Provenance in Temporal Interaction Networks

Chrysanthi Kosyfaki and Nikos Mamoulis
Department of Computer Science and Engineering, University of loannina, Greece
{xkosifaki,nikos} @cs.uoi.gr

Abstract—In temporal interaction networks (TINs), vertices
correspond to entities, which exchange data quantities (e.g.,
money, bytes, messages) over time. We study the problem of con-
tinuously tracking the origins of quantities at network vertices,
as interactions take place over time. We target applications, such
as financial exchange networks, where the selected transferred
units at each interaction are not specified. We investigate several
quantity selection policies that apply to different application
scenarios. For each policy, we propose space- and time-efficient
meta-data propagation mechanisms for continuously tracking
provenance at vertices. For the hard case of proportional selection
policy, we reduce the cost of tracking in practice, by either (i)
limiting provenance tracking to a subset of vertices or groups of
vertices, or (ii) tracking provenance only for quantities that were
generated in the near past or limiting the provenance data in
each vertex by a budget constraint. Our experimental evaluation
on real datasets demonstrate the efficiency and scalability of our
techniques compared to baseline approaches that extend flow
computation algorithms to track provenance.

I. INTRODUCTION

Many real world applications can be represented as temporal
interaction networks (TINs) [24], where vertices correspond to
entities that exchange data over time. Examples of such graphs
are financial exchange networks and transportation networks.
The TIN can be viewed as a stream of interactions, where
each interaction r is characterized by a source vertex r.s,
a destination vertex r.d, a timestamp 7.t and the transferred
quantity 7.q (e.g., money, passengers, etc.). For example, the
sequence of bitcoin transactions form a TIN, where the vertices
are user addresses, exchanging bitcoins over time.

We study a provenance problem in TINs; the objective is to
know the origins of quantities at the vertices of the network
over time. As data are transferred from one vertex to another,
the origins of quantities at a vertex v are not necessarily direct
neighbors of v, hence the problem is not easy to solve. In
general, provenance in graphs is a well-studied problem with
numerous applications (auditing, debugging, reproducibility,
explainability, etc.) [23].

We adopt a data propagation model used in previous work
on flow computation in temporal networks [2], [31]. We
assume that each vertex v has a buffer B, (e.g., bitcoin wallet),
wherein it keeps all incoming quantities to v. Naturally, the
buffer B, changes over time. Specifically, each interaction r
from a vertex r.v to a vertex r.u transfers r.q units from B, ,
to B, at time r.t. If B, , has less than ¢ units by time 7.7,
then the difference is generated at r.v before being transferred
to r.u. In a financial exchange network, quantity generation
means that new assets are brought from external sources (e.g.,
a user mines bitcoins). In a road network, new quantities are

cars entering the network from a given location. If B,., has
more than r.q units, 7.q units should be selected from B, to
be transferred to B,.,. We observe that in most applications,
the recorded interactions do not give us any information about
the selection of transferred quantity units. In addition, the data
units which move in the network may not be easy to “tag”,
therefore tracing back their lineage could be hard.

Example 1: Consider a financial TIN (e.g., Bitcoin transac-
tion network) where vertices correspond to accounts and inter-
actions are money transfers. Accounts do not have explicit in-
formation about the provenance of their balances. At the same
time, a transaction r which transfers less than the sender’s
balance B, , does not specify which part of the balance
is transferred as the monetary units are not tagged/marked.
Therefore, to trace the origin of account balances over time, we
have to rely on assumptions about the selections in transfers.

Example 2: In a transportation network, people or vehicles

(quantities) move between districts (vertices). Transportation
authorities monitor the volumes of objects that move between
districts (interactions), however, they do not track data about
individuals due to privacy constraints.! To trace the origin of
moving objects currently in a region, one has to assume a
selection policy for object transfer.
Our contribution We target applications, such as the above,
where the recorded interactions do not capture how the trans-
fered units are selected. Given this, we define and study
alternative selection policies for quantity transfer for different
application scenarios. A policy prioritizes quantities based on
the time they were first generated at their origins, or on the
order they were added to the buffer, or may select quantities
proportionally based on their origins. We propose algorithms
that proactively create and propagate lightweight provenance
information in the TIN for the generated quantities, as they
are transferred through the network (i.e., our techniques fall
into the class of meta-data propagation approaches [23]). Our
approach updates provenance information after each interac-
tion; hence, we know the origins of quantities at vertices at
any time, as interactions are processed in a streaming fashion.
Our algorithms are space- and time-efficient, since we do not
“tag” each individual quantity unit that moves in the network,
but we group together units of common origin.

Note that previous works on flow computation in temporal
networks [2], [31], [45] aim at just computing the flow from
a source to a destination and do not compute provenance
information. For flow computation, the selection of transferred

Thttps://www.its.dot.gov/factsheets/privacy.htm

units does not make any difference (it is only the quantity
what matters, not where it came from). To our knowledge,
there is no previous work that studies data provenance in
TINs, especially in situations where transferred data cannot
be tagged, or when tagging is too expensive. Our approach
is orthogonal to and can be applied in combination with any
flow computation method [2], [31] to track flow provenance.
Applications Provenance tracking in TINs finds several ap-
plications. In a financial network, by continuously monitoring
the provenance of account balances, we can identify accounts
that receive amounts indirectly via intermediaries, which may
indicate illegal activities (e.g. “smurfing”). Such analyses are
routinely done by financial intelligent units (e.g. fiubelize.org,
www.jfiu.gov.hk). We present a detailed use case in Section
VII In a transportation network, studying the provenance of
problems (e.g., traffic) can help solving them. As a concrete
TIN provenance application example, consider one of the
TINs used in our experiments, published by wwwl.nyc.gov,
which captures the transfers of passengers by taxi between
NYC districts on 2019.01.01. Note that there are no identifiers
of passengers in the data due to privacy constraints; we
assume that passengers move between districts in a FIFO
manner. Figure 1 shows the number of passengers that are
accumulated in East Village (vertex #79) from other districts
(directly or indirectly) over time (i.e., after each interaction).
The provenance distribution of East Village visitors over time
(shown as pie charts) can be used for social/demographics
analysis or (location-aware) marketing. For example, if a shop
owner knows that many passengers originating from upscale
districts accumulate into the shop’s district, the owner can
design promotion campaigns for wealthy customers.

1400

1200

1000

Buffer quantity
o
8 8

IS
S
S

N
o
)

100000 150000 200000

Interaction

0 50000

Fig. 1. Buffered (accumulated) passengers at vertex #79 (East Village) on
2019.01.01, after each interaction in our Taxis Network

Outline Section II reviews related work on temporal networks
and data provenance. In Section III, we formally define the
provenance problem in TINs that we study in this paper, after
presenting in detail a data propagation model from previous
work [31], which we extend to capture provenance. Section
IV presents the different information propagation policies and
the corresponding provenance tracking algorithms that we pro-
pose. We analyze the space and time complexity of provenance
tracking under each policy and find that the proportional
propagation policy is infeasible for large graphs because it

has a O(|V'|?) space complexity and bears a O(|V|) cost per
interaction, where |V| is the number of vertices.

In view of this, in Section V, we propose scaleable tech-
niques for provenance tracking under the proportional prop-
agation policy. Our selective provenance tracking approach
maintains provenance data only from a designated subset of &
vertices, which are of interest to the analyst, reducing the space
complexity to O(k-|V]) and the time complexity to O(k) per
interaction. The grouped provenance tracking approach tracks
provenance from k groups of vertices instead of individual
vertices (e.g., categories of financial entities or accounts). This
approach also has O(k - |[V|) space complexity and O(k) cost
per interaction. We also propose two techniques that limit the
scope of provenance tracking from all (individual) vertices.
The first approach limits provenance tracking up to a certain
time in the past from the current interaction (i.e., a time-
window approach). The second approach allocates a prove-
nance budget to each vertex. Both techniques save resources,
while providing some guarantees with respect to either time
or importance of the tracked provenance information.

In Section VI, we extend our propagation algorithms for
provenance annotations to capture not only the origins of the
generated data, but the routes (i.e., the paths) that they travelled
along in the graph until they reached their destinations.

Section VII experimentally evaluates the runtime and mem-
ory requirements of our methods on real TINs with different
characteristics. The results show the scalability and limita-
tions of the different selection policies and the corresponding
propagation algorithms for provenance data. We compare our
approach against a baseline method that divides the quantities
into units and tracks their origins; while this method solves
our problem, it is extremely slow to be practical. We also
compared our method against a simple approach that does not
track provenance but infers it from global statistics, which,
however, is very inaccurate on large graphs. Finally, we in-
clude a use case of provenance tracking in financial networks,
which demonstrates the utility of provenance in TINs. Finally,
Section VIII concludes the paper with a discussion about
future work.

II. RELATED WORK

There has been a lot of research in data provenance over
the years [3], [11], [12], [33], [36], [38], [40], [42]. However,
we are the first to study the problem of tracking the origins
of quantities that flow in temporal interaction networks. In
this section, we summarize representative works in temporal
networks and provenance tracking.

A. Temporal Networks

Temporal networks model network dynamics over time,
such as time-dependent edge capacities [2], [45] and evolving
structure [34], [35]. Kosyfaki et al. [30] studied the problem
of finding recurrent flow path patterns in a TIN, during time
windows of specific length. Motif discovery in TINs was first
studied in [37]. Pattern detection in temporal networks with an
application in social network analysis was also studied in [4],

[48]. A related problem is how to measure the total quantity
that flows between two specific vertices in a temporal network
[2] or in a TIN [31], based on the data propagation model that
we use in this paper. Zhou et al. [47] study the problem of
dynamically synthesizing realistic TINs by learning from log
data. Provenance in TINs can be combined with structural and
flow analysis, in order to explain the existence of patterns.
A network protocol that mitigates synchronization problems
when updating Bitcoin’s blockchain is proposed in [13]; this
problem is not relevant to data propagation in TINs.

B. Theory and Applications of Provenance

Buneman et al. [6] were the first who defined and studied
the problem of provenance in database systems. An annotation
mechanism for where-provenance was proposed in [7] and
implemented in DBNotes [5]. As query operators (select,
project, join, etc.) are executed, annotations are propagated
to eventually reach the query output tuples. Geerts et al. [18]
proposed another annotation-based model for the manipulation
and querying of both data and provenance, which allows
annotations on sets of values and for effectively querying how
they are associated. There are important differences between
our work and provenance approaches for database systems.
First, the TIN graphs that we examine are very large (as
opposed to small query graphs) and we track provenance for
any vertex in them (i.e., we do not distinguish between input
and output vertices). Second, the data transfer model between
vertices in TINs is very different compared to data transfer in
query graphs. Third, interactions can happen in any order in
our TINs, as opposed to query graphs, where edges have a
specific order (query graphs are typically DAGs).

Data Provenance has also been studied in social networks
[3]. An important application is to detect where from a rumor
has started before spreading through the internet. Gundecha et
al. [21] represent social networks as directed graphs and try to
recover paths to find out how information spread through the
network by isolating important nodes, based on their centrality.
Taxidou et al. [46] studied provenance within an information
diffusion model, based on the W3C Provenance Data Model
(https://www.w3.org/TR/prov-dm/). These approaches are not
applicable to TINs, because, in social networks, information
is copied and diffused, whereas in TINs data are buffered and
moved (i.e., not copied) from one vertex to another.

Savage et al. [44] propose a stochastic packet marking
mechanism that can be used for probabilistic tracing of packet-
flooding attacks in the Internet. We target a more generic
provenance problem in TINs, where we consider information
propagation based on several alternative policies. Moreover,
we aim at exact provenance tracking wherever possible. Fi-
nally, Dey et al. [16] propose a provenance mechanism for
regular path queries (RPQs) in graphs which witnesses the
fact that pairs of nodes v,u which are connected by a path that
qualifies a given regular expression. Provenance methods for
PRQs do not apply on TINs, but on static, edge-labeled graphs
and they have a different goal and approach (enriching RPQ

computation by additional DBMS operations that generate the
desired witnesses).

C. Provenance Systems

Over the years, a number of systems for provenance tracking
have been developed, mainly to serve the need of efficiently
storing and managing the annotation data. Chapman et al.
[9] propose a factorization technique, which identifies and
unifies common query evaluation subtrees for reducing the
provenance storage requirements. Heinis and Alonso [22]
represent workflow provenance mechanisms as DAGs and
compress DAGs with common nodes, in order to save space.

Several systems [1], [20] have been developed to support the
answering of data provenance questions, where the objective
is to find how a data element has appeared in the query result.
Karvounarakis et al [27] developed ProQL, a query language
which can be used to detect errors and side effects during the
updates of a database. ProQL takes advantage of the graph
representation and path expressions to simplify operations
involving traversal and projection on the provenance graph.
A provenance query language and algorithms for datalog
programs, supporting tracking for selected graph subsets were
proposed in [14]. Deutch et al. [15] reduce the granularity
of provenance tracking in order to make it feasible on large
graphs. Titian [25] adds provenance support to Spark, aiming
at identifying errors during query evaluation.

Glavic et al. [19] present a system for provenance tracking
in data stream management systems (DSMS). They propose an
operator instrumentation model, which annotates data tuples
that are generated or propagated by the streaming operators
with their provenance. They also propose an alternative ap-
proach (called replay lazy), which uses the original operators
and, whenever provenance information is needed, the approach
replays query processing on the relevant inputs through a
instrumented copy of the network (hence, data processing
and provenance computation are decoupled). We also propose
space-economic models for tracking provenance. However, our
input graphs (TINs) are larger and different than DSMS graphs
and our propagation models consider the transfer of quantities
between vertices as a result of a stream of interactions.

Provenance has also been studied in blockchain systems
especially after the huge success of Bitcoin. In [41], a secure
and efficient system called LineageChain is implemented on
top of Hyperledger (https://www.hyperledger.org), for captur-
ing provenance during contract execution and safely storing it
in a Merkle tree. The objective of this work is to explicitly
track the historical states of the blockchain, by recording
read-write dependencies between successive states. Unlike our
work, this approach does not explicitly track the origins of the
account balances, but its main goal is to be able to efficiently
reconstruct the balances of accounts at any time in the past.

III. DEFINITIONS

In this section, we formally define temporal interaction
networks (TINs) and data propagation in TINs. Then, we

define the provenance problem that we study in this paper.
Table I summarizes the notation used frequently in the paper.
Definition 1 (Temporal Interaction Network): A temporal
interaction network (TIN) is a directed graph G(V, E, R).
Each edge (v,u) in E carries the interactions from vertex v
to vertex u. R denotes the set of interactions on all edges of
E, ordered by time. Each interaction » € R is characterized
by a quadruple (r.s,r.d,r.t,r.q), where r.s € V (r.d € V) is
the source (destination) vertex of the interaction, r.t € IR™ is
the time when the interaction took place and 7.g € IR™ is the
transferred quantity from vertex r.s to r.d, due to 7.

rs | rd | rt | rg
U1 V2 1 3
V2 Vo 3 5
Vo U1 4 3
V1 V2 5 7
V2 U1 7 2
V2 Vo 8 1

(a) Interactions

(b) TIN

Fig. 2. A set of interactions and the corresponding TIN

Figure 2 shows the set R of interactions in a TIN and the
corresponding graph. For example, sequence {(1,3),(5,7)}
on edge (v1,v2) means that vy transferred to vo a quantity of
3 units at time 1 and then 7 units at time 5. The corresponding
interactions in R are (v1,v,1,3) and (vq,v9,5,7).

TABLE I
TABLE OF NOTATIONS
Notation Description
G(V,E,R) TIN (vertices, edges, interactions)

r.s (r.d) source (destination) vertex of interaction r € R

r.t time when interaction » € R took place

r.q transferred quantity during interaction » € R
By, |By| buffer of vertex v, total quantity in B,
O(t, By) origin (provenance) data for the quantity at B, by time ¢t
(1.0,7.q) quantity 7.q originating from 7.0 in O(t, By)

Pv provenance vector of a vertex v € V'

We consider all interactions R in the TIN in order of time,
i.e. as a stream, and assume that each vertex v € V has a
buffer B,, which stores the total quantity that has flown into
v but has not been transferred yet to other vertices via outgoing
interactions from v. |B,| denotes the total quantity in B,.

As an effect of an interaction (r.s,r.d,r.t,r.q), vertex r.s
transfers a quantity of r.q to vertex r.d. Quantity r.q (or part
of it) could be data that have been accumulated at vertex r.s
by time r.t, or r.q could (partially) be generated at r.s [31].
More specifically, we distinguish between two cases:

e |B,s| < r.g. In this case, «ll units from B, are
transferred to B, 4 due to the interaction. In addition,
7.q — | Bys| units are generated by the source vertex r.s
and transferred to B, 4. Hence, |B, ;| becomes 0 and
|B,.q4| is increased by r.q.

e |Bs| > r.g. In this case, r.q units are selected from B, ;
to be transferred to B, 4. Hence, |B, | is decreased by
r.q and | B, 4| is increased by r.q.

Algorithm 1 Propagation algorithm in a TIN

Require: TIN G(V, E, R)
1: for each v € V do

2 |B,| =0 > Initialize buffers
3: end for

4: for each interaction r € R in order of time do

5: g = min{r.q, Br.s} > relayed quantity from B, s
6: |Br.s| = |Br.s| — g > decrease by ¢
7: |Br.d| = |Br.a| + r.q »> increase by r.q; r.q—q is newborn
8: end for

Algorithm 1 is a pseudocode of the data propagation pro-
cedure. Interactions in R are processed in order of time, i.e.,
as a stream. For each interaction » € R, we first determine
the relayed quantity q from the buffer of the source vertex r.s
(Line 5). This quantity cannot exceed the currently buffered
quantity |B,s| at r.s. Line 6 decreases B, s, accordingly.
The target node’s buffer B, 4 is increased by r.q (Line 7).
If r.q¢ > g, a new quantity r.q — q is born by the source vertex
r.s to be transferred to B, 4 as part of r.q. Table II shows the
changes in the buffers of the three vertices in the example TIN
(Figure 2), during the application of Algorithm 1. Values in
parentheses are newborn quantities at r.s, transferred to 7.d.

TABLE II

CHANGES AT BUFFERS AT EACH INTERACTION
rs | r.d | rt | r.q | |Bog| | |Buy| | |Busl
V1) 1 3 0 0 3(3)
v 0 3 5 5(2) 0 0
V0 v1 4 3 2 3 0
V1 V2 5 7 2 0 74)
V9 v1 7 2 2 2 5
V9 V0 8 1 3 2 4

Definition 2 formally defines the provenance problem that
we study in this paper.

Definition 2 (Provenance Problem): Given a TIN
G(V,E,R), at any time moment t and at any vertex
v € V determine the origin(s) O(t, B,) of the total quantity
accumulated at buffer B, by time ¢. O(t,B,) is a set of
(1.0,7.q) tuples 7, such that each quantity 7.¢ was generated
by vertex 7.0 and }° . p,) T-¢ = |Bul.

At any time ¢, the objective is to know the origin vertices
which have generated the quantities that have been accumu-
lated at buffer B,, for any vertex v.

IV. SELECTION POLICIES AND PROVENANCE

For each interaction r € R, the selection policy in the case
where | B, 5| > r.q affects the provenance of the quantities that
are accumulated at vertices, because the content of B, ¢ may
originate from different vertices. In this section, we present
possible selection policies that apply on different application
scenarios and, for each policy, we present annotation mecha-
nisms that can be used to trace the provenance of the quantities
accumulated at the vertices of the TIN.

A. Selection based on generation time

The first class of selection policies is based on the time
when the candidate quantities to be transferred are generated.

We will first discuss the least recently born (LRB) selection
policy. To implement this approach, any generated quantity
should be marked with the vertex v that generates it and the
timestamp ¢ when it is generated. Hence, during the course of
the algorithm, each buffer B, is modeled and managed as a
set of (o,t,q) triples, where o is the origin of quantity ¢ and
t is the birthtime of ¢. At interaction r, if | B, | > r.q, the
triples in B, s with the smallest birthtimes whose quantities
sum up to r.q are selected and transferred to B, 4. To facilitate
selection, a min-heap organizes the triples in each buffer B,,.

Algorithm 2 describes provenance tracking under LRB. For
the current interaction » € R, we keep in variable resq the
residue quantity, which has yet to be transferred from 7.s to
r.d. Initially, resq = r.q. While ¢ > 0 and B, 5 is not empty,
we find the least recently born triple 7 in B, . If 7.q > g,
only part of the quantity in the triple is transferred to B, 4,
hence, we split T, by keeping it in B, ; and reducing 7.q by
g and initializing a new triple 7/ with the same origin and
birthtime as 7 and quantity ¢q. The new triple is added to B, 4.
If 7.q < g, we transfer the entire triple 7 from B, , to B, 4. If
B, s becomes empty and resq > 0, then this means that it was
|B,.s| < r.q in the beginning, so we generate a newborn triple
7/ with the residue quantity resq, having as origin vertex r.s
and marked to be generated at time r.¢.

Algorithm 2 Least-recently born selection policy
Require: TIN G(V, E, R)
1: for each v € V do
2: B, =0; |Bs] =0

3: end for

4: for each interaction » € R in order of time do

5 resq =r.q > residue quantity to be transferred
6: while resq > 0 and |B,.s| > 0 do
7:
8

> Initialize buffers

7 = least recent triple in B, s > top element in heap

if 7.g > resq then > split 7

9: T'o=T1.0; Tt =71, 7. = resq; > new triple
10: add 7’ to Br.4;

11: T.q =T.Q—T.q; > update T
12: resq = 0; > transfers completed
13: else

14: remove 7 from B, s and add it to B, 4;

15: resq =resq — T.q > update residue quantity
16: end if

17: end while

18: if resq > 0 then > newborn quantity and triple

19: To=r.s T t=rt; 7.q=resq
20: add 7’ to Br.g;

21: end if

22: end for

Table III shows the changes in the buffers of the vertices
after each interaction in our running example. The quantities
in the buffers are shown as (o,t,q) triples.

By running Algorithm 2, we can have at any time ¢ the
set of vertices that contribute to a vertex v by time ¢ and
the corresponding quantities (i.e., the solution to Problem 2).
In other words, the heap contents for each vertex v at time
t corresponds to O(t, B,). Finally, to implement the most
recently born (MRB) selection policy, we should change Line

TABLE III

CHANGES AT BUFFERS (OLDEST—FIRST POLICY)
rs | rd | rt | rq By, By, By,
v1 | v2 I 3 0 0 {(1,1,3)}
vy | wvo 3 5 1{(1,1,3),2,3,2)} 0 1]
vo | vi | 4 3 {232} {(1,1,3)} 0
v | va 5 7 {232} 0 {(1,1,3),(1,54)}
vy | w1 7 2 {2,3.2)} {(L12)} [{(1,1,1),(1,54)}
vy | wo 8 1 {(1,1,0,2,32)}] {(1,1,2)} {(1,5.4)}

i)

7 of Algorithm 2 to “7 = most recent triple in B, ;" and
organize each buffer as a max-heap (instead of a min-heap).
Application The LRB policy is applicable when the generated
quantities lose their value over time (or even expire), which
means that the vertices prefer to keep the most recently
generated data. The MRB policy is relevant to applications,
where quantities have antiquity value, i.e., they become more
valuable as time passes by. For example, in a loans-exchange
network, the generation time of a loan affects its value as
it determines the owed interest; hence, it is reasonable to
prioritize loan transfers based on generation time.
Complexity Analysis In the worst case, each interaction r
increases the total number of triples by one (i.e., by splitting
the last transferred triple or by generating a new triple), hence,
the space complexity is O(|R|), where |R| is the number of
processed interactions so far. In terms of time, each interaction
accesses in the worst case the entire set of triples at vertex
r.s. This set is O(|R|) in the worst case, but we expect it
to be O(|R|/|V]); for each triple in the set, we update two
priority queues in the worst case (i.e, by triple transfers)
at an expected cost of O(log|R|/|V|). Hence, the overall
expected cost (assuming an even distribution of triples) is
O(R|- |R|/|V|-log|RI/|V]) = O(RI/|V|log |R|/|V]).

B. Selection based on order of receipt

Another policy would be to select the transferred quantities
in order of their receipt. Specifically, the content of each buffer
B, is modeled and managed as a set of (o, q) pairs, where o is
the vertex which generated g. These pairs are organized based
on the order by which they have been added to B,. If, for
the current transaction 7, |B,. | > r.q, the last (or the first)
quantities in B, ¢ which sum up to 7.q are selected and added
to B, 4. To implement this policy, each buffer is implemented
as a FIFO (or LIFO) queue, hence, it is not necessary to keep
track of birthtimes. The algorithm is identical to Algorithm
2, except that Line 7 becomes “least recently added triple in
B, " in the FIFO policy and “most recently added triple in
B, in the LIFO policy. Table IV shows the changes in the
buffers after each interaction when the LIFO policy is applied.
Application The FIFO policy is used in applications where the
buffers are naturally implemented as FIFO queues (pipelines,
traffic networks). The LIFO policy applies when the accumu-
lated quantities are organized in a stack (e.g., cash registers,
wallets) before being transferred.

Complexity Analysis The space complexity is O(|R|), same
as that of generation time selection policies (Sec. IV-A),
because the only change is that we replace the heap by a

TABLE IV

CHANGES AT BUFFERS (LIFO POLICY)
rs | rd | rt | rq By, By, By,
U1 V2 1 3 1] 1] {(1,3)}
vy | vo | 3 5 1{(1,3),2,2)} 1] 0
Vo U1 4 3 {1,2)} {(1,1,2,2)} 1]
v | v 5 7 {(1,2)} 0 {(1,D,2,2),(1.4)}
vz | w1 7 2 {(1,2)} {12} [{1.D,22),1.2)}
vz | o 8 1 1{@.2,a,0}] {12} [{d,D,22),0.1)}

FIFO queue (or a stack). This replacement changes the access
and update costs from O(log|R|/|V]) to O(1). Hence, the
expected time cost is reduced from O(|R|?/|V|log |R|/|V])
to O(IR?/[V]).

C. Proportional selection

When |B,s| > r.4q, the proportional selection policy,
chooses the relayed quantity from r.s to r.d proportionally
based on the current contribution of each vertex to B, .
Formally, for each vertex v € V, we define a |V|-length vector
Pv, Which captures the provenance of the quantity currently
in its buffer B,. The i-th value of p, is the quantity fragment
in B,, which originates from the i-th vertex of the TIN G.

Algorithm 3 shows how the provenance vectors are updated
after each interaction r. We distinguish between two cases.
The first one is when r.q > | B, 4|, i.e., the quantity r.q to be
transferred by the current interaction is greater than or equal
to the buffered quantity |B, ;| at the source buffer. In this
case, the entire buffered quantity in B, is relayed to B, 4.
Hence, vector p, s is added to p,. 4 (symbol & denotes vector-
wise addition). If r.q is strictly greater than | B, |, a newborn
quantity r.q — | B, 5| at r.s is added to B, 4, hence, we should
add the corresponding provenance information to the r.s-th
element of p, 4 (Line 6). This is denoted by the addition of
Vvector €, s (r.q—B,..)» Where e, , denotes a vector with all 0’s
except having value z at position v. The second case is when
r.q < | By s|. In this case, the quantity r.g which is transferred
from r.s to r.d is chosen proportionally. Specifically, if vertex
r.s has in its buffer B, ; a quantity ¢ which was born by
the i-th vertex, then a quantity ¢ - % should be transferred
from the ¢-th position of p, s to the i-th position of p, 4. This
translates into the vector-wise operations at Lines 9 and 10 of
Algorithm 3. Table V shows the changes in the buffer vectors
after each interaction when proportional selection is applied.

TABLE V

CHANGES AT BUFFERS (PROPORTIONAL SELECTION)
rs | rd | rt | rq Puo Pv; Pus
v1 Vg 1 3 [0,0,0] [0,0,0] 0,3, 0]
V2 Vo 3 5 [0,3,2] [0,0,0] [0,0,0]
0 vy 4 3 [0,1.2,0.8] [0,1.8,1.2] [0,0,0
v1 V2 5 7 [0,1.2,0.8] [0,0,0] [0,5.8,1.2]
Vg vy 7 2 [0,1.2,0.8] |[0,1.66,0.34]|[0,4.14,0.86]
Vg 0 8 1 {[0,2.03,0.97] | [0,1.66,0.34] | [0,3.31,0.69]

Application Proportional selection is suitable for applications
where the quantities are naturally mixed in the buffers. This
includes cases when the buffered data are liquids or indistin-
guishable financial units in accounts (i.e., balances in bank

Algorithm 3 Proportional selection model
Require: TIN G(V, E, R)
1: for each v € V do
2: |By| = 0; py = 0;
3: end for
4: for each interaction r € R in order of time do
5 if r.q > | Br.s| then
6: Pr.d = Pr.d D Pr.s ® €r.s,(r.q—By.s)s Pr.s = 0;
7
8

> Initialize buffers and vectors

|B7‘.d| = ‘Br.d‘ + r.q; |B'r4s‘ =0;

else > r.q < |Br.s|
9: Pr.d = Pr.d @ (.q/|Br.s|)Pr.s; Br.a = Br.a + 1.4
10: Pr.s = Pr.s © (7’~Q/|B%S‘)pns; Brs = Brs —1.4;
11: end if
12: end for

accounts, capital stocks in digital portfolios). In such cases,
it is reasonable to consider that the origins of the buffered
quantities contribute proportionally to a transfer.

Complexity Analysis The space requirements of this policy
are O(|V'|?), since we need a |V |-length vector for each vertex.
In the next section, we investigate approaches that reduce
the space requirements and make proportional provenance
tracking feasible for large graphs with millions of vertices.
The time complexity is also high, because we need one or two
vector-wise operations per interaction, which accumulates to
a O(|R| - |[V]) cost. In our implementation, we exploit SIMD
instructions [39] to reduce the cost of vector-wise operations.
Sparse vector representations In sparse graphs, each vertex v
receives quantities originating from a small subset of vertices.
To save space, instead of storing each space-demanding vector
p. explicitly, we can represent it by an ordered list of (u, q)
pairs, for each vertex u contributing a quantity ¢ > 0 in the
buffer B,. For example, after the temporally first interaction
in our running example, instead of storing p,, as [0, 3,0],
we store it as [(v1, 3)], implying that v received its 3 units
from wv1. The vector update operations of Algorithm 3 can
be replaced by merging the ordered lists of the corresponding
sparse vector representations. This way, the space requirements
are reduced from O(|V'|?|) to O(|V|-£), where £ is the average
length of the list representations of the vectors. The time
complexity is reduced to O(|R)| - £), accordingly.

V. SCALABLE PROPORTIONAL PROVENANCE

Proportional provenance tracking (Section IV-C) has high
space and time complexity compared to the models based on
generation time (Section I'V-A) or receipt order (Section IV-B).
We investigate techniques constitute proportional provenance
feasible on very large graphs and long streams of interactions.

A. Selective provenance tracking

In many applications, we may not have to track provenance
from all vertices in the graph, but from a selected subset of
V' of size k. For example, in a financial network, we could
limit our focus to a specific set of entities, suspected to be
involved in illegal activities. To apply this, for each vertex
v € V, we maintain a vector p,, of size k + 1, where the first
k positions correspond to the vertices of interest and the last

position represents the rest of the vertices. Algorithm 3 can
now directly be applied, after the following change: if any of
the source vertex r.s or the destination r.d is not in the set of
the k vertices of interest, we update the (k + 1)-th position.
The space requirements of selective proportional provenance
are O(k - |V]) and its time complexity is O(k - |R)).

B. Grouped provenance tracking

Provenance data from all individual vertices of a big graph
could be too large and hard to interpret. Sometimes, it is
more practical to divide the vertices into groups and track
provenance from each group. To implement this, we can
replace the long p, vectors by shorter vectors of length k,
where k is the number of groups. This means that, for each
vertex v we maintain in p, the total quantity in buffer B,
which originates from each group. The grouping of vertices
can be done in different ways depending on the applica-
tion. For example, the values of one or more attributes that
characterize the vertices (e.g., gender, country) can be used
for grouping. In addition, network clustering algorithms (e.g.,
METIS [28]) or geographical clustering can be used to define
the groups. Algorithm 3 can easily be adapted to operate
on groups. The vertices involved at each interaction (i.e.,
r.s and r.d) are mapped to group-ids and the corresponding
positions are updated in the vector-wise operations. As in
selective provenance tracking (Section V-A), the space and
time complexity is O(k - |[V|) and O(k - | R]), respectively.

C. Limiting the scope of provenance

If selective and grouped provenance is not an option, track-
ing proportional provenance in large graphs with millions of
vertices could be infeasible. We investigate two techniques that
limit the scope of provenance by either avoiding the tracking
of quantities generated far in the past or setting a budget
for provenance at each vertex. Our techniques are especially
suitable when the interactions R are processed as a stream in
limited memory; preciseness is traded for speed and feasibility.

1) Windowing approach: Our first approach takes as input
a parameter W, representing a window, which determines
how far in the past we are interested in tracking provenance.
Specifically, for each vertex v we can guarantee finding the
provenance of quantities that reach v, which where born up
to W interactions before. To achieve this, for each v, we ini-
tialize two sparse (i.e., list) provenance vector representations
podd and peUem. At each interaction, both lists are updated.
However, whenever we reach an interaction r whose order is
a multiple of W, we reset either p29¢ or pcUe" as follows.
If the order of r in the sequence R of interactions is an odd
multiple of W, for each vertex v € V, we reset its provenance
list p2% by setting p2¢ = [(a, |B,|)], where « is an artificial
vertex, representing the entire set V' of vertices. This means
that we assume that the entire quantity in B, has unknown
provenance. If the order of r is an even multiple of W, for all
vertices v, we reset pSU°™ by setting pc'“"™ = [(a, | By|)]. After
any interaction r, we can track provenance for any vertex v

using whichever of p¢**" or p2%¢ was least recently reset. This

guarantees that we can track the provenance of quantities born
up to (at least) W interactions before. The space requirements
(i.e., the total space required to store the provenance lists) are
now controlled due to the provenance list resets.

Figure 3 illustrates how, for each vertex v, pgdd and pgUen
are updated and used. Assuming that W = 100, until the
100-th interaction, p2?? and pc’*" are identical and either of
them can be used. Since p9? is reset at the 100-th interaction,
between the 100-th and the 200-th interaction p;“" is used
to track the provenance of quantities which were generated
since the first interaction. Similarly, between the 200-th and
the 300-th interaction p? is used to track provenance up to

v
the 100-th interaction.

) ve id .
use either p2?@or p5¢" % use py’ E use p,"“"

init reset p,‘,jdd reset p<”°" reset pgdd reset p<U°"
L = mr—
0 100 200 300 400

Fig. 3. Windowing approach in provenance tracking

2) Budget-based provenance: Another way to control the
memory requirements is to allocate a maximum capacity C
(budget) to each vertex v for its provenance list p,,. Whenever
we have to add new entries to p,,, if the addition requires more
space than C, we select a certain fraction f of entries to keep
in p,. We remove the remaining entries and assume that the
total quantity) which originates from them was born at an
artificial vertex o, modeling all vertices (i.e., unknown source).
Hence, if p, includes an («, ¢) entry, the entry is updated to
(a, ¢ + Q); if not, a new entry («, @) is added to p,,.

With this approach, the space requirements of proportional
provenance tracking become O(|V'|-C'). The larger the value of
C the more accurate provenance tracking becomes. Parameter
f should be chosen such that the memory allocated at each
vertex is not underutilized and, at the same time, shrinking
does not happen very often. We suggest a value between
0.6 and 0.8. Finally, the selection of entries to keep when
the budget C' is reached in p, can be done using different
criteria. For example, we can keep the entries with the largest
quantities, or set a priority/importance order to vertices.

As an example, let p, = {(v,1), (u, 3), (w,2), (2,1)} and
C = 5. Let {(z,2),(w,1),(y,4)} be the new entries that
have to be added/merged into p,,. After the change, p,, should
become Py = {(U, 1)7 (uﬂ 3)7 (wa 3)7 (Iv 2)3 (yv 4)7 (27 1)}’ Le.,
the capacity constraint C' = 5 is violated. If f = 0.6, we
should keep 0.6 - C' = 3 entries; let us assume that we keep
the ones with the largest quantities, i.e., {(u, 3), (w, 3), (y,4)}.
The remaining three entries are replaced in p, by an entry
(a, 4), since the sum of their quantities is 4. Hence, after the
update, p, becomes {(u,3), (w,3), (y,4), (a,4)}. Note that
selecting the entries with the largest quantities may cause a
bias in favor of origins that generate quantities early over
origins whose generation is spread more evenly in the timeline.

VI. TRACKING THE PATHS

So far, we have studied the problem of identifying the
origins of the quantities accumulated at the vertices. An
additional question is which path did each of the quantities,
accumulated at a vertex v, follow from its origin to v. This
information can provide more detailed explanation for the
reasons behind data transfers [10]. To solve this problem, for
each quantity element in the buffer B, of every node v, we
maintain a transfer path, which captures the route that the
element has followed so far from its origin to v. When a
new quantity element is generated (i.e., Line 20 of Algorithm
2), its path is initialized to include just the origin vertex r.s.
Every time a quantity element is transferred from one vertex
to another as a result of an interaction r’ (i.e., Line 14 of
Algorithm 2), its path is extended to include the transmitter
vertex 7’.s. This way, for each element, we keep track of not
just its origin but also the path which the quantity has followed.

Note that path tracking in the case of proportional selection
is not meaningful, because, if r.q < |B, |, all quantities in
B, s are split to a fraction that remains at B,. s and a fraction
that moves to B, s, wherein they are combined with the
corresponding quantities from the same origins. This means
that quantities in a buffer from the same origin (but potentially
from multiple different paths) are mixed and indistinguishable.
Complexity Analysis Path tracking does not change the time
complexity, as the number of path changes is O(| R|) and each
path initialization or extension costs O(1). On the other hand,
the space complexity increases by a factor of O(|R|/|V]), i.e.,
the expected number of quantity element transfers (executions
of Line 14 of Algorithm 2). Hence, the space complexity
increases to O(|R|*/|V|).

VII. EXPERIMENTAL EVALUATION

We experimentally evaluated the performance and scalabil-
ity of our proposed provenance tracking techniques, using four
real TINs, described in Section VII-A. We compare the differ-
ent selection policies for information propagation in terms of
throughput and memory requirements in Section VII-C. Sec-
tion VII-B compares Algorithm 2 to two baseline approaches
that extend previous work to track provenance. In Section
VII-D, we evaluate the performance of selective and grouped
provenance tracking. Section VII-E tests the approaches for
limiting the scope of provenance tracking. Section VII-F eval-
uates the memory and computational overhead of tracking the
paths of quantities accumulated at each vertex. Finally, Section
VII-G presents a use case that demonstrates the practicality
of provenance in TINs. All methods were implemented in C
and compiled using gcc with -O3 flag. The experiments were
run on a machine with a 3.6GHz Intel 19-10850k processor
and 32GB RAM. The source code is publicly available at
https://github.com/KosyfakiChrysanthi/ICDE2022-code

A. Description of datasets

Table VI summarizes the statistics for each of the datasets
that we use in the experiments. Below, we provide a detailed
description for each of them.

Bitcoin Network: This dataset, provided by the authors of
[29], includes all transactions in the bitcoin network up to
2013.12.28; we considered these transactions as interactions.
For each interaction, the quantity is the corresponding amount
of BTCs exchanged between bitcoin addresses (vertices). We
did not consider transactions with insignificant quantities (i.e.,
less than 0.0001 BTC). Data provenance in this network
unveils the funding sources of addresses over time.

CTU Network: A Botnet traffic network was extracted and
created by CTU University [17]. We designed a TIN from
these data, where the vertices are the IP addresses and
the interactions are byte transfers between them over time.
Provenance in such a network helps identifying the origins of
received data [44].

Prosper Loans: We downloaded this dataset from
http://konect.cc and created the corresponding interaction
network. The vertices of the network correspond to users
and the interactions represent loans between them, where
the quantities are the loan amounts. Tracking the provenance
of amounts that reach certain nodes helps us to identify the
direct or indirect relationships between lenders and borrowers.
Taxis Network: We considered NYC yellow taxi trips? on
January 1st 2019 as interactions in a TIN, where vertices
are taxi zones (pick-up and drop-off districts), the drop-
off time represents the time of interactions and the number
of passengers are the corresponding quantities. Provenance
tracking helps investigating the origins of arriving passengers
at different zones over time.

TABLE VI
CHARACTERISTICS OF DATASETS
Dataset #nodes | #interactions | average 7.q
Bitcoin 12M 45.5M 34.4B
CTU 608K 2.8M 19.2KB
Prosper Loans | 100K 3.08M $76
Taxis 255 231K 1.53

B. Comparison to baselines

In the first experiment, we compare our approach to exten-
sions of previous work [2], [31] that could be used to track
provenance in TINs. Recall that previous work computes the
total flow between two TIN vertices, but does not perform
provenance tracking. An intuitive extension of a flow compu-
tation algorithm would be to consider each generated quantity
as a set of atomic units (e.g., cents, messages, passengers) and
give each unit a tag. This allows us to track the movement
of each unit throughout the network, regardless the selection
policy used.® For example, in the TIN of Fig. 2, the smallest
quantity unit is 1, hence, we tag each unit by the vertex that
generates it, in order to track its route in the network. We call
this approach BaselineA.

Another baseline approach is not to do any tracking, but
to probabilistically estimate the provenance of each buffered

Zhttps://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3Since there no information in the datasets about the selected units in data
transfers, we have to assume a selection policy.

quantity, based on the generated quantity by each vertex.
Specifically, we estimate the quantity at each vertex to orig-
inate from all other vertices proportionally to the generated
quantities by them. For example, in the TIN of Fig. 2, after
the last interaction, the buffer of B,, has 4 units. Given that
Vg, U1, U2 generated in total 0, 7, and 2 units respectively, we
estimate g -4 units in B,, to originate from v; and % -4 units
to originate from vy. We call this approach BaselineB.

Table VII compares our approach (Alg. 2) to the two
baselines. For each tested method, we show the total runtime
cost for processing all interactions and the average cosine
similarity of the provenance vectors of all vertices to the
corresponding true provenance vectors. BaselineA and our
approach always compute the correct result, however, Base-
lineA is up to three orders of magnitude slower compared to
our approach. This is expected, because our algorithm treats
all units that have the same provenance as a group, saving
a huge number of computations. BaselineB simply extends
Algorithm 1 to keep track of the total generated quantity at
each vertex, so it is the fastest method; however, it fails to
estimate provenance accurately because it does not conduct
any tracking. In large graphs (Bitcoin, CTU), the estimated
vectors are very dissimilar compared to the correct ones.

TABLE VII
COMPARISON TO BASELINE ALGORITHMS
Dataset | Performance | BaselineA | BaselineB | Alg. 2
Bitcoin Time (sec) 1284.94 0.22 3.10
Similarity 1 0.01 1
Time (sec) 44.24 0.012 0.08
CTU | Similarity 1 0.16 1
Prosper T?'m.e (gec) 0.25 0.001 0.055
) Similarity 1 0.09 1
Taxis T.im.e (s:ec) 0.003 0.0006 0.002
Similarity 1 0.64 1

C. Provenance tracking performance

In our first set of experiments, we measure the average
throughput and the memory requirements of provenance track-
ing based on the different selection policies for information
propagation, presented in Section IV. For each method, we
processed the entire sequence of interactions and updated
the provenance data at each interaction, according to the
algorithms described in Section IV. Tables VIII and IX show
the throughput and the peak memory use by the different
selection policies. As a point of reference, we also included
the basic propagation algorithm that does not track provenance
(Algorithm 1), denoted by NoProv.

From the two tables, we observe that the methods based
on generation time (Section IV-A) and receipt order (Section
IV-B) are scaleable, since they have a very high throughput
even at very large graphs with millions of interactions (i.e.,
Bitcoin network). Naturally, they are one to two orders of
magnitude slower than NoProv, as NoProv has O(1) cost per
interaction. Their space overhead compared to NoProv is not
high for big and sparse graphs, like Bitcoin and CTU. Methods

for provenance tracking based on receipt order (LIFO and
FIFO) are faster and more space-efficient compared to methods
based on generation time (LRB and MRB), because they use
more update-efficient data structures (queues) compared to the
heaps used by LRB and MRB; also, they do not need to keep
track of the birthtimes of generated quantities.

The proportional selection policy (Section IV-C) performs
well only when the number of vertices in the graph is small
(i.e., Taxis network). This is expected because of its O(|V|?)
space requirements. Specifically, the proportional policy using
dense vector representations can be used only for the Taxis
network, with very good performance; in all other cases we run
out of memory. Even when the sparse vector representations
are used, the required memory exceeds the capacity of our
machine in the Bitcoin and CTU networks after about 500K
interactions. This approach can be used on the Prosper Loans
network, however, it requires a lot of space (2.4GB) and it
is significantly slower than the policies of Sections IV-A and
IV-B, because it needs to manage and maintain long lists. This
necessitates the use of the scope limiting techniques described
in Section V-C, as tracking provenance from all vertices in the
entire history of interactions becomes infeasible.

Fig. 4 plots the throughput of all methods over time, when
applied on the three largest datasets. The plots also include
the scaleable methods for proportional selection of Section
V. Observe that for the methods based on generation time
(LRB/MRB) and receipt order (FIFO/LIFO) the throughput
is stable, with a small drop as the number of processed
interactions increases, which is due to the increase of the
buffered elements. As the buffers are managed by efficient
data structures (heap/queue) the cost of processing interactions
increases insignificantly over time. As discussed above, the
proportional policy could only be applied on Prosper Loans,
where we see a sharp drop in the throughput. This is attributed
to the population of sparse provenance lists which become very
expensive to store and process over time.

D. Selective and grouped provenance

In the next set of experiments, we evaluate the performance
of proportional provenance only for a subset of vertices or for
groups of vertices as described in Sections V-A and V-B. We
conduct the experiments on the three largest networks (in terms
of number of vertices), i.e., Bitcoin, CTU, and Prosper Loans.
Recall that on these networks tracking proportional provenance
from all vertices is infeasible or very expensive. Let k denote
the number of selected vertices (for selective provenance) or
the number of groups (for grouped provenance). We measure
the runtime cost and memory requirements for different values
of k. In the case of selective provenance, we select the top-k
contributing vertices as the set of vertices for which we will
measure provenance. That is, we first run NoProv (Algorithm
1) and measure the total quantity generated by each vertex
and then choose the ones that generate the largest quantity.*

4The k vertices could be selected by any other method without affecting
the performance of the algorithm.

TABLE VIII

THROUGHPUT (INTERACTIONS/SEC) FOR EACH SELECTION POLICY

PEAK MEMORY USED BY EACH SELECTION POLICY

Dataset No Provenance | Least Recently Born | Most Recently Born | LIFO | FIFO | Proportional (dense) | Proportional (sparse)
Bitcoin 239M 1.4M 4.9M 14.6M | 11.6M - -
CTU 280M 17.5M 14.7M 35M | 25.4M - -
Prosper Loans 513M 34M 37T 56M | 38.5M - 196K
Taxis 462M 16.5M 15.4M 115M | 57.7M 7.2M 4.6M
TABLE IX

Dataset No Provenance | Least Recently Born | Most Recently Born | LIFO FIFO | Proportional (dense) | Proportional (sparse)
Bitcoin 96MB 891MB 892MB 536MB | 535MB - -
CTU 4.85MB 56.4MB 56.4MB 33.8MB | 33.8MB - -
Prosper Loans 800KB 61.4MB 61.4MB 36.8MB | 36.8MB - 2.4GB
Taxis 2KB 0.93MB 1.02MB 0.59MB | 0.6MB 0.52MB 0.44MB
‘ -%-NoProv - 4-LRB —4— MRB - e-- LIFO —-6- FIFO —— PropSparse —— PropSel —— PropWindow -8~ PropBudget
' 100F ' ' ' ' ' 1
ook K5k L T i K ke ke A Ak e ok e e ke A A ek A ko ek

10% ¢ E
10°F oo

throughput (interactions/sec)
throughput (interactions/sec)

10} E

0900090000000 0000 0004

107 ¢

1068 1

throughput (interactions/sec)

10° £

#processed interactions

(a) Bitcoin Network

#processed interactions

(b) CTU Network

.
2.5

_IDIJ
#processed interactions

(c) Prosper Loans Network

Fig. 4. Throughput over time

In case of grouped provenance, we randomly allocate vertices
to groups in a round-robin fashion; since the runtime per-
formance and memory requirements are not affected by the
group sizes or the way the vertices are allocated to groups,
this allocation does not affect the experimental results.

Figure 5 shows the runtime performance (in sec.) and
memory requirements (in MB) for the different values of &
on the different datasets. As expected the runtime and the
memory requirements are roughly proportional to k. For small
values of & (less than 20) the runtime is roughly constant with
respect to k (see Figure 5(a)). This is because of the effect of
SIMD instructions, which make vector operations (lines 9 and
10 of Algorithm 3) unaffected by the vector size. SIMD data
parallelism is already in full action for values of k greater than
20, so we observe linear scalability from thereon. Fig. 4 shows
the throughput of selective provenance (PropSel) over time, on
the three TINs (for £ = 100). Note that the throughput does
not drop over time. This is expected, because the cost per
interaction is linear to k£ and not sensitive to the number of
interactions processed so far. Grouped provenance (not shown
in Fig. 4) also has stable throughput for the same reasons.

E. Limiting the scope of provenance tracking

As shown in Section VII-C, proportional provenance track-
ing throughout the entire history of interactions is infeasible,

due to its high memory requirements. In addition, keeping
and updating sparse representations of provenance vectors
becomes expensive over time as the lists grow larger because
of the higher cost of merging operations (see Figure 4(c)).

We now evaluate the solutions proposed in Section V-C for
limiting the scope of provenance tracking in order to make the
maintenance of proportional provenance vectors feasible for
large graphs, and real-time provenance tracking possible when
the interactions R are processed as an endless stream. Once
again, we experimented with the three largest networks and
applied the two approaches proposed in Section V-C on them.
Figure 6 shows the runtime cost and the memory requirements
of the windowing approach for different values of the window
parameter W. By increasing the size of the window, the
runtime performance is improved as the buffers have to be
reset less frequently. On the other hand, increasing the window
size increases the memory requirements and increases the cost
of list management. For Bitcoin and Prosper Loans, larger
window sizes are affordable, as the memory requirements
do not increase a lot. For CTU, the memory requirements
almost double when W doubles, and the cost increases for
windows larger than 2000. Fig. 4 shows the throughput of
the windowing approach over time on the three datasets (for
W = 2000). Note that there is a drop at the throughput over
time and this can be attributed to the fact that more and more

—k— Selective Provenance Runtime - A- Grouping Provenance Runtime -£+- Memory Footprint

budget per vertex

(a) Bitcoin Network

budget per vertex

(b) CTU Network
Fig. 7. Budget-based provenance

budget per vertex

(c) Prosper Loans Network

20~ 20 0.8 1,000 05 ‘ 150
300 041 }
15 0.6 = —~
B = 3 g & g
& g 2 600 g <03 =S
£ = g P E z
£ 10 §Z2 04 g = g
= g =] 400 & = 02 &
3] s 5 2 O =
5
0.2 =200 0.1
L L I I E#’ L L I I du L I I
520 50 100 150 200 520 50 100 150 200 10 50 100 150 200
k k
(a) Bitcoin Network (b) CTU Network (c) Prosper Loans Network
Fig. 5. Selective and grouped proportional provenance
—*— Runtime -£F- Memory Footprint
30 30 3 — 15 -
250 A qzoo
25| 125 o g |
= 200 4 -
T 20) 120 8 8 o e 3 B 1150 5
g m o= | ~ 12 =z =
b - = g 150 - : P <
115 = £ ~ - :
s . 15 g =)51 s £ 1100 &
K= o) s = =
= . £ Z 100} 1. & 2 g
2 410 2 3) 15 = 5 | g
S g i
. 1s 507 | 50
P L
x = 1 1 1 " | 0 | L L
6 8 10 12 2 4 6 8 10 12 14 16 i 6 8§ 10 12 14 16
window size w (x10%) window size w (x10%) window size w (x10%)
(a) Bitcoin Network (b) CTU Network (c) Prosper Loans Network
Fig. 6. Windowing approach
—+— Runtime -£-- Memory Footprint
100 60 ‘ 1,500 10 500
L o
50 | ~ -
80| P 8 o7 4400
El = 5 40f 7 = T - —~
$ o 3 - 41000 8 g - &)
o 60 S é =’ =S ﬁ 6 1300 2
& = E 30t s y g E z
£ g = - g = 7 g
2 a0 2k - E B 4 Pl 4200 8
O =1 &) m/ 1500 = &) =
/ / 100
2/ 10| of 1 2rm
\ \ \ \ . \ | |
20 10 %0 50 100 0 200 400 600 800 1,000 200 400 600 800 1,000

vertices obtain an « element over time, which adds some
overhead to list merging. Still, the throughput remains at high
levels for a streaming application.

Figure 7 shows the runtime cost and the memory require-
ments of the budget-based approach for different values of
the maximum budget C given as capacity for provenance
entries to each vertex. As the figure shows, by increasing the
budget C' per vertex, the runtime cost to maintain provenance
increases, as the provenance information at buffers becomes
larger and merging lists becomes more expensive. The increase
in the runtime cost is not very high though, because many
lists remain relatively short and the number of list shrinks are
less frequent. At the same time, the space requirements grow

linearly with C, which means that very large values of C' are
not affordable for large graphs like Bitcoin. Fig. 4 includes
the throughput of budget-based proportional provenance over
time on the three datasets (C' = 100 for Bitcoin and C' = 1000
for CTU and Prosper Loans). As for the windowing approach,
there is a small drop in the throughput over time, which is
due to the fact that more and more vertices have non-empty
buffers over time.

In order to assess the value of budget-based proportional
provenance, in Table X, we measured for each of the three
large datasets and for different values® of C, (i) the number

SWe could not use values of C' larger than 100 on Bitcoin due to memory
constraints.

of times each non-empty buffer has been shrunk and (ii)
the percentage of vertices (with non-empty buffer) whose
buffer was shrunk at least once. Especially for the larger
networks with high memory requirements (Bitcoin and CTU),
we observe that the number of shrinks and the percentage
of vertices where they take place converge to low values
and, after some point, increasing C' does not offer much
benefit. Overall, the budget-based approach is attractive since
each buffer is shrunk only a few times on average, meaning
that the provenance information loss is limited even in large
graphs. For example, at the Bitcoin network, for a value of
C = 50, each buffer is shrunk 1.5 times on average after
45M interactions, meaning that each buffer tracks provenance
information that traces back to millions of transactions before.

TABLE X
SHRINKING STATISTICS IN BUDGET-BASED PROVENANCE

C Bitcoin Network | CTU Network [Prosper Loans Network
avg. shrinks | % vertices | avg. shrinks | % vertices | avg. shrinks | % vertices
10 1.94 18.38 727 31.07 20.67 94.7
50 1.51 14.79 5.1 28.68 471 79.29
100 1.43 14.21 471 27.94 2.97 69.09
200 - - 4.53 26.6 2.1 59.16
500 - - 4.34 25.24 1.5 47.64
1000 — — 4.3 25.02 1.23 41.39

FE. Path tracking

In the next experiment, we evaluate the overhead of tracking
the paths compared to just tracking the origins of the quantities
(see Section VI). We implemented path tracking as part of the
LIFO selection policy for provenance (Section IV-B) and used
it to track the paths for all (origin, quantity) pairs accumulated
at vertices after processing all interactions in all datasets. Table
XI shows the runtime performance, the memory requirements,
and the average path length for each quantity element. The
memory requirements are split into the memory required to
store the provenance entries in the lists (as in LIFO) and the
memory required to store the paths. Observe that for most
datasets the memory overhead for keeping the paths is not
extremely high. This overhead is determined by the average
path length (last column of the table), which is relatively
low in all datasets. The runtime is only up to a few times
higher compared to tracking just the origins and not the paths,
meaning that path tracking is feasible even for very long
sequences of interactions on large graphs, like Bitcoin.

TABLE XI
TRACKING PROVENANCE PATHS IN LIFO

Dataset | time (sec.) | MB for entries | MB for paths | total MB | avg. path length
Bitcoin 13.35 534.62 847.50 1382.13 4.75
CTU 0.36 33.87 7.16 41.03 0.63
Prosper 0.4 36.85 0.74 37.59 0.06
Taxis 0.008 0.58 1.09 1.68 5.55

G. Use case

Figure 8 demonstrates a real-life application example of
provenance tracing in TINs. The plot shows the total accumu-
lated quantities at the vertices of Bitcoin after each interaction
(first 100K interactions, proportional selection policy). Con-
sider a data analyst who wants to be alerted whenever a vertex

v accumulates a significant amount of money, which does not
originate from v’s direct neighbors (i.e., v’s neighbors just
relay amounts to v). Hence, after each interaction, we issue
an alert when the receiving vertex does not have any quantity
that originates from its neighbors and the total quantity in its
buffer exceeds 10K BTC. The colored dots in the figure show
these alerts (89 in total). Red dots are alerts where the number
of non-neighbors that cause the alert is less than five (the rest
of them are blue). We observe that in most cases the amount
was received from numerous vertices (an indication of possible
“smurfing”®). This alerting mechanism is very efficient and
easy to implement, as we only have to maintain at each vertex
v the total quantity that originates from vertices that transfer
quantities to v (i.e., direct neighbors of v).

le6

o

«

IS

N

—— #7120 obtained 14995.98BTC from 2731 vertices

Cumulative quantity
w

-

_—#204 obtained 4.358TC from #183 and 15950BTC from #185

o

40000 60000 80000 100000

Interaction

0 20000

Fig. 8. Provenance alerts in Bitcoin

VIII. CONCLUSIONS

We introduced and studied provenance tracking in tem-
poral interaction networks (TINs). We investigated different
selection policies for data propagation in TINs, suitable for
applications where transferred quantity units are not tagged
in the network. For each policy, we proposed propagation
mechanisms for provenance meta-data and analyze their space
and time complexities. For the hardest policy (proportional
selection), we propose to track provenance from a limited
set of vertices or from groups thereof. We also propose to
limit provenance tracking up to a sliding window of past
interactions or to set a space budget at each vertex for
provenance tracking. We evaluated our methods using four
real datasets and demonstrated their scalability.

In the future, we plan to investigate lazy approaches [19],
why-not provenance [8], [32] in TINs, and the automatic
grouping of quantities to groups to improve the performance
of existing work on “tagged” quantities. We will also consider
spatio-temporal information in TINs (e.g., districts in pas-
senger flow networks) to track coarse-grained provenance for
spatial regions and/or identify hot paths and other interesting
insights [26], [43].

ACKNOWLEDGEMENT

This research was co-financed by the European Regional
Development Fund of EU and Greek national funds, under
call Research-Create-Innovate (project code: T2EDK-02848).

Shttps://www.investopedia.com/terms/s/smurf.asp

[1]

[2]

[4]

[5]

[6]

[7]
[8]

[9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar,
T. Sugihara, and J. Widom. Trio: A system for data, uncertainty, and
lineage. In Proceedings of the 32nd International Conference on Very
Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 1151—
1154, 2006.

E. C. Akrida, J. Czyzowicz, L. Gasieniec, L. Kuszner, and P. G. Spirakis.
Temporal flows in temporal networks. In Algorithms and Complexity -
10th International Conference, CIAC 2017, Athens, Greece, May 24-26,
2017, Proceedings, pages 43-54, 2017.

G. Barbier, Z. Feng, P. Gundecha, and H. Liu. Provenance data in social
media. Synthesis Lectures on Data Mining and Knowledge Discovery,
pages 1-84, 2013.

C. Belth, X. Zheng, and D. Koutra. Mining persistent activity in
continually evolving networks. In KDD °20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event,
CA, USA, August 23-27, 2020, pages 934-944, 2020.

D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An annota-
tion management system for relational databases. In (e)Proceedings of
the Thirtieth International Conference on Very Large Data Bases, VLDB
2004, Toronto, Canada, August 31 - September 3 2004, pages 900-911,
2004.

P. Buneman, S. Khanna, and W. C. Tan. Why and where: A charac-
terization of data provenance. In Database Theory - ICDT 2001, Sth
International Conference, pages 316-330, 2001.

P. Buneman, S. Khanna, and W. C. Tan. On propagation of deletions
and annotations through views. In PODS, pages 150-158, 2002.

A. Chapman and H. V. Jagadish. Why not? In U. Cetintemel, S. B.
Zdonik, D. Kossmann, and N. Tatbul, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages
523-534. ACM, 2009.

A. Chapman, H. V. Jagadish, and P. Ramanan. Efficient provenance
storage. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 993-1006, 2008.

J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why,
how, and where. Found. Trends Databases, pages 379-474, 2009.

Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe. Explaining outputs
in modern data analytics. Proc. VLDB Endow., pages 1137-1148, 2016.
R. de Paula, M. Holanda, L. S. A. Gomes, S. Lifschitz, and M. E.
M. T. Walter. Provenance in bioinformatics workflows. BMC Bioinform.,
page S6, 2013.

C. Decker and R. Wattenhofer. Information propagation in the bitcoin
network. In [3th IEEE International Conference on Peer-to-Peer
Computing, pages 1-10, 2013.

D. Deutch, A. Gilad, and Y. Moskovitch. Selective provenance for
datalog programs using top-k queries. Proc. VLDB Endow., 8(12):1394—
1405, 2015.

D. Deutch, Y. Moskovitch, and N. Rinetzky. Hypothetical reasoning
via provenance abstraction. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference, Amsterdam,
The Netherlands, pages 537-554. ACM, 2019.

S. C. Dey, V. Cuevas-Vicenttin, S. Kohler, E. Gribkoff, M. Wang, and
B. Ludéscher. On implementing provenance-aware regular path queries
with relational query engines. In Joint 2013 EDBT/ICDT Conferences,
EDBT/ICDT ’13, Genoa, Italy, March 22, 2013, Workshop Proceedings,
pages 214-223, 2013.

S. Garcia, M. Grill, J. Stiborek, and A. Zunino. An empirical comparison
of botnet detection methods. Comput. Secur., pages 100-123, 2014.

F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN: annotating
and querying databases through colors and blocks. In Proceedings of the
22nd International Conference on Data Engineering, ICDE, 3-8 April
20006, Atlanta, GA, USA, page 82, 2006.

B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul. Ariadne:
managing fine-grained provenance on data streams. In DEBS, pages
39-50. ACM, 2013.

T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Provenance
in ORCHESTRA. [EEE Data Eng. Bull., pages 9-16, 2010.

P. Gundecha, Z. Feng, and H. Liu. Seeking provenance of information
using social media. In 22nd ACM International Conference on Infor-
mation and Knowledge Management, CIKM, pages 1691-1696, 2013.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

T. Heinis and G. Alonso. Efficient lineage tracking for scientific work-
flows. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1007-1018, 2008.

M. Herschel, R. Diestelkdmper, and H. Ben Lahmar. A survey on
provenance: What for? what form? what from? VLDB J., pages 881-906,
2017.

P. Holme and J. Saramiki. Temporal networks. Physics reports, pages
97-125, 2012.

M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. D. Millstein, and T. Condie. Titian: Data provenance support in
spark. Proc. VLDB Endow., pages 216-227, 2015.

V. Kaffes, G. Giannopoulos, N. Tsakonas, and S. Skiadopoulos. Deter-
mining the provenance of land parcel polygons via machine learning.
In SSDBM 2020: 32nd International Conference on Scientific and
Statistical Database Management, Vienna, Austria, July 7-9, 2020, pages
21:1-21:4. ACM, 2020.

G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data provenance.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD, Indianapolis, Indiana, USA, June 6-
10, pages 951-962, 2010.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359-392,
1998.

D. Kondor, M. Pésfai, 1. Csabai, and G. Vattay. Do the rich get
richer? an empirical analysis of the bitcoin transaction network. CoRR,
abs/1308.3892, 2013.

C. Kosyfaki, N. Mamoulis, E. Pitoura, and P. Tsaparas. Flow motifs
in interaction networks. In Advances in Database Technology - 22nd
International Conference on Extending Database Technology, EDBT,
Lisbon, Portugal, March 26-29, pages 241-252, 2019.

C. Kosyfaki, N. Mamoulis, E. Pitoura, and P. Tsaparas. Flow com-
putation in temporal interaction networks. In 37th IEEE International
Conference on Data Engineering, ICDE, Chania, Greece, April 19-22,
pages 660-671, 2021.

S. Lee, B. Ludischer, and B. Glavic. PUG: a framework and practical
implementation for why and why-not provenance. VLDB J., 28(1):47—
71, 2019.

S. Lee, B. Ludischer, and B. Glavic. Approximate summaries for why
and why-not provenance. Proc. VLDB Endow., pages 912-924, 2020.
A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L. Barabasi. The fun-
damental advantages of temporal networks. Science, 358(6366):1042—
1046, 2017.

N. Masuda and P. Holme. Predicting and controlling infectious disease
epidemics using temporal networks. F1000Prime Reports, 5(6), 2013.
M. H. Namaki, A. Floratou, F. Psallidas, S. Krishnan, A. Agrawal,
Y. Wu, Y. Zhu, and M. Weimer. Vamsa: Automated provenance tracking
in data science scripts. In KDD ’20: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, pages 1542-1551, 2020.

A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal
networks. In Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, WSDM, Cambridge, United Kingdom,
February 6-10, pages 601-610. ACM, 2017.

N. N. Parulian, T. M. McPhillips, and B. Luddscher. A model and system
for querying provenance from data cleaning workflows. In Provenance
and Annotation of Data and Processes - S8th and 9th International
Provenance and Annotation Workshop, IPAW 2020 + IPAW 2021, Virtual
Event, July 19-22, Proceedings, pages 183-197, 2021.

O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD
vectorization for in-memory databases. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, pages
1493-1508, 2015.

F. Psallidas and E. Wu. Demonstration of smoke: A deep breath of
data-intensive lineage applications. In Proceedings of the International
Conference on Management of Data, SIGMOD Conference, Houston,
TX, USA, June 10-15, pages 1781-1784, 2018.

P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang. Fine-
grained, secure and efficient data provenance on blockchain systems.
Proceedings of the VLDB Endowment, pages 975-988, 2019.

L. Rupprecht, J. C. Davis, C. Arnold, Y. Gur, and D. Bhagwat.
Improving reproducibility of data science pipelines through transparent
provenance capture. Proc. VLDB Endow., pages 3354-3368, 2020.

[43]

[44]

[45]

[46]

[47]

[48]

D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. K. Sellis. On-line discovery of hot motion paths.
In EDBT 2008, 11th International Conference on Extending Database
Technology, Nantes, France, March 25-29, 2008, Proceedings, volume
261 of ACM International Conference Proceeding Series, pages 392—
403. ACM, 2008.

S. Savage, D. Wetherall, A. R. Karlin, and T. E. Anderson. Practical net-
work support for IP traceback. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, August 28 - September 1, Stockholm,
Sweden, pages 295-306, 2000.

M. Skutella. An introduction to network flows over time. In Bonn
Workshop of Combinatorial Optimization, 2008.

I. Taxidou, T. D. Nies, R. Verborgh, P. M. Fischer, E. Mannens, and R. V.
de Walle. Modeling information diffusion in social media as provenance
with W3C PROV. In Proceedings of the 24th International Conference
on World Wide Web Companion, WWW, pages 819-824, 2015.

D. Zhou, L. Zheng, J. Han, and J. He. A data-driven graph generative
model for temporal interaction networks. In KDD °20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, CA, USA, August 23-27, 2020, pages 401-411, 2020.

A. Ziifle, M. Renz, T. Emrich, and M. Franzke. Pattern search in
temporal social networks. In Proceedings of the 21st International
Conference on Extending Database Technology, EDBT 2018, Vienna,
Austria, March 26-29, 2018, pages 289-300, 2018.

