interface describes a number of interaction points between the
component and the rest of the architecture. All of the ADLs mentioned above
support this particular feature. However, several syntactic and semantic differ-
ences have been observed between them. In Aster, for instance, an interface
defines a set of operations; components export interfaces to the environment and
import interfaces from other architectural elements. In Conic, an interface de-
fines a set of entry and exit ports that are typed. In Darwin, Conic’s successor,
an interface specifies services required from and provided by a component. In
Dcl, components are called modules. A module is a group of actors, i.e., a group
of processing elements that communicate through asynchronous point-to-point
message passing [1]. A module description comprises request rules, which pre-
scribe the module’s interface. A component interface in C2 defines two kinds of
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interaction points, named top and bottom ports. Ports are used by a particu-
lar component to accept requests from, and issue requests to, components that
reside either above, or below it (the architecture is topologically structured). A
component interface in Unicon defines a number of interaction points, called
players. Players are typed entities. The type of a player can be out of a limited
set of predefined types. In Wright, a component interface defines input and
output ports. Pretty similar is the way interaction points are defined in Durra.
In Rapide, the points of interaction can be either services required from or pro-
vided by a component, or events generated by a component. Finally, in Sadl,
an interface is just a point of interaction.

A component type is a template used to instantiate different component in-
stances into a running configuration. All of the ADLs mentioned above distin-
guish between component types and instances. Types are usually extensible.
Sub-typing (e.g., in C2, Aster) is a typical method used to define type exten-
sions. In Darwin and Rapide, types are extended through parameterization.

Component properties characterize the component’s observable behavior
(which may include erroneous behavior). In Wright, behavior is described in
Csp [12, 13]. In Rapide, partially ordered sets of events (posets) are used to
describe component behavior. In the very first version of Darwin, properties
were described in Ccs [32]; in the latest version, properties are described in pi-
calculus, which extends the semantics of Ccs with means that allow specifying
the dynamic instantiation of processes [31]. In Dcl, the behavior of a module
is deduced by the behaviors of the actors that constitute the module. An exten-
sion of the basic Actors formalism is used to describe the behavior of actors [3]
within a software architecture. Finally, in Aster, temporal logic is used to de-
scribe properties. Similarly, in Sadl, the authors propose using Temporal Logic
of Actions (Tla) [21] for the specification of component properties.

2.2 Connectors

A connector is an architectural element that models the interaction protocols
among components. Its basic features are again its interface, type, and proper-
ties.

Some ADLs do not consider connectors as first-order architectural elements
(e.g., Conic, Darwin, Rapide). For the other ADLs, a connector specification
is similar to a component specification. In Wright and Unicon, for instance,
a connector interface is a set of interaction points, named roles. In Durra, a
connector is called channel and its interface is defined in the very same way
as a component interface. In C2 and Sadl, connector interfaces are described
using the same syntax as the one used to describe component interfaces. In
Dcl, connectors are again groups of actors, called protocols. Protocols define
a set of roles describing the way interaction takes place among modules. In all
ADLs, except for Unicon, connector types are extensible. The formalism used
for the specification of component properties is further used for the specification
of connector properties.
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2.3 Configurations

A configuration is the assembly of components and connectors. It is described
in terms of associations (usually called bindings) between points of interaction.
Several ADLs either assume or provide means to describe constraints for a par-
ticular configuration.

Constraints may simply describe restrictions on the way components are
bound. In Darwin, for instance, only bindings between required and provided
services are allowed. In Aster, the types of the interfaces that are bound should
match. Some ADLs allow specifying constraints on the behavior of the overall
configuration. In Aster, for example, we can specify dependability requirements
for a particular configuration. Rapide also allows specifying constraints on the
behavior of a particular configuration. Constraints may also relate to the (dy-
namic) evolution of a particular configuration. In Durra and Rapide, for ex-
ample, it is possible to describe conditions under which a configuration changes
into another one.

2.4 ADLs and Dependability Analysis

Pioneer work on the dependability analysis of software systems at the architec-
tural level includes Attribute-Based Architectural Styles (ABAS) [25]. In general,
an architectural style includes the specification of: types of basic architectural
elements (e.g., pipe and filter) that can be used for specifying a software archi-
tecture, constraints on the use of these types, and patterns describing the data
and control interaction between them.

An ABAS is an architectural style, which additionally provides modeling sup-
port for the analysis of a particular quality attribute. Dependability attributes
(i.e., reliability, availability, safety) are among the quality attributes for which
we can define ABASs. More specifically, an ABAS includes the specification of:

– Quality attribute measures characterizing the quality attribute (e.g., the
probability that the system correctly provides a service for a given dura-
tion).

– Quality attribute stimuli, i.e., events affecting the value of the quality at-
tribute measures (e.g., failures).

– Quality attribute properties, i.e., architectural properties affecting the value
of the quality attribute measures (e.g., faults, redundancy).

– Quality attribute models, i.e., traditional models that formally relate the
above elements (e.g., a state space model that predicts reliability based on
the failure rates and the redundancy used).

In [20], the authors introduce the Architecture Tradeoff Analysis Method
(ATAM) where the use of an ABAS is coupled with the specification of a set of
scenarios that constitutes a service profile. ATAM has been applied for analyz-
ing quality attributes like performance, availability, modifiability, and real-time.
In all these cases, quality attribute models (e.g., state-space models, queuing
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networks, etc.) are manually built given the specification of a set of scenarios
and an ABAS-based architectural description of a system. However, in [20], the
authors recognize the complexity of the aforementioned task; the development
of quality analysis models requires about 25% of the time spent for applying the
whole method. ATAM is a promising approach for doing things right. However,
it needs to be enriched for facilitating the specification of quality models.

One solution to the previous lies on the automated generation of quality
attribute models from architectural descriptions. Note that there is no unique
way to model systems. A model is built based on certain assumptions. Thus,
the model generation procedures should be customizable. Customization is done
according to the assumptions, made by the developer for the quality stimuli and
properties, affecting the value of the particular quality attribute that is assessed.
While this paper concentrates on dependability quality attributes, the interested
reader may refer to [43] for details regarding the case of performance.

3 ABAS for Automated Dependability Analysis of
Software Architectures

As already mentioned in the introduction, dependability is characterized by a
number of attributes including reliability, availability, safety, security. For relia-
bility, availability and safety, there exist probability-based theoretic foundations,
enabling dependability analysis. In this section, we define an ABAS that facili-
tates dependability analysis regarding these attributes [42].

To perform dependability analysis, we have to specify a service profile, i.e., a
set of scenarios, describing how the system provides a particular service. A sce-
nario (e.g., a UML collaboration or sequence diagram) specifies the interactions
among a set of component and connector instances, structured as prescribed by
the configuration of the system. Scenarios are associated with the values of the
dependability measures that the system’s users require (these values are gath-
ered during the requirements elicitation). Moreover, the definitions of the base
architectural elements are associated with dependability measures, properties,
and stimuli, as detailed below.

3.1 Dependability Measures, Stimuli, and Properties

The basic reliability measure we use is the probability that the system provides
correct service for a given time period. Similarly, the availability measure we
consider is the probability that the system provides correct service at a given
moment in time. For safety, a typical measure is the probability that there will be
no catastrophic failure for a given time period. Hence, safety analysis is reliability
analysis regarding only catastrophic failures.

A scenario may fail if instances of components, nodes3, and connectors used
in it, fail because of faults causing errors in their state. The manifestations of
3 An architectural component is assumed to be associated with a set of nodes on top

of which it executes. For primitive components the associated set contains one node,
while for composite components, it may contain more than one node
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errors are failures. Hence, faults are the basic properties, associated with compo-
nents/connectors/nodes, which affect the dependability measures. Failures are
the stimuli, associated with components/connectors/nodes, causing changes in
the value of the dependability measures. According to [22], faults and failures
are further characterized by the features given in Tables 1 and 2. Different com-
binations of the values of these features can be used to customize properly the
generation of dependability models, which is detailed in Section 3.2.

Features Range Associated Architectural Element

domain time/value Component/Connector/Node
perception consistent/inconsistent

Table 1. Dependability Stimuli: Specification of Failures

Features Range Associated Architectural Element

nature intention/accident Component/Connector/Node
phase design/operational
causes physical/human
boundaries internal/external
persistence permanent/temporary
arrival-rate Real
active-to-benign Real
benign-to-active Real
disappearance Real

Table 2. Dependability Properties : Specification of Faults

Another property of the base architectural elements that affects dependabil-
ity measures is redundancy. Redundancy schemas can be specified using the
base architectural constructs defined in Section 2. More specifically, a redun-
dancy schema is a composite component that encapsulates a configuration of
redundant architectural elements, which behave as a single fault tolerant unit.
According to [23], a redundant schema is characterized by the following features:
the kind of mechanism used to detect errors, the way the constituent elements
execute towards serving incoming requests, the confidence that can be placed
on the results of the error detection mechanism and the number of component
and node faults that can be tolerated. The features characterizing a redundancy
schema are summarized in Table 3. A repairable redundancy schema is charac-
terized by additional features (e.g., repair-rate).

3.2 Dependability Models

The dependability properties, stimuli and measures can be formally related using
Block Diagrams (BDs), Fault Trees (FTs) and state space models [34, 11, 35].
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Features Range Associated Architectural Element

error-detection vote/comp./acceptance Component
execution parallel/sequential
confidence absolute/relative
service-delivery continuous/suspended
no-comp-faults Integer
no-node-faults Integer

Table 3. Redundancy Property

A BD represents graphically a constraint for providing a service S. Here-
after, we call such a constraint, constraint-to-succeed. The BD consists of a set
of system components that need to be operational to provide S (i.e., the com-
ponents participating in a scenario that describe how the system provides S).
Every component C in the BD is characterized by certain dependability mea-
sures. The reliability (resp. availability) measure for C is the probability that C
provides correct service for a time period T (resp. time instance t). The safety
measure for C is the probability that there is no catastrophic failure of C during
a time period T. Components are connected using serial or M-out-of-N parallel
connections. If we connect N components using serial connections, all of them
must be operational to provide S. On the other hand, if we connect them using
an M-out-of-N parallel connection, at least M components out of the set must
be operational to provide S. The overall system reliability (resp. availability,
safety) is obtained through simple combinatorial calculations involving the re-
liability (resp. availability, safety) measures of the individual components that
belong to the BD.

Taking an example, suppose that providing a service for a time period T
requires using components C1, C2 and C3. The corresponding constraint-to-
succeed can be specified as a logical formula, C1 ∧ C2 ∧ C3, consisting of the
conjunction of three predicates. Predicates C1, C2, C3 are true if components
C1, C2, C3 are operational and false otherwise. The BD that graphically repre-
sents the constraint-to-succeed is shown in Figure 1(a). According to that BD,
C1 is connected in serial with C2, which is further connected in serial with C3.
The overall reliability is the probability that the C1∧C2∧C3 constraint holds:

BD.reliability = P (C1 ∧ C2 ∧ C3)
P (C1 ∧ C2 ∧ C3) = C1.reliability ∗ C2.reliability ∗ C3.reliability

Suppose now that providing a service S for a time period T requires using
either components C1, C2 or C1, C3. Again, the constraint-to-succeed can be
described as a logical formula, C1 ∧ (C2 ∨ C3). The corresponding BD is given
in Figure 1(b). C2 and C3 are connected with a 1-out-of-2 parallel connection
forming a new block, which is connected in serial with C1. The overall reliability
is the probability that the C1 ∧ (C2 ∨ C3) constraint holds:
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C1 C2 C3

C2

C1

C3

(b) C1 /\ (C2 \/ C3

(a) C1 /\ C2 /\ C3

)

reliablity

reliablity

reliablity reliablity reliablity

reliablity

Fig. 1. Example of a Block Diagram.

BD.reliability = P (C1 ∧ (C2 ∨ C3))
P (C1 ∧ (C2 ∨ C3)) = C1.reliability ∗ C2.reliability+

C1.reliability ∗ C3.reliability−
C1.reliability ∗ C2.reliability ∗ C3.reliability

So far, we calculate the dependability measures of a particular system as a
function of the dependability measures that characterize the components of this
system. However, we can further think of dependability measures as a function
of the probability that the system fails. To calculate the probability of system
failure we have to identify and model what should happen for the system to
fail. The previous can be achieved using FTs [34, 11, 35]. FTs and BDs are
equivalent in the sense that the values of the dependability measures obtained
are the same. Moreover, having a BD, we can easily generate automatically
an equivalent FT, and conversely. However, BDs and FTs enable modeling the
system from different perspectives, depending on which one is more convenient
for the worker in charge of the dependability analysis.

An FT visualizes a constraint, which describes undesired stimuli (i.e., fail-
ures) that lead to system failure. Hereafter, we call such a constraint, constraint-
to-fail. The overall system failure is called the top-event. Undesired events are
connected with AND and OR gates. AND gates connect events whose subse-
quent or concurrent occurrence triggers the top-event. OR gates connect events
whose alternative occurrence triggers the top-event. Every event is characterized
by the probability of its occurrence (Poccur).

Taking an example, suppose that providing a service S requires using compo-
nents C1, C2 and C3, then a failure of any of them leads to system failure. The
aforementioned constraint can be described as a logical formula, FC1 ∨ FC2 ∨
FC3. Predicates FC1, FC2, FC3 are true if components C1, C2, C3, respec-
tively, have failed and false otherwise. The resulting FT, shown in Figure 2(a),
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depicts an OR gate that takes as input the failure events of C1, C2, C3 and has
as output the failure of the overall system. The reliability in this case is:

FT.reliability = 1 − P (FC1 ∨ FC2 ∨ FC3)
P (FC1 ∨ FC2 ∨ FC3) = FC1.Poccur + FC2.Poccur + FC3.Poccur−

FC1.Poccur ∗ FC2.Poccur−
FC1.Poccur ∗ FC3.Poccur−
FC2.Poccur ∗ FC3.Poccur+
FC1.Poccur ∗ FC2.Poccur ∗ FC3.Poccur

Suppose now that S requires using component C1 and either component C2,
or component C3. Then, a failure of both C2 and C3 leads to system failure. Al-
ternatively, a failure of C1 leads to system failure. The previous can be specified
as a logical formula, FC1 ∨ (FC2 ∧ FC3). Figure 2(b) gives the corresponding
FT. The reliability in this case is:

FT.reliability = 1 − P (FC1 ∨ (FC2 ∧ FC3))
P (FC1 ∨ (FC2 ∧ FC3)) = FC2.Poccur ∗ FC3.Poccur + FC1.Poccur−

FC2.Poccur ∗ FC3.Poccur ∗ FC1.Poccur

O
R

toplevel failure

FC1
Poccur

FC2
Poccur

FC3
Poccur

A
N
D

FC2
Poccur

FC3
Poccur

O
R

FC1
Poccur

toplevel failure

(b) C1 /\ (C2 \/ C3 )

(a) C1 /\ C2 /\ C3

Fig. 2. Example of a Fault Tree.

The techniques we presented until now, rely on static descriptions of either
the components we need for correct service provisioning (i.e., BDs), or the fail-
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ures that lead to an overall system failure (i.e., FTs). Although those techniques
are quite easy to apply, they do not cover cases where we have to model dynamic
aspects of the system that affect the values of the dependability measures. For
example, the dependability analysis of systems with transient faults involves
modeling that those faults disappear with a certain rate. Similarly, the depend-
ability analysis of systems with intermittent faults requires modeling the way
those faults activate (if an intermittent fault is active the service is not correctly
provided) and passivate (if an intermittent fault is passive the service is correctly
provided despite the presence of the fault), during the lifetime of the system. In
other words, we have to model the failure behavior of the components and con-
nectors that make up the system. In the case of repairable systems, we have to
further model how faulty architectural elements eventually become operational,
and conversely. Another issue that we can not model with BDs and FTs is the
occurrence of dependent failures.

Modeling and analyzing the failure and repair behavior of systems relies
on state space models [34, 11, 6, 10]. A state space model consists of a set of
transitions between states of the system. A state describes a situation where
either the system operates correctly, or not. In the latter case, the system is
said to be in a death state. The state of the system depends on the states of
the architectural elements that constitute it. Hence, a state can be seen as a
composition of sub-states, each one representing the situation of an architectural
element. A state is constrained by the range of all possible situations that may
occur. A transition is characterized by the rate by which the source situation
changes into the target situation. If, for instance, the difference between the
source and the target situation is the failure of a component, the transition
rate is the faulty component’s failure rate. If, on the other hand, the difference
between the source and the target situation is the repair of a component, the
transition rate is the component’s repair rate. The mathematical model that is
employed for calculating reliability and availability based on a state space model,
involves solving a system of first order differential equations.

Taking an example, suppose that in order to provide a service S we have to
use components C1, C2 and C3. Moreover, suppose that C1, C2 and C3 have
permanent faults. The state space model that specifies the failure behavior of the
system is given in Figure 3; it consists of four states representing the following
situations:

State 1 C1, C2, C3 are operational.
State 2 C1 failed, C2, C3 are operational (death state).
State 3 C2 failed, C1, C3 are operational (death state).
State 4 C3 failed, C1, C2 are operational (death State).

The state space model comprises transitions from state 1 to states 2, 3, 4
characterized by the failure rates of C1, C2, C3, respectively.

Let P (t) = [p1(t), p2(t), p3(t), p4(t)] be a vector that gives the probabilities
that the system is in states 1, 2, 3, 4, respectively. The system of differen-
tial equations that can be used to calculate those probabilities is the following:
P ′(t) = P (t)∗A where A is a matrix that can be easily calculated from the state
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space model as follows: For every transition from state i to state j, set A(i, j)
equal to the transition rate. The value of every diagonal element A(i, i) is set to
the negated sum of the non-diagonal i row elements of the matrix.

−∑
(A(0, i))i=1...3 C1.failure rate C2.failure rate C3.failure rate

A = 0 0 0 0
0 0 0 0
0 0 0 0

Assuming that P (0) = [1, 0, 0, 0], and that the failure rates of C1, C2, C3 are
constant we have the following solution for P (t):

P (t) = P (0) ∗ eA∗t

C1 OK

C3 Failed

C2 OK

State 4:

C1 OK

C3 OK

C2 OK

C1 Failed

C2 Failed

C3 OK

C2 OK

C3 OK

C1 OK

C1/\C2/\C3

State 3:

State 2:

State 1:

C3.failure-rate

C1.failure-rate

C2.failure-rate

Fig. 3. Example of a state space model.

3.3 Automated Generation of State Space Models from
Architectural Descriptions

The specification of large state-space models is often too complex and error-
prone. The approach proposed in [19] alleviates this problem. In particular, in-
stead of specifying all possible state transitions, the authors propose specifying
the state range of the system, a death-state constraint, and transition rules be-
tween sets of states of the system.
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The state range consists of a set of variables whose values describe a possible
state situation. For example, a system that consists of a redundancy schema of
three redundant components may be in 4 states. In each state i : [0..3], 3 − i
redundant components are operational. Then, the state range is defined as a
single variable numOfOperational : [0..3] whose value specifies the number of
operational components.

A transition rule may state that: if the system is in a state where more than
1 component are operational (e.g., numOfOperational > 1), then the system
may get into a state where the number of operational components is reduced by
one (e.g., numOfOperational = numOfOperational − 1). Given the previous
information, a complete state space model can be generated using the algorithm
described in [19]. Briefly, the algorithm takes as input an initial state (e.g., the
state 0 where numOfOperational = 3) and recursively applies the transition
rules. During a recursive step and for a particular transition rule, the algorithm
produces a transition to a state derived from the initial one. If the death-state
(e.g., numOfOperational <= 1) constraint holds for the resulting state, the
recursion stops.

State range definitions, transitions rules and death constraints can be auto-
matically generated from architectural descriptions embedding the specification
of dependability stimuli and properties, by following the steps below.

First, a state range definition for each scenario scen belonging to a given
service profile is generated. The state of a scenario is composed of the states of
the component and connector instances used within the scenario and the state
of nodes on top of which the component instances execute. If a component is
composite, its state is composed of the states of the constituent elements. The
state range for the scenario consists of a set of variables, each one of which cor-
responds to a component/connector/node. The values of a variable depend on
the kind of faults that may cause failures. At this point, the generation pro-
cedure is customized accordingly. In the case of permanent faults for instance,
a component/connector/node may be either in an operational, or in a failed
state. Hence, the corresponding state range variable may take two possible val-
ues OPERATIONAL or FAILED. In the case of intermittent faults, a compo-
nent/connector/node may be in an operational state, or it may be in a failed-
active or in a failed-benign state. Consequently, the corresponding state range
variable may take three values OPERATIONAL, FAILED-ACTIVE, FAILED-
BENIGN. The values of a state range variable further depend on the kind of
redundancy used (take for instance the example we gave above with the 3 redun-
dant components). Again, the generation procedure is customized accordingly.

After generating the state range definition for a scenario scen, the step that
follows comprises the generation of transition rules for components/connectors/-
nodes used in the scenario. These rules depend on the kinds of faults of the
corresponding architectural element. For instance, for permanent faults, the rules
follow the pattern given in Table 4. What is left at this point is to generate the
definition of the initial state of the scenario, and the definition of the death
state constraint. The initial state is a state where all of the elements used in the
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Architectural Rule
Element

Component For all instances of primitive components, c:

– If scen is in a state where c is in an OPERATIONAL state
st , then scen may get into a state st ′ where c is FAILED.
The rate of these transitions is equal to the arrival rates of
the faults that cause the failure of c, c.Faults.arrival -rate
(see Table 2).

For all instances of composite components, c:

– If scen is in a state st where c is OPERATIONAL, then scen
may get into a state st ′ where c is FAILED due to a failure
of a constituent element c′. The rate of these transitions is
equal to the arrival rates of the faults that cause the failure
of c′, c′.Faults.arrival -rate .

For all instances of composite components rc, representing a
redundancy schema of k components:

– If scen is in a state st where rc is OPERATIONAL, and the
number of failed redundant component instances is fc, then
scen may get into a state st ′ where the number of failed
components of rc is fc + l. The difference between st and
st ′ is l redundant component instances of the same type t,
which in st were OPERATIONAL and in st ′ are FAILED.
This rule captures failure dependencies among redundant
component instances of the same type. These components
are used in the same conditions and with the same input.
Hence, if one of them fails due to a design or an operational
fault, all of them will fail.

Connector For all instances of primitive connectors, see the case of primitive
components. For all instances of composite connectors, see the
case of composite components.

Node We assume that nodes fail independently from each other.
Hence, for all nodes in scen :

– If scen is in a state st where a node n is in an OPERA-
TIONAL state, then scen may get into a state st ′ where n
is in a FAILED state.

– Moreover, in st ′, all instances of components c deployed on
n are in a FAILED state.

– Finally, in st ′ all instances of redundancy schemas rc, built
out of m components deployed on n, have fc + m failed
components and fn + 1 failed nodes.

The rate of these transitions is equal to the arrival rate of the
faults that caused the failure of n, n.Faults.arrival -rate .

Table 4. Transition Rules for Permanent Faults
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scenario are operational. A scenario is in death state if any of the architectural
elements used in it is not operational. Hence, the death state constraint consists
of the disjunction of base predicates, each one of which defines the death state
constraint for an individual element used in the scenario. More specifically, the
base predicate for a component, connector, or a node, states that the value
of the corresponding state range variable is FAILED. The base predicate for a
redundancy schema is the disjunction of two predicates. The first one states that
the number of failed redundant component instances is greater than the number
of component faults that can be tolerated. Similarly, the second one states that
the number of failed redundant nodes is greater than the number of node faults
that can be tolerated.

4 A Developer-Oriented Environment for Dependability
Analysis

The ideas proposed so far for dependability analysis at the architectural level
are realized in the prototype implementation of a developer-oriented environment
[43, 36]. As we already discussed in Section 2, UML is an emerging industrial
standard for modeling the architecture of software systems. Consequently, our
environment relies on an already existing UML modeling tool. More specifically,
we use the Rational Rose tool4 for the specification of software architectures.

However, we further mentioned the fact that the semantics of UML are impre-
cise compared to the ones of the ADLs we examined in Section 2. Consequently,
we proposed defining an ADL that extends the standard UML semantics towards
dealing with this lack of precision. To define ADL components, connectors, and
configurations in relation to standard UML model elements, we undertook the
following steps: (i) identify standard UML element(s), whose semantics are close
to the ones needed for the specification of ADL components, connectors and con-
figurations; (ii) if the semantics of the identified element(s) do not exactly match
the ones needed for the specification of components, connectors, and configura-
tions, extend them properly and define a corresponding UML stereotype(s)5; (iii)
If the semantics of the identified element(s) match exactly, adopt the element(s)
as a part of the core ADL language constructs.

As discussed in the literature [9, 29], various UML modeling elements may be
used to specify an ADL component. The most popular ones are the Class, Com-
ponent, Package, and Subsystem elements. From our point of view, the UML
Component element is semantically far more concrete compared to an ADL
component, as it specifically corresponds to an executable software module. The
UML Class element is often considered as the basis for defining architectural
4 http://www.rational.com. Notice that the use of the Rational Rose tool was mainly

motivated by pragmatic consideration that is the ownership of a license and former
experience with this tool. However, our specific developments may be integrated
within any extensible, UML-based tool that processes XMI files.

5 A UML stereotype is a UML element whose base class is a standard UML element.
Moreover, a stereotype is associated with additional constraints and semantics.

http://www.rational.com
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components. However, a UML class does not directly support the hierarchical
composition of systems. It is true that the definition of a UML Class may be
composite, consisting of a number of constituent classes. However, the class spec-
ification can not contain the interrelationships among the constituent classes.
Consequently, if an ADL composite component is mapped into a UML class, its
definition may comprise a set of constituent components for which we have no
means to describe the way they are connected through connectors. Technically,
to achieve the previous we would need to define a Package containing the UML
class definitions and a static structure diagram showing how they are connected.
However, packages cannot be instantiated or associated with other packages.
Hence, they are not adequate for specifying ADL components. This leads us to
use the UML Subsystem element to model ADL components. A UML Subsystem
is a subtype of both the UML Package and Classifier element. Hence, it may be
instantiated multiple times, and associated with other subsystems. Precisely, we
define an ADL component as a stereotyped UML Subsystem, that may provide
and require standard UML interfaces. The ADL component stereotype is charac-
terized by a property, named “composite”, which may be true or false, depending
on whether or not a component is built out of other components and connectors.
Moreover, the ADL component stereotype is associated with the dependability
features identified in Tables 1, 2 and 3.

The natural choice for specifying ADL connectors in UML is by stereotyping
the standard UML Association element. A connector role corresponds to an as-
sociation end. Moreover, the distinctive feature of a connector is a non-empty set
of interfaces, named “Interfaces”, representing the specific parts of components’
functionality playing the roles. Each interface out of the set must be provided by
at least one associated component. Equally, each interface out of the set must be
required by at least one associated component. The ADL Connector stereotype
is further characterized by the dependability features identified in Tables 1 and
2.

So far, we considered connectors as associations representing communication
protocols. However, we must not ignore the fact that, in practice, connectors
are built from architectural elements, including components and more primitive
connectors. Taking CORBA for example, a CORBA connector can be seen as a
combination of functionalities of the ORB and of CORBA services (i.e., COSs).
Hence, it is necessary to support hierarchical composition of connectors. At this
point, we face a technical problem: UML Associations can not be composed of
other model elements. However, there exists a standard UML element called
Refinement defined as “a dependency where the clients are derived by the suppli-
ers” [37]. The refinement element is characterized by a property called mapping.
The values of this property describe how the client is derived by the supplier.
Hence, to support the hierarchical composition of connectors, we define a stereo-
type, whose base class is the standard UML Refinement element and is used
to define the mapping between a connector and a composite component that
realizes the connector.
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By definition, a configuration specifies the assembly of components and con-
nectors. In UML, the assembly of model elements is specified by a model. The
corresponding semantic element of a model is the standard UML Model ele-
ment, defined as “an abstraction of a modeled system specifying the system from
a certain point of view and at a certain level of abstraction...the UML Model
consists of a containment hierarchy where the top most package represents the
boundary of the modeled system” [37]. Hence, a configuration is actually a UML
model, consisting of a containment hierarchy where the top-most package is a
composite ADL component. The given definition of configuration is weak in that
it enables the description of any architectural configuration provided it complies
with the well-formedness rules associated with the component and connector
elements. This results from our concern of supporting the description of various
architectural styles, which possibly come along with specific ADLs as is the case
with the C2 style [30]. Constraints that are specific to a style are introduced
through the definition of a corresponding extension of the ADL configuration el-
ement, possibly combined with extensions of the ADL component and connector
stereotypes.

The Rational Rose tool allows the definition of user specific add-ins that
facilitate the specification and use of stereotyped elements and their associated
features. Given the aforementioned facility, we implemented an add-in that eases
the specification of architectural descriptions using the stereotypes mentioned
above. Moreover, we use an already existing add-in, which enables generating
XMI textual specifications of architectures specified graphically using the Ratio-
nal Rose tool; these textual specifications serve as input to tools for dependability
and performance analysis [43].

The generation of the XMI textual specifications for dependability analysis
relies on the automated procedure we described in Section 3 (the procedure and
the tools we use for the case of performance are detailed in [43]). The specific
tool we use for dependability analysis is SURE-ASSIST [6]. The tool is properly
customized to accept as input the textual specifications we generate. Then, it
calculates reliability bounds. The tool was selected because it is highly rated
among other reliability tools [10] and because it is available for free. However,
the automated support provided by our environment for dependability analysis
can be coupled with any other tool that accepts as input state space models.

5 The Developer-Oriented Environment in Action

To illustrate the use of our environment for dependability analysis, we employ
an example taken from a case study we investigated in the context of the DSoS
IST project6. The case study is a travel agent system (TA). TA offers services
for flight, hotel, and car reservations. It consists of the integration of different
kinds of existing systems supporting air companies, hotel chains, and car rental
companies. Figure 4 gives a screen shot of the actual architecture of the TA as

6 http://www.newcastle.research.ec.org/dsos

http://www.newcastle.research.ec.org/dsos
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Fig. 4. The Architecture of the Travel Agent system.

specified using the UML modeling tool, which we customized. The TA comprises
the TravelAgentFrontEnd component, which serves as a GUI for potential cus-
tomers wanting to reserve tickets, rooms, and cars. The TA further includes the
HotelReservation, FlightReservation, CarReservation components, which accept
as input individual parts of a customer request for hotel, ticket and car reserva-
tion, and translate them into requests for services provided by specific hotel, air
company and car company components. The set of the hotel components is rep-
resented by the Hotels composite component. Similarly, the sets of air company
and car company components are represented by the AirCompanies and Car-
Companies composite components. Two different kinds of connectors are used in
our architecture. The HTTP connectors (e.g., see Figure 4) represent the inter-
action protocol among customers and the TA front end component, and among
components translating requests and existing component systems implementing
Web servers. The RPC connector represents the protocol used among the front
end component and the components that translate requests. Note that multi-
party connectors abstract complex connector realizations, which may actually be
refined into various protocols, depending on the intended behavior. For instance,
the RPC connector may be refined into a number of bi-party connectors as well
as into a complex transactional connector.
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The dependability measure we are interested in is reliability. However, the
goal of the analysis is not to obtain precise values of the reliability measure since
this would require to precisely model the Internet. The previous is considered, in
general, as rather unrealistic [8]. For that reason, we concentrate on comparing
different scenarios towards improving the design of our system, while assuming
certain invariants for modeling issues related to the Web. Our objective is to try
to improve the reliability of TA while keeping the cost of the required changes
in the TA system low.

The scenario shown in Figure 5 as a UML collaboration diagram, is a typical
use case of TA. This scenario constitutes the basic service profile used for the
reliability analysis, i.e., the provided scenario is processed for the automatic gen-
eration of the state space model analyzed by the SURE-ASSIST tool. According
to the scenario, one or more customers use an instance, ta, of the TravelAgent-
FrontEnd to request the reservation of a flight ticket, a hotel room and a car.
The ta component instance breaks down such a request into 3 separate requests.
The first one relates to the flight ticket reservation and is sent to an instance,
fr , of the FlightReservation component. The fr component instance uses this
request to generate a new set of requests, each one of which is specific to an
air company that collaborates with the TA system. The set of specific requests
is finally sent to an instance, ac, of the AirCompanies composite component,
which represents the current set of collaborating air companies. Similarly, the
second and the third requests are related to the hotel and the car reservations,
respectively. These requests are sent to instances of the HotelReservation and
CarReservation components, which reproduce them properly and send them to
the current sets of collaborating hotels and car companies.

The component instances used in the scenario may fail to give answers to
customers. Component failures are manifestations of design faults. We assume
that these faults are accidental, created by the component developers. Moreover,
component faults are all permanent and their arrival rates vary depending on
the type of the components. More specifically, the fault arrival rates for the
components that represent component systems supporting hotels, air companies
and car companies are much smaller compared to the faults arrival rates of
the rest of the components that make up the TA system. The reason behind
this is that the component systems supporting hotels, air companies and car
companies have already been in use and their implementations are quite stable.
On the other hand, the TA front end and reservation components are still under
development. The nodes used in our scenario may fail because of permanent
faults. HTTP and RPC connectors may also fail, however, in this case it is more
pragmatic to assume that we deal with temporary faults, which may disappear
with a certain rate. The arrival rates of node faults are much smaller than the
arrival rates of component faults. This holds similarly for the RPC connector.
On the contrary, the HTTP connector is expected to be quite unreliable, with a
failure rate greater than that of the components used in the TA. For illustration,
Figure 5 shows the detailed specification of the reliability stimuli and properties
that are given for the FlightReservation component.
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Fig. 5. A generic scenario for TA

By taking a closer look at the architecture of the TA system, we can de-
duce that some sort of redundancy is used. In particular, the Hotels, AirCom-
panies and CarCompanies components are composite, consisting of k com-
ponents that represent the dependable systems supporting hotels, air compa-
nies and car companies. The reservation components request from them, room,
ticket and car reservations. For the scenario to be successful, we need answers
from at least one hotel, one air company, and one car company. Hence, Ho-
tels, AirCompanies, and CarCompanies can be seen as ad hoc redundancy
schemas with the following properties: the execution of redundant elements
is parallel (Redundancy.execution = parallel), the number of component and
node faults that can be tolerated is k − 1 (Redundancy.no-comp-faults and
Redundancy.no-node-faults = k − 1).

To further improve the architecture regarding the provided reliability, we
designed three additional redundancy schemas. The first one contains n differ-
ent versions of the HotelReservation component. Upon the instantiation of the
schema, n component instances are created, one of each version. These instances
execute in parallel and are deployed on n different nodes. The second schema
contains n versions of the FlightReservation component, the instances of which
are also deployed on the n nodes, on top of which the instances of the Hotel-
Reservation component execute. Finally, the last schema contains n versions
of the CarReservation component, the instances of which are also deployed on
the nodes used to execute the instances of the HotelReservation component. At
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runtime, a customer request is broken down by the instance of the TravelA-
gentFrontEnd component into individual requests for flight ticket, hotel room
and car reservation. Each one of these requests is replicated and sent to all the
redundant instances of the corresponding reservation component. Each instance
of the reservation component translates the request into specific requests for the
corresponding available component systems and sends them. When the instance
of the TravelAgentFrontEnd starts receiving offers for flight tickets, hotel rooms
and cars, it removes identical reply messages and combines them into replies that
are returned to the customer. We tried our scenario for n = 1, 2, 3 redundant
versions. Given the aforementioned scenario, three complete state space models
were generated and analytically solved. The results obtained are summarized
in Figure 6. For further detail about the scenario, including complexity of the
generated state space models, the interested reader is referred to [43].

The main observation we make is that the reliability of TA does increase.
However, the improvement when we use redundant versions is certainly not
spectacular. The explanation for this is simple. In our scenario, the most un-
reliable element used is the HTTP connector. This is the main source causing
the reliability measure to have small values. Any improvement in the rest of the
architectural elements used shall not cover this problem, which unfortunately can
not be easily alleviated. Hence, using multiple versions does not bring much gain.
However, the good news are that regarding the cost of using multiple versions,
we do not lose much. The elements for which we produced multiple versions just
translate TA specific requests into component systems’ specific requests. Since
the functionality of these components is quite simple, re-implementing them
differently (e.g., using different developers) is not a complex, neither a time-
consuming task. Note here that the fact that the functionality of the redundant
components is simple does not mean that there can be no bugs in their imple-
mentation. Actually, mistakes in the mapping of TA requests into component
systems’ specific requests can be quite often. Furthermore, the cost of developing
multiple versions is low since we did not really use any strong synchronization
among the different versions.

Fig. 6. Results produced by the reliability analysis of TA
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6 Conclusion

Work in the software architecture domain primarily focuses on the standard (as
opposed to exceptional) behavior of the software system. However, it is crucial
from the perspective of system dependability to also account for failure occur-
rences, which impacts all the phases of the software development process, from
the requirements elicitation phase to the deployment phase. In the context of the
research activities of the INRIA ARLES research group7, we have more specif-
ically concentrated on solutions assisting the design and analysis of dependable
distributed software systems.

6.1 Assisting the Analysis of Dependable Systems

In this paper, we presented automated support for the dependability analysis of
software systems at the architectural level. The overall design and realization of
the resulting development environment is guided by the needs of its current and
potential users, imposing the simplification of certain important and inevitable
development activities related to the quality analysis and assurance of depend-
able systems. The quality analysis of systems is traditionally based on methods
and tools that have a strong formal basis. We believe that the proposed en-
vironment brings everyday developers closer to such methods and tools. The
environment relies on an architecture description language for the specification
of dependable systems architectures, which is defined based on UML, a standard
and widely accepted notation for modeling software. Our environment further
provides a certain level of automation that eases the development of traditional
quality models from architectural descriptions. The associated prototype has
been used in the context of the DSoS IST project for the quality analysis of
the Travel Agent system. Part of the analysis was presented here in the form of
demonstrating examples. We further used the basic ideas of our environment in
the context of the C3DS IST8 project for the performance and reliability analysis
of workflow-based dependable systems [41].

6.2 Assisting the Design of Dependable Systems

From the perspective of the system’s design, failures may be handled through
the integration within the system architecture of components and connectors
that provide fault tolerant capabilities. Practically, this means that failures are
handled by an underlying fault-tolerant mechanism (e.g., transparent replica-
tion management) at the middleware level. Such fault tolerance support must
further be coupled with application-specific fault tolerance that relies at least
on an exception handling mechanism, which enables the software developer to
specify the actions to be undertaken under the occurrence of application-specific
and underlying runtime exceptions. We have then carried out research in the
7 http://www-rocq.inria.fr/arles
8 http://www.newcastle.research.ec.org/c3ds/
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two following complementary directions towards assisting the architecting of de-
pendable systems:

(i) Systematic aid in the development of middleware architectures for depend-
able systems;

(ii) Architecture-based exception handling.

The use of middleware is the current practice for developing distributed sys-
tems. Developers compose reusable services provided by proprietary or standard
middleware infrastructures to deal with non-functional requirements. However,
developers still have to design and implement middleware architectures com-
bining available services in a way that best fits the application’s requirements.
In order to ease this task, we have customized the environment discussed in
this paper with the following features [18]: (i) an ADL for modeling middle-
ware architectures, (ii) a repository populated with architectural descriptions of
middleware services, and (iii) automated support for composing middleware ar-
chitectures out of available services according to target non-functional properties
whose quality may be assessed both qualitatively and quantitatively.

As previously raised, it is necessary to complement fault tolerance support
provided by the underlying middleware architecture, with support for exception
handling. We have, thus, proposed a solution to architecture-based exception
handling [16], which enhances exception handling implemented within compo-
nents and connectors. Our solution lies in: (i) extending the ADL so as to en-
able the specification of required changes to the architecture in the presence
of failures, and (ii) associated runtime support for enabling resulting dynamic
reconfigurations.

6.3 Perspectives

The above results have been proven successful for assisting the architecting of
dependable distributed systems that are closed, i.e., systems whose components
depend on a single administrative domain and are known at design time. How-
ever, future distributed systems will increasingly be open, which raises new issues
for making them dependable. In this context, we are undertaking research in the
following directions:

(i) Architecting open distributed systems in a way that accounts for mobility,
which requires support for the dynamic composition and quality assessment
of architecture instances;

(ii) Design of fault tolerance mechanisms for open distributed systems consider-
ing that the systems span multiple administrative domains and hence cannot
accommodate locking-based solutions as, e.g., enforced by transactional pro-
cessing [39].

In general, the above calls for new solutions that allow the development of de-
pendable systems that are highly dynamic and hence requires the integration of
adaptive runtime support aimed at enforcing dependability.
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[16] V. Issarny and J-P. Banâtre. Architecture-based Exception Handling. In Proceed-
ings of the 34th Hawaii International Conference on System Sciences, 2001.

[17] V. Issarny, C. Bidan, and T. Saridakis. Achieving Middleware Customization
in a Configuration-based Development Environment: Experience with the Aster
Prototype. In Proceedings of the 4th International Conference on Configurable
Distributed Systems, pages 207–214. IEEE, 1998.

[18] V. Issarny, C. Kloukinas, and A. Zarras. Systematic Aid for Developing Middle-
ware Architectures. Communications of the ACM (CACM), 45(6):53–58, 2002.

[19] S. C. Johnson. Reliability Analysis of Large Complex Systems Using ASSIST.
In Proceedings of the 8th Digital Avionics Systems Conference, pages 227–234.
AIAA/IEEE, 1988.

[20] R. Kazman, S. J. Carriere, and S. G. Woods. Toward a Discipline of Scenario-
Based Architectural Engineering. Annals of Software Engineering, 9:5–33, 2000.



284 Valérie Issarny and Apostolos Zarras

[21] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[22] J-C. Laprie. Dependable Computing and Fault Tolerance : Concepts and Ter-
minology. In Proceedings of the 15th International Symposium on Fault-Tolerant
Computing (FTCS-15), pages 2–11, 1985.

[23] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Definition and Analysis of
Hardware and Software Fault-Tolerant Architectures. IEEE Computer, 23(7):39–
51, 1990.

[24] D. C. Luckham and J. Vera. An Event-Based Architecture Definition Language.
IEEE Transactions on Software Engineering, 21(9):717–734, Sept 1995.

[25] M. Klein and R. Kazman and L. Bass and Carriere, S. J. and M. Barbacci and
H. Lipson. Attribute-based architectural styles. In Proceedings of the 1st IFIP
Working Conference on Software Architecture (WICSA-1), pages 225–243, 1999.

[26] J. Magee, N. Dulay, and J. Kramer. Structuring Parallel and Distributed Pro-
grams. In Proceedings of the 1st International Conference on Configurable Dis-
tributed Systems, March 1992.

[27] J. Magee, J. Kramer, and D. Giannakopoulou. Behavior Analysis of Software
Architectures. In Proceedings of the 1st IFIP Working Conference on Software
Architectures (WICSA-1), pages 35–49, 1999.

[28] J. Magee, J. Kramer, and M. Sloman. Constructing Distributed Systems in
CONIC. IEEE Transactions on Software Engineering, 16(5):663–675, June 1989.

[29] N. Medvidovic, D. S. Rosenblum, J. E. Robbins, and D. F. Redmiles. Modeling
Software Architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology, (to appear).

[30] N. Medvidovic and R. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 26(1):70–93, 2000.

[31] R. Milner. A Calculus of Communicating Systems. Cambridge University Press,
1980.

[32] R. Milner. Communicating and Mobile Systems: the pi-calculus. Springer-Verlag,
1999.

[33] M. Moriconi, X. Qian, and A. Riemenschneider. Correct Architecture Refinement.
IEEE Transactions on Software Engineering, 21(4):356–372, April 1995.

[34] G. Myers. Software Reliability - Principles and Practices. John Wiley and Sons,
1976.

[35] NASA. Reliability Block Diagrams and Reliability Modeling. Tech-
nical report, NASA Glenn Research Center, May 1995. http://www-
osma.lerc.nasa.gov/rbd/rbdtut.html.

[36] K. Nguyen and V. Issarny. Demonstration of Support for Architectural Design
for Dependable SoS. CSDA2 report. Available at URL:
http://www.newcastle.research.ec.org/dsos/deliverables.

[37] OMG. UML Semantics 1.3, 1997.
[38] M. Shaw, R. Deline, D. Klein, T. Ross, D. Young, and G. Zelesnik. Abstractions

for Software Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, 21(4):314–335, 1995.

[39] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Architecting Depend-
able Systems, volume 2677 of LNCS, chapter Dependability in the Web Services
Architecture. Springer-Verlag, 2003.

[40] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, J. E. Robbins,
K. A. Nies, P. Oreizy, and D. L. Dubrow. A Component and Message Based Ar-

http://www.newcastle.research.ec.org/dsos/deliverables


Software Architecture and Dependability 285

chitectural Style for GUI Software. IEEE Transactions on Software Engineering,
22(6):390–406, July 1996.

[41] A. Zarras and V. Issarny. Automating the Performance and Reliability Analysis
of Enterprise Information Systems. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), 2000.

[42] A. Zarras, C. Kloukinas, and V. Issarny. Architecting Dependable Systems, volume
2677 of LNCS, chapter Quality Analysis of Dependable Systems: A Developer
Oriented Approach. Springer-Verlag, 2003.

[43] A. Zarras, C. Kloukinas, V. Issarny, and K. Nguyen. Initial Results on Ar-
chitectures and Dependable Mechanisms for Dependable SoSs, IC2 report An
Architecture-based Environment for the Development of DSoS. Available at URL:
http://www.newcastle.research.ec.org/dsos/deliverables.

http://www.newcastle.research.ec.org/dsos/deliverables

	Introduction 
	Software Architecture and Dependability Analysis
	Components
	Connectors
	Configurations
	ADLs and Dependability Analysis

	ABAS for Automated Dependability Analysis of Software Architectures
	Dependability Measures, Stimuli, and Properties
	Dependability Models
	Automated Generation of State Space Models from Architectural Descriptions 

	A Developer-Oriented Environment for Dependability Analysis
	The Developer-Oriented Environment in Action
	Conclusion 
	Assisting the Analysis of Dependable Systems
	Assisting the Design of Dependable Systems
	Perspectives


