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ABSTRACT
In temporal interaction networks, such as financial transaction
networks, vertices model entities which exchange quantities (e.g.,
money) over time. We study the problem of identifying the origin of
the quantities that flow into the vertices of the network over time.
We consider various models of flow relay, which are related to dif-
ferent application scenarios and develop corresponding techniques
for flow provenance.
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1 INTRODUCTION
Many real world applications can be represented as temporal in-
teraction networks, which capture the information flow between
entities over time. Interaction networks are considered as a useful
tool to model a wide variety of problems and have been studied
extensively in literature [9], [6], [8], [4]. Examples of such graphs
are road networks, social networks, traffic networks, the Bitcoin
Network, food web etc. Hence, each edge of the network stores
the history of transactions between the corresponding nodes. Each
transaction is modeled by a timestamp and a quantity (e.g., money,
messages, kbytes, vehicles), which was transferred at that time.
Figure 1 shows a small interaction network, where each edge holds
a sequence of (time,quantity) pairs. For example, pair (2, 5) on edge
(v0,v1) means that vertex v0 transferred 5 units to v1 at time 2.
For example, the users of a cryptocurrency network could be the
vertices and the edges could model the transactions between them
(i.e., the times and the transferred amounts).

We study a flow provenance problem in interaction networks; our
goal is to find the origin of the quantities that have been accumu-
lated at one or more vertices of the network throughout the history
of interactions. To our knowledge, there is no previous work on
finding the provenance of the quantities that flow into vertices in a
temporal interaction network. This problem finds different applica-
tions in different research fields. Finding the origin of money in a
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financial entity can facilitate checking for suspicious activities or
fraud. In a traffic network, the origin of vehicles involved in a traffic
jam can be used to re-design the network or planning of activities.
Tracking the origin of malicious data that flow in a communication
network can help toward alleviating such activities.
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Figure 1: An example of an interaction network

2 BACKGROUND AND RELATEDWORK
Data Provenance is a core concept in graphs [11],[3], [13]. In query
evaluation, for example, it is important to know which data in the
database contribute to a query result. The graph in this case is the
query evaluation plan. In their seminal paper, Buneman et al. [1]
study and define the problem of data provenance in database sys-
tems from two different perspectives: why and where. According to
the authors, the goal of why provenance is to explain the existence
of a tuple in a query result. That is, the reasons behind its inclusion.
Why provenance can be answered by finding the path(s) in the
query evaluation plan that contribute to the result. Where prove-
nance is much simpler as it only requires to find the tuples in the
source tables of the query that contribute to the result. Buneman
et al. proposed a deterministic model, where the graph edges are
labeled by data that they use and the provenance is modeled using
paths. Our models are similar to the deterministic model, however
in our case we consider (i) the temporal information of the inter-
actions on the edges and (ii) the time of birth of the transferred
quantities and (iii) different models for the transfer of quantities
between vertices.

Provenance has also been studied in blockchain systems espe-
cially after the huge success of the Bitcoin. In [12], a secure and
efficient system called LineageChain is proposed for capturing the
provenance on runtime and safely stored. It was implemented using
the Hyperledger, a well-known framework in blockchain systems.
Another work that studies the problem of provenance is [2]. In this
paper, the authors proposed techniques for reducing the storage
requirements for provenance in database systems. They proposed a
number of techniques based on factorization, which find common
subtrees and unify them. Other techniques that use to solve the
problem are related to inheritance and prediction. Titian [5] is a
Spark-based system for data provenance.

https://doi.org/10.1145/3448016.3450581
https://doi.org/10.1145/3448016.3450581


In summary, although the concept of data provenance in databases
is well-studied, there is no previous work on flow provenance in
temporal interaction networks. In the next section, we define the
problem and present our methodology.

3 APPROACH
The input to our problem is a network, which captures the history
of interactions between vertices. For all vertices of the interaction
network (or a given subset of vertices), our goal is to compute the
origin of the quantity that is accumulated to them by the end of
the timeline.

The quantity at each vertex is computed based on the assumption
that each interaction (q, t) from a vertex v to a vertex u transfers
from the accumulated quantity at the source vertex v by time t ,
either q (if v has at least q units in its buffer) or the entire accumu-
lated quantity if it is less than q. In the latter case, v generates the
difference q′, and q′ is marked to have v as its origin as it flows
in the network. Hence, we assume that throughout the history
of interactions, each vertex v has a buffer Bv . At the end of the
timeline, Bv represents the total quantity accumulated at v (which
was not relayed). By accessing all interactions in time order, we
can compute the buffered quantities of all vertices. Our provenance
problem is to find the origin(s) of Bv for each vertex v .

If, for an interaction (q, t), the source vertexv has a bufferBv > q,
then it is necessary to select which part of Bv will be relayed to the
destination vertex u. Hence, for the case where Bv > q, we study
different relay models, which are based on realistic assumptions:

• least recently born prioritization: this model gives priority to
the quantities that have the oldest birth timestamps. As an
example, consider the transaction (6, 4) shown in Figure 2
from v to u. Assume that, by time t = 6, Bv = 5, i.e., q =
4 < Bv . Assume that Bv is analyzed to {[(x, 2), 1], [(y, 3), 2]},
meaning that from the total Bv , 2 units originate from vertex
x , born at time 1 and 3 units originate from vertex y, born
at time 2. Based on this model, v will relay to u the q =
4 quantity units which were the least recently born, i.e.,
quantities {[(x, 2), 1], [(y, 2), 2]}; hence, Bv will be updated
to Bv = {[(y, 1), 2]}.

• most recently born prioritization: this is the same as the pre-
vious model, with the only difference being that priority is
given to the most recently born quantities.

• proportional selection: The transfered quantity is selected pro-
portionally, based on the origin. Consider again our previous
example with transaction (6, 4) from vertex v with Bv = 5.
As Figure 3 shows, If 2 units of Bv originate from x and 3
units originate from y, then quantities {[x, 1.6], [y, 2.4]} will
be transferred from Bv to Bu .

4 RESULTS AND CONTRIBUTIONS
Our contributions include (i) the formalization of a flow provenance
problem in temporal interaction networks, (ii) the consideration of
different flow relay models, (iii) the implementation of provenance
tracking techniques based on these models, and (iv) the study of the
runtime performance of the techniques and the impact/relevance
of the different models on interaction networks in real applications.
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Figure 2: Least recently born relay model
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Figure 3: Proportional selection model

We are currently developing and testing the above models, in
terms of their applicability and their efficiency. We conducted pre-
liminary experiments on two real temporal interaction networks.
The first one includes Bitcoin transactions [7]; the vertices rep-
resent users and the edges are transactions between them. The
second one is constructed from an online peer-to-peer loan service
(https://www.prosper.com); vertices are users who exchange money
as loans. In Table 1, we compare the runtime of using the models
to track provenance as the vertex buffers are updated. Method No-
Prov just updates the buffers without computing any provenance
information. We observe that the first two models are not very ex-
pensive, because the provenance information stored at the buffers is
relatively small. On the other hand, the last model is very expensive,
because each interaction typically adds multiple new provenance el-
ements to the destination vertex. This greatly increases the memory
requirements, causing the model to be very slow. On the Bitcoin,
the proportional selection model could not terminate within 24h.

Table 1: Runtime of execution for each proposed method

Dataset NoProv Most Recently Least Recently ProvProp
Bitcoin 0.19 sec 29.34 sec 9.29 sec –

Prosper Loans 0.0065 sec 0.080 sec 0.072 sec 45.024 sec

Hence, we are considering to use the last two models only for
the case of the problem where we are interested in tracking the
provenance at a small subset of vertices of the graph. In addition,
we are studying techniques for scaling up the performance for
the most expensive models (proportional selection). We plan to
use data parallelism in order to speed-up the updates of buffers,
which are linear operations on data vectors. For this purpose, we
plan to confine the models to consider as origins only the vertices
which contribute the most to the network (i.e., the most important
vertices); this can greatly reduce the space requirements.
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