

BBoIP Black Box over IP

Gabriel Campuzano

Dulce García

Gerardo Castañon

Laurent Toutain

David Ros

Agenda

- Introduction: The Idea
- System Overview and Requirements
- The FDRP Protocol
- 4. Security Considerations
- 5. Conclusion

Introduction: The Idea

- ·Safety and Security: Highest Priority.
- One accident in every 1.5 million flights (2007).
- •When a plane does fall, hours, days, even weeks before accident investigators determine the cause.
- ·It's silly to have a personal real-time alarm if stock goes down and not having access to flight records only until scuba drivers retrieve and the black box is analyzed!
- Certainly unacceptable for family victims.

System
Overview

Plane Network: ARINC

Satellite: INMARSAT BGAN

SWIFTBROADBAND

Terrestrial Network:

Private IP or Internet?

Requirements

- □ FAA/EUROCONTROL Requirements for FDR+CVR
 - 88 flight parameters → 752 bps
 - 4 audio channels
- □ Black Box Manufacturers' typical rates
 - 128, 256, 512 wps (between DFDAU and FDR)
 - 12 bits per word
 - 256*12 = 3072 bps assumed from now on
- Audio was analog until recently.
- □ Audio + FDR data rate required: 59.072 kbps

SWIFTBROADBAND

- ·Global coverage
- L-band MSS spectrum covers 1626.5-1660.5 MHz and 1525.0-1559.0 MHz
- ·228 digitally formed beam spots
- Programmable and reconfigurable coverage in orbit
- •630 channels with 200kHz BW
- ·Based on 3GPP standards
- •95% worst case scenario availability
- Data Rates: 332 to 492 kb/s

Inmarsat's I-4 satellite coverage

BGAN Arquitecture

VolP Experience to the Rescue

- □ BBolP is a real-time app → UDP
- □ Signaling: SIP, heavy overhead, too flexible
- □ RTP: considerable weight
- IAX: Same port for signaling and streaming,
 but also heavy overhead
- A new and simple protocol specifically for the application
- □ After all, 20 000 potential clients
- □ Flight Data Remote Protocol (FDRP)

The FDRP Signaling Flow

The FDRP Anatomy

- ·Bit F : Message or Data
- ·CH : Channel number (1-5)
- Message Types
 - INVITE
 - ACKNOWLEDGE
 - CONFIRM AUTHENTICATION
 - CONFIRM SESSION INITIALIATION
 - REINVITE
 - CONTROL
 - RETRANSMIT

IP	UDP	FDRP	Payload (a)		
160 bits	96 bits	32 bits	(messages or FDR/CVR data)		

BBoIP Key Features

- □ Secure Login
- □ Session reestablishment
- Digitally signed packets over public networks
- □ Periodic Control Packet: Every 30-3000 s
 - Including jitter, latency, number of lost packets, sequence number of lost packets.
- □ Lost Packet Retransmission

Security Considerations

- □ Link Failure or Packet Loss
 - Buffering at the BBoIP client
 - Session recovery through reinvite
 - Retransmission at higher rates
- DFDAU data is already encrypted and secret key owned by manufacturer.
- Interception, Modification, Session Hijack and DoS attacks can be prevented/mitigated through
 - Knowledge base correlation techniques
 - White lists
 - Private IP Network
 - VPN tunnels

Economics

- Stakeholders: Inmarsat, Ground Operator, Airlines, Regulators.
- □ SATCOM System \$50-\$300 kusd
- □ Commercial tariff: \$13 usd for a 3-hour flight
- □ Total Speed Required
 - \blacksquare IP + UDP + FDRP + FDR Data = 3648 bps
 - IP + UDP +FDRP + 4 CVRs = 70.4 kbps (combined)
 - = 114 kbps (separate)
- □ Estimated Recurring Cost of Satellite Transmission

 - 40 million hours of commercial flights
 - Equivalent to 20 cents increase per passenger for 120 min flight.

Conclusions

- BBoIP System must have regulator support
- Work in development
 - FDRP protocol simulation and evaluation
 - Embedded system design and prototype for BBoIP Client
- □ Future Work
 - Earth servers and ground operations design
 - A lot of lobbying
- □ Applications
 - Real-Time accident cause determination
 - Accident alerts
 - Pilot Training and Evaluation

SWIFTBROADBAND Performance

Condition	(ATS)	provider	Inmarsat core network		To-satellite C-band Propagation	processing		Aircraft Processing/ Queuing (output of BGAN equipment)
Unencrypted	10	10 – 30 100? (tbc)	10	200	~130	< 5	140	~120

Uplink Delay (ms)
From Earth Station to BBoIP Client on Airplane