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Introduction To Optimization

I In recent years, the field of Optimization, has undergone a rapid
development:

I Optimization applications in areas science and technology, including
molecular biology, imaging, digital signal processing, portfolio management,
networks and more.

I Tremendous growth in computing power that we have witnessed in our
times.

I Applications:
I finding molecular conformation;
I finding the optimal trajectory for an aircraft or a robot arm;
I identifying the seismic properties;
I designing a portfolio to maximize expected return;
I controlling a chemical process or a mechanical device to optimize

performance;
I computing the optimal shape of an automobile or aircraft component;
I identifying parameters in machine learning problems
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Mathematical Formulation

Optimization is the minimization or maximization of a function subject to
constraints on its variables.

I x is the vector of n variables, also called unknowns or parameters;

I f is the objective function, a function of x that we want to maximize or
minimize;

I S a compact subset of Rn.

The optimization problem may be stated as:

Optimization Problem

min
x∈Rn

f (x) subject to x ∈ S ⊂ Rn
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Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Optimization Taxonomy

I Optimization parameters (variables)
I Continuous Optimization
I Discrete Optimization

I Search space S
I Unconstrained Optimization (S = Rn)
I Constrained Optimization

I Quality of solution
I Local Optimization
I Global Optimization

I Objective function
I Stochastic
I Deterministic

I Continuous
I Differentiable
I Non-Smooth

Constantinos Voglis Methods for Local and Global Optimization 5 / 118



Outline
Introductory material
Optimality Conditions

Introduction To Optimization
Mathematical Formulation
Brief Optimization Taxonomy
Notations

Commonly used Notations

Objective Function Related

f (x) : objective function

g(x),∇f (x) : objective function’s gradient (first order derivatives)

H(x),∇2f (x) : objective function’s Hessian matrix (second order derivatives)

J(x),
∇fi (x)

∇xj
: objective function’s Jacobian matrix (sum of squares)

Optimization related

x∗ : a minimum (local or global)

λ, µ : Lagrange multipliers

L(x ;λ) : Lagrangian function
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Topographically adapted stochastic search
Sampling from sum of normals distribution

Spectral information based Clustering
A new strictly descent local search

A new stopping rule

Part I

Global Optimization
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Topographically adapted stochastic search
Sampling from sum of normals distribution

Spectral information based Clustering
A new strictly descent local search

A new stopping rule

Introduction - Notation

Global optimization problem

min f (x)

subject to : x ∈ S ⊂ Rn

Generalized global optimization problem

Find all minima f (x)

subject to : x ∈ S ⊂ Rn

I Computational Physics (few-body systems, optical systems)
I Computational Chemistry (drug design)
I Radiation therapy
I Model fitting (neural network training)
I Molecular conformation
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Sampling from sum of normals distribution

Spectral information based Clustering
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Global optimization taxonomy

Global optimization methods are divided:

I Stochastic vs. Deterministic

I Continuous vs. Discrete

I Single global vs. Multiple / all global

I Heuristic vs. Meta-heuristic

I With local optimization (two-phase) vs. Only global phase

In this thesis we are concerned:

Continuous: Function (search space) and margins
Stochastic: Random sampling
Many minima: We seek all minima in a specified domain
Two-phase: Local optimization application .
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Stochastic, two-phase, clustering

Algorithmic framework 1

S1. Sampling search space: Uniform or
pseudo-uniform distribution

S2. Cluster analysis: Group sampled
points and assign them to minima.

S3. Local search: Apply a local search
from a representative point of each
cluster.

S4. Stopping rule: Decide whether to
stop or continue.

Contribution

Application of spectral
clustering+global k-means

New strictly descent local search

New stopping criterion based on
uniform minima distribution
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A new strictly descent local search
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Stochastic, two-phase, adaptive distribution

General Algorithmic Framework 2

S1. Sample from adaptive distribution:
Of Implicit or explicit form.

S2. Apply local search: Same as
previous framework

S3. Update distribution parameters:
From the minima retrieved so far.

S4. Stopping rule: Same as previous
framework

Contribution

1. Implicit sampling: Topologically
adaptive method
2. Explicit sampling: Sum of normal
distributions

New strictly descent local search

New stopping criterion based on
uniform minima distribution
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Topographically adapted stochastic search
Sampling from sum of normals distribution

Spectral information based Clustering
A new strictly descent local search

A new stopping rule

Introduction
Ideal two-phase algorithm
Practical implementation
Probability estimation
Local search significance
Asymptotic guarantee
Adaptive search algorithm Adapt

Topographically adapted stochastic search

Method properties:

I Decides whether to start a local search or not.

I Aims one local search per minimum.

I Stores local minima and information about them.

I Defines a spherical model around every minimum.

I Asymptotic guarantee

I Can be considered as implicit sampling distribution!
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Introduction
Ideal two-phase algorithm
Practical implementation
Probability estimation
Local search significance
Asymptotic guarantee
Adaptive search algorithm Adapt

Region of attraction

The region of attraction of a local minimum associated with a local search
procedure L is defined as:

Ai ≡ {x ∈ S ,L(x) = x∗i }

If S contains a total of w local minima, from the definition above follows:

∪w
i=1Ai = S

m(S) =
w∑

i=1

m(Ai ) for deterministic local search

If K points are sampled from S , the apriori probability that at least one point is
contained in Ai is given by:

1−
(

1− m(Ai )

m(S)

)K

= 1− (1− pi )
K
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Ideal algorithm

Imagine an ‘Ideal two-phase algorithm-like Algorithm:

S1 Sample: Sample x ∈ S

S2 Main step: If (x /∈ ∪k
i=1Ai ) Then

y = L(x)

k = k + 1

yk = y

Endif

S3 Termination Control: If a stopping rule applies, STOP.

a) Every minimum is located
exactly once.
b) We assume that the region of
attraction may be directly
determined.
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Practical implementation

I Since the regions of
attraction of the minima
discovered so far, are not
known, it is not possible to
determine if a point
belongs or not to their
union.

I However, a probability
may be estimated, based
on several assumptions.

I Hence, a stochastic
modification may render
IMS useful.

Stochastic modification of the main step:
S2 Main step:

Calculate the probability plocal , that x /∈ ∪k
i=1Ai

Draw a random number ξ ∈ (0, 1) from a uniform
distribution

If ( ξ < plocal ) Then

y = L(x)

If ( y /∈ {yi , i = 1, 2, . . . , k}) Then

k = k + 1

yk = y

Else

Update information (Ri , li )

Endif

Endif
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I Since the regions of
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discovered so far, are not
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belongs or not to their
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I However, a probability
may be estimated, based
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Probability estimation

I Estimate p, that x /∈ ∪k
i=1Ai .

I Overestimated probability (p > 1), increases the computational cost, and
transforms the algorithm towards the standard MultiStart.

I Underestimated probability will cause an iteration delay without significant
computational cost. (Only sampling, no local search).

Probability model

If a sample point x is close to an already known minimizer yi , the probability
that it does not belong to its region of attraction is small and zero at the limit
of complete coincidence.

Pr(x /∈ Ai ) −−−−−−→
|x−yi |−→0

0
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Probability model

Let us define the maximum attractive radius
(MAR) as:

Ri = max
j
{||x (i)

j − yi ||}

where x
(i)
j are the sampled points which led the

subsequent local search to the i th minimizer yi .
I If ||yi − x || < Ri , then x is likely to be

inside the region of attraction of y .
I If however ∇f (x)T (yi − x) ≥ 0, i.e. the

direction from x to yi is ascent.

I If ||yi − x || > Ri , then Pr(x /∈ Ai ) = 1
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Probability model

Probability model

Pr(x /∈ A(y)) =

{
1, if z > 1 or ∇f (x)T (y − x) ≥ 0

φ(z , l)×
[
1 + (y−x)T∇f (x)

z||∇f (x)||

]
, otherwise

z = ||yi−x||
ri

, l is the number of times y has been recovered so far

φ(z , l) has

lim
z→0

φ(z , l)→ 0

lim
z→1

φ(z , l)→ 1

lim
l→∞

φ(z , l)→ 0

0 < φ(z , l) < 1

pg =

[
1 +

(y − x)T∇f (x)

z ||∇f (x)||

]
is a

reducing factor s.t.

pg → 0 as
(y − x)T∇f (x)

z ||∇f (x)|| → −1

(perpendicular)
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A model for φ(z , l)

φ(z , l) = ze−l2(z−1)2

, ∀z ∈ (0, 1)

Figure: Model plots for several l values
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To start or not to start...

I Goal: Calculate plocal = Pr(x /∈ ∪k
i=1Ai )

I or plocal =
∏k

i=1 Pr(x /∈ Ai )

I Approximate: p̃local = Pr(x /∈ ∪k
i=1Ak ), An being the region of attraction

of the nearest to x discovered minimizer yk .
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Local search properties

I The probability model is based on
distances from the discovered minima.

I One model per minimum!

I It is implicitly assumed that the closer to a
minimum a point is, the greater the
probability that falls inside its Region of
Attraction.

I This is not true for all local search
procedures L.

I Regions of attraction should contain the
minimum and be contiguous.

I Ideally the regions of attraction should
resemble the ones produced by a descent
method with infinitesimal step.
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Asymptotic guarantee
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Adapt Algorithm

Sample: Sample x ∈ S

Main step: i = argmin
j=1,...,k

||x − yj ||

d = ||x − yi ||
If (d < ri ) Then

If (∇f (x)T (yi − x) < 0) Then

z =
||yi−x||

ri

p = φ(z, ni )

[
1 +

(yi−x)T∇f (x)

||(yi−x)T∇f (x)||

]
Else

p = 1.0

Endif

Else

p = 1.0

Endif

Let ξ be a uniform random in [0, 1]

If (ξ < p) Then

Local Search: y = L(x)

If ( y is new minimum ) Then

k = k + 1, rk = ||x − yk ||, nk = 1

Else { We discovered the l-th local minimum }
rl = max(rl , ||x − yl ||), nl = nl + 1

Endif

Else { Assuming that x belongs in the region of attraction of the i-th
minimum }

ri = max(ri , ||x − yi ||), ni = ni + 1

Endif

Termination Control: If a stopping rule applies, STOP.
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Sampling from sum of normals distribution

Recall the General Algorithmic Framework 2

S1. Sample from adaptive distribution: Of Implicit or explicit form.

S2. Apply local search: Same as previous framework

S3. Update distribution parameters: From the minima retrieved so far.

S4. Stopping rule: Same as previous framework

Proposed method’s properties:

I Explicit definition of sampling distribution.

I One model (normal distribution) per minimum.

I Rejection sampling scheme

I Computationally intensive.
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Sum of normals distribution model (I)

Let yi be a local minimum:

N(x ;µyi ,Σyi ) =
1√
2π

1

|Σyi |
e
− 1

2
(x−µyi

)T Σ−1
yi

(x−µyi
)

where µyi = mean value and Σyi = covariance matrix of the distribution. Given
N points x1, x2, . . . xN that lead to local minimum yi we can calculate the mean
value µ and the covariance matrix Σ using maximum likelihood estimates:

µyi = E(X ) =
1

N

N∑
i=1

xi

Σyi = E
(

(X − µyi )(X − µyi )
T
)

=
1

N

N∑
i=1

(xi − µyi )(xi − µyi )
T
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Sum of normals distribution model(II)

Consider w minima:

N (x) =
w∑

i=1

ηiN(x ;µyi ,Σyi )

where ηi = ρi∑
ρi

, ρi the number of local searches reached yi . Proposed: Sample

using N (x).

N (x) ≥ 0, ∀x∫
N (x)dx = 1
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Sampling

Rejection sampling from function f (x)

Consider an instrumental distribution function g(x)

* Sample x from g(x) and u from U(0, 1)

* Check whether or not u < f (x)
Mg(x)

.

o If this holds, accept x as a realization of f (x);
o if not, reject the value of x and repeat the sampling step.
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Sampling Algorithm

I repeat the following until a point is accepted

I Get x from U([a, b]n) where n is
the problem’s dimension.

I Sample ξ from U(0, 1)
I F̃ ← 0, maxF ← 0
I for every local minimum

retrieved
I F̃ ← F̃ +

ρi∑
j ρj

N(x, µyi
, Σyi

)

I maxF ←
maxF +

rhoi∑
j ρj

N(µyi
, µyi

, Σyi
)

I If ξ ×maxF > F̃ then accept x
as starting point
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Illustrative Example (Single minimum)

(a) Uniform distribution (b) Proposed distribution
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Illustrative Example (Multiple minima)

(c) Uniform distribution (d) Proposed distribution
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Sequential parameter update

Let starting point x s.t. L(x) = yi

I µ̃yi ← µyi + αi (x − µyi )

I Σ̃yi ← Σyi + αi (x − µyi )(x − µyi )
T ,

where αi ∈ (0, 1).

Quantity αi is called learning factor:

I αi =
ρi∑
ρi

, ρi how many times yi is found

I αi predefined constant

Initialization:

I Initialize µyi

1. µyi = (xfirst − yi )/2
2. µyi = yi

I Initialize Σyi

1. Σyi = σIn
2. Initialize using hessian matrix at the minimum
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Cholesky factorization

For numerical stability and computational efficiency we use Cholesky factor
Σ = LLT :

I Cheaper update O(n2): Σ̃ = Σ + uuT = LLT + uuT = L(I + ppT )LT ,
where Lp = u.

I Efficient determinant calculation: det(Σ) =
N∏

i=1

L2
ii

I Efficient exponential term calculation: (x − µ)T Σ−1(x − µ) =(
L−1(x − µ)

)T (
L−1(x − µ)

)
, where L−1(x − µ) = y ⇒ Ly = x − µ
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Update example (Single minimum)

(a) (b) (c)

(d) (e) (f)

Constantinos Voglis Methods for Local and Global Optimization 35 / 118



Topographically adapted stochastic search
Sampling from sum of normals distribution

Spectral information based Clustering
A new strictly descent local search

A new stopping rule

Introduction
Sum of normals distribution model
Sampling
Sequential parameter update

Computational resuls
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Spectral information based Clustering

From Algorithmic framework 1

S1. Sampling search space: Uniform or pseudo-uniform distribution

S2. Cluster analysis: Group sampled points and assign them to minima.

S3. Local search: Apply a local search from a representative point of each cluster.

S4. Stopping rule: Decide whether to stop or continue.

Method’s properties:

I Novel clustering approach:

I spectral clustering
I global k-means

I Each cluster represents a minimum

I Apply local search from cluster center

I Basic computational cost, eigenvalue decomposition
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Clustering in global optimization

I Hierarchical clustering
I Density clustering
I Single linkage clustering
I Multilevel single linkage clustering)

I Partitional clustering
I Mode seeking algorithm
I Multilevel mode seeking
I Vector quantization
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Proposed clustering overview

Let random sampled points in search space

I Step 1(Concentrate points): Move sampled points toward the closest
minimum

I Step 2(Estimate number of clusters k): Estimate k using spectral
information from an affinity matrix and including gradient information

I Step 3(Apply clustering): Apply global k-means either on the problem’s
space or on spectral space

I Step 4(Retrieve minima): Start appropriate local optimization
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Form clusters using:

I Small steps in negative gradient direction (parameter depended)

I Few iterations of a local search

(a) Small steps in negative gradient direction (b) Few iteration of a local search
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Uniform vs. pseudo-uniform

A clear choice instead of uniform could be a pseudo-uniform (eg. Halton
sequence)

(a) Uniform (b) Pseudo-uniform
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Estimate k: Spectral analysis

Spectral analysis algorithm

Let M concentrated random sampled points.

1. Construct affinity matrix A ∈ RN×N where Aij = exp(−||xi − xj ||2/2σ2) if
i 6= j , and Aii = 0

2. Define diagonal matrix D where element (i , i) is the sum of the i-th row of
A

3. Construct L = D−1/2AD−1/2

4. Calculate and sort the eigenvalues of L. Let e1, e2, . . . , eN be the sorted
eigenvalues

5. Calculate differences δi = ei+1 − ei , i = 1, . . . ,N − 1.

6. Find the maximum difference (Eigengap): k = argmaxk=1,...,N−1δi
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Maximum difference (Eigengap) of the eigenvalues of L

I Origins in graph partitioning)

I Number of connected components ≡ number of eigenvalues close to 1

I Alternative criterion 1: Define a threshold (say < 0.7)

I Alternative criterion 2: Locate the first eigenvalue < 1

Example toy problem
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σ parameter calculation

Parameter σ is used in Aij = exp(−||xi − xj ||2/2σ2).

σ calculation

σ is defined from the mean distance from a point to its Inei closest neighbors
(local scaling).
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Parameter σ calculation: Inei

The number of neighbors Inei plays important role in for the calculation of σ.

(a) Well concentrated sam-
ples

(b) Inei = 2 (c) Inei = 3

(d) Inei = 4 (e) Inei = 5
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Parameter σ calculation: Inei

The number of neighbors Inei plays important role in for the calculation of σ.

(a) Slightly transformed
samples

(b) Inei = 2 (c) Inei = 3

(d) Inei = 4 (e) Inei = 5
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Gradient information

I Matrix A stores the affinity between two points xi and xj

I The affinity is based on Euclidean distance exp(−||xi − xj ||2/2σ2)

We propose an additional information in matrix A that includes gradient
information: Two points are correlated if following their negative gradients
results in smaller distance

Gradient check xi and xj

Let dx = xi − xj and dg = ∇f (xi )−∇f (xj ) then if ω =
dxTdg

||dx ||||dg || < 0 the

points are correlated.

Calculate A

Ai,j =

{
exp(−||xi − xj ||2/2σ2 if ω < 0

0 otherwise
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Gradient information: Illustration 1

Figure: Example of association and disassociation using the gradient
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Gradient information: Illustration 2

(a) Plot pairwise affinities: Without gradient (b) Plot pairwise affinities: With gradient
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Gradient information: Impact on clustering

(a) Sampled points (b) Without derivative - eigen-
values

(c) Without derivative - clus-
ters
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Gradient information: Impact on clustering

(a) Sampled points (b) With derivative - eigenval-
ues

(c) With derivative - clusters
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Global k-means

The global k-means algorithm:

I Needs the number of clusters k

I Partitions the dataset incrementally to j = 1, 2, . . . , k clusters

I Uses the information of j-th step (j clusters) to construct j + 1-th
step(j + 1 clusters)

I In the j-th step performs M times the simple k-means algorithm

I Independent of initialization

Extension

Global k-means can operate on affinity matrix by defining medoids instead of of
means.
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Global k-means animation
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Global k-means / Global k-means on affinity matrix

Global k-means:

I Operates using distances

I No use of gradient
information

I Cluster centers are new
points

Global k-means on affinity matrix:

I Operates on affinity matrix

I Uses gradient information stored in affinity
matrix

I Cluster centers are existing points
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I Operates using distances
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Global k-means:

I Operates using distances

I No use of gradient
information

I Cluster centers are new
points

Global k-means on affinity matrix:

I Operates on affinity matrix

I Uses gradient information stored in affinity
matrix

I Cluster centers are existing points
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Final algorithm

Input: f: Minimizing function, xl, xu: Problem’s bounds, N: Sample size, Isampl: Defines sample strategy,
Ired: Switches between the concentrating method, Iuseg: Use gradient information,
Iclust: Switches between global kmeans/kmedoids, Inei: Number of neighbors to calculate σ

1. If Isampl = 1 Then { Sample N starting points }
else X ← Uniform(N, xl, xu)

Else
else X ← Halton(N, xl, xu)

End If

2. If Ired = 1 Then { Concentrate sample points }
For i=1 to N

X (i)← Local(X (i), iter)
End For

Else
For i=1 to N

For k=1 to iter
X (i)← X (i)− α∇f (X (i))

End For
End For

End If

3. A← Affinity(X , Iuseg, Inei)
[e1, . . . , en ]← Eigenvalues(A)
Sort [e1, . . . , en ] in decreasing order and calculate maximum eigengap at k
If Iclust = 1 Then { Apply global k-means/medoids }

[M,Dis]← Gkmeans(X , k)
Else

M ← Gkmedoids(A, k)
End If
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Strictly descent local search

Applicable in both frameworks!
Algorithmic framework 1

S1. Sampling search space: Uniform or
pseudo-uniform distribution

S2. Cluster analysis: Group sampled
points and assign them to minima.

S3. Local search: Apply a local search
from a representative point of each
cluster.

S4. Stopping rule: Decide whether to
stop or continue.

Algorithmic framework 2

S1. Sample from adaptive distribution:
Of Implicit or explicit form.

S2. Apply local search: Same as
previous framework

S3. Update distribution parameters:
From the minima retrieved so far.

S4. Stopping rule: Decide whether to
stop or continue.

Local search goal

From a starting point create a descent sequence of iterates and converge to a
minimum

Constantinos Voglis Methods for Local and Global Optimization 56 / 118



Topographically adapted stochastic search
Sampling from sum of normals distribution

Spectral information based Clustering
A new strictly descent local search

A new stopping rule

Introduction
The necessity of a new local search
Algorithmic description
Adding gradient information
Accelerate: choosing ν
Experimental results

Strictly descent local search

Applicable in both frameworks!
Algorithmic framework 1

S1. Sampling search space: Uniform or
pseudo-uniform distribution

S2. Cluster analysis: Group sampled
points and assign them to minima.

S3. Local search: Apply a local
search from a representative
point of each cluster.

S4. Stopping rule: Decide whether to
stop or continue.

Algorithmic framework 2

S1. Sample from adaptive distribution:
Of Implicit or explicit form.

S2. Apply local search: Same as
previous framework

S3. Update distribution parameters:
From the minima retrieved so far.

S4. Stopping rule: Decide whether to
stop or continue.

Local search goal

From a starting point create a descent sequence of iterates and converge to a
minimum

Constantinos Voglis Methods for Local and Global Optimization 56 / 118



Topographically adapted stochastic search
Sampling from sum of normals distribution

Spectral information based Clustering
A new strictly descent local search

A new stopping rule

Introduction
The necessity of a new local search
Algorithmic description
Adding gradient information
Accelerate: choosing ν
Experimental results

Early references

Kan and Timmer for theoretical analysis of their clustering algorithm:

Local search: Line search step

xk+1 = xk + akpk , pk a descent direction and ak a positive step

Moreover for strictly descent:

I f (xk + βpk ) ≤ f (xk + αpk ) where α < β ≤ ak

I f (xk + iεpk ) ≤ f (xk + (i − 1)εpk )
(
i = 1, 2, . . . ,

[
ak
ε

])
Intuitively, the local search must define a path that is always descent

Contribution of this thesis

Although mentioned for first time before 30 years there is no practical
implementation of a strictly descent local search
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Example of an strictly descent local search

(a) Strictly local search (b) Local search
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The necessity of a new local search

I When distance from minimum plays important role

I When modelling the region of attraction → contiguous → one model per
minimum
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The necessity of a new local search

Consider the sum of normals distribution model:
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New local search properties

I Line search framework (Newton, quasi-Newton, conjugate gradient etc.
provide descent direction pk )

I Modification on a well known line search (backtracking with Armijo
condition f (x0 + λkpp) < f (x0) + λkρf

′(x0))
I Ideally: The properties of ε-descent with the efficiency of a classical line

search
I Forward search, shortest steps near x0

(a) Armijo condition (b) Backtracking λ = 0.5
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New local search

Create a grid on the permissible values:

λi =
µi − 1

µν − 1
min(1,

max(1, ||xk ||)
||sk ||

)

Accept the first point s.t:

f (xk + λpk ) < f (xk ) + ρλip
T
k ∇f (xk )
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Scaling factor

Factor

min(1,
max(1, ||xk ||)
||sk ||

)

adjusts the search to the problem’s typical size.
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Algorithmic description: first version

1. Initialize:
scale ← 1, fc ← 0, term← false

2. Main Step:
while term=true do

for i=1, ν do

λi ← scale ·
µi − 1

µν − 1
· min

(
1,

max (1, ||x||))

||pk ||

)
if f (x + λi pk ) < f (x) + ρλi · pT

k ∇f (x) then { Bellow ρ line }
if f (x + λi pk ) > f (x + λi−1pk ) then { No improvement }

α← λi−1

x′ ← x + αpk
term← true, break

end if
else { Above ρ line }

α← λi−1

x′ ← x + αpk
term← true, break

end if
fc ← fc + 1

end

scale ← scale
µi − 1

µν − 1
· min

(
1,

max (1, ||x||))

||pk ||

)
end
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First version need further information
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Adding derivative information

Idea: Dot product of the direction pk and ∇f (x0 + λipk ) changes sign.

Corrects previous case
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Algorithmic description: adding gradient information

1. Main Step:
while term=true do

for i=1, ν do

λi ← scale · µ
i−1

µν−1
· min

(
1,

max(1,||x||))
||pk ||

)
if f (x + λi pk ) < f (x) + ρλi · pT

k ∇f (x) then { Bellow ρ line }
if f (x + λi pk ) > f (x + λi−1pk ) then { No improvement }

α← λi−1

x′ ← x + αpk
term← true, break

else { Bellow ρ line and improving }
gi ← ∇f (xi )

if gT
i pk > 0 then
α← λi−1

x′ ← x + αpk
term← true, break

end if
end if

else { Above ρ line }
α← λi−1

x′ ← x + αpk
term← true, break

end if
end
scale ← scale µ

i−1
µν−1

· min
(

1,
max(1,||x||))
||pk ||

)
end
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Accelerate: choosing ν

Observation

Line search algorithms take full steps near the minimum.

xk+1 = xk + λpk+1, λ = 1

Consequence: The proposed line search → ν function calls

Solution

Estimate parameter ν adaptively, based on quantity h =
1

1− pT
k ∇f (xk )

Define the first step on the grid to be h, from this estimate ν′

h→ 1⇒ ν′ → 1 when pT
k ∇f (xk )→ 0 (near minimum)

Accept ν = max
(⌊

(ν′ − ν) · e0.1(−iter+1) + ν
⌋
, 1
)
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Algorithmic description: choosing ν

1. Initialize:
scale ← 1, fc ← 0, gc ← 0
h← 1

1−pT
k
∇f (x)

sc ← min
(

1,max
(

1, ||x||
||∇f (x)||

))
ν′ ← ν , ν ←

⌊
min

(
ν′,

log(1+(µ−1) sc
h

)

log(µ)

)⌋
ν = max

(⌊
(ν′ − ν) · e0.1(−iter+1) + ν

⌋
, 1
)

2. Main Step:
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Accuracy vs. Efficiency

Armijo Type Local Search

Function Correct Error Iters. Fun. Calls % Success

Ackley 555 445 15704 24978 55,50%

Giunta 588 442 12013 15855 57,09%

Guillin 477 523 17764 29974 47,70%

Levy3 1285 715 20783 31624 64,25%

Rastrigin 599 401 9240 12822 59,90%

Griewank 695 305 10244 13422 69,50%

Bird 704 296 14104 19960 70,40%

Levy5 1272 728 21476 31377 63,60%

Rot. Quad 539 461 12001 18408 53,90%

Holder 597 403 12235 17430 59,70%

Liang 561 439 11671 18912 56,10%

Piccioni 726 274 24874 44702 72,60%

Shekel 145 155 3757 7493 48,33%

M0 717 1283 132739 142455 35,85%

Lager 581 419 11342 16537 58,10%

Tube 727 273 10034 13719 72,70%

Mich 178 322 11472 16222 35,60%

Dejong 301 199 18417 22221 60,20%

Sum / Ave. 11247 8083 369870 498111 57.8%

Local Local Search n=10, m=1.3

Function Correct Error Iters. Fun. Calls %

Ackley 874 126 11555 61583 87,40%

Giunta 912 95 12891 83760 90,57%

Guillin 896 109 10211 55838 89,15%

Levy3 1910 90 19882 139418 95,50%

Rastrigin 1000 0 9031 58571 100,00%

Griewank 998 2 9403 72245 99,80%

Bird 913 87 10782 78446 91,30%

Levy5 1811 189 19282 21956 90,55%

Rot. Quad 903 97 9964 69611 90,30%

Holder 995 5 10554 63490 99,50%

Liang 702 298 11782 87584 70,20%

Piccioni 997 3 9021 81703 99,70%

Shekel 250 50 3783 24281 83,33%

M0 1200 800 19826 132526 60,00%

Lager 901 99 10435 69524 90,10%

Tube 1000 0 8991 50724 100,00%

Mich 356 144 11282 55817 71,20%

Dejong 489 12 16822 53632 97,60%

Sum / Ave 17107 2206 215497 1260710,6 89,23%
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A new stopping rule

Applicable in both frameworks!
Algorithmic framework 1

S1. Sampling search space: Uniform or
pseudo-uniform distribution

S2. Cluster analysis: Group sampled
points and assign them to minima.

S3. Local search: Apply a local search
from a representative point of each
cluster.

S4. Stopping rule: Decide whether to
stop or continue.

Algorithmic framework 2

S1. Sample from adaptive distribution:
Of Implicit or explicit form.

S2. Apply local search: Same as
previous framework

S3. Update distribution parameters:
From the minima retrieved so far.

S4. Stopping rule: Decide whether to
stop or continue.
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Stopping rules requirements

Trade off between efficiency (speed) and quality (global minima).
Requirements

I Sample dependent: The actual objective function values and their
location, or the number of times that local optima are identified by a local
search procedure.

I Problem dependent: Maximal use should be made of available prior
information. This information may concern, for instance, the number of
local optima and the size of the regions of attraction, or the tail of the
distribution of function values.

I Method dependent: If some general algorithmic properties of the applied
method are known, these should be incorporated in the stopping rule.

I Loss dependent: Stopping rules should take into account the seriousness
of the cost incurred if the search is terminated before the global optimum
is identified.

I Resource dependent: Evidently the computational effort should be kept
as small as possible.
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Taxonomy of stopping rules

I Naive thresholding
I Stopping rules based on the local optima structure

I Statistical models
I Non-sequential rules (Zielinski, Boender et al )
I Sequential rules
I Incorporation of function values

I Stopping rules based on coverage of search space (Double Box)
I Stopping rules based on the distribution of function values

I Continuous case
I Discrete case
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Stopping rule idea

Problem definition

Consider a box containing w different balls. The balls are numbered
sequentially 1, 2, 3, . . . ,w . We pick a ball at random examine its number, and
we put it back in the box. This is one iteration. If the ball number has not
been drawn previously we update the distinct ball count m, otherwise we don’t.

Correspondence to optimization

We pick a ball at random examine its number ←→ application of local
optimization
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Basic formulae I

At iteration k, the probability that m balls (minima) are found is denoted by

p
(k)
m

Expected number of distinct balls after k iterations

< N >(k)=
k∑

i=1

i · p(k)
i = p

(k)
1 + 2p

(k)
2 + · · ·+ kp

(k)
k

Recursive definition of p
(k)
m

p
(k+1)
i = αp

(k)
i + βp

(k)
i−1

I the probability that in the previous iteration (k−th), i minima were already recovered and in

the (k + 1)−th no new minimum is found (this is with probability α),

I the probability that in the k−th iteration (i − 1) minima were found and in the (k + 1)−th

iteration one more minimum (new) is found (with probability β).
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Basic formulae II

The task of calculating p
(k)
i is now reduced to the task of defining the

probabilities α and β.
Assumption:

The probability of locating a local minimum, among the w distinct ones,
by applying a local search is p = 1

w
.

All minima are retrieved (by applying a local search) with uniform
probability.

Rationalize the assumption

The above assumption although unachieved in the multistart framework, it
makes sense in the concept of stochastic clustering algorithms were we
(optimally) aim to perform one local search per minimum.

I α = i
w

I β = w−(i−1)
w
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Example test functions

(a) Uniform probability (b) Non-uniform probability

Constantinos Voglis Methods for Local and Global Optimization 77 / 118



Topographically adapted stochastic search
Sampling from sum of normals distribution

Spectral information based Clustering
A new strictly descent local search

A new stopping rule

Introduction
Stopping rules in the bibliography
Stopping rule idea
Stopping rule made practical
Experimental results

Stopping rule made practical

Let N
(i)
found the number of distinct minima at i-th iteration. Then the quantity:

dMSE =
1

iter

iter∑
i=0

(
< N(i) > −N(i)

found

)2

is decreasing to zero.

Iteration Minima Found MSE Variance
100 64 78.949828 205.044716
200 94 72.086818 3 6.688531
300 110 52.139962 9.248131
400 116 28.281410 2.063600
500 119 10.676961 0.443810
600 121 9.770836 0.095597
700 121 5.789973 0.018181
800 121 2.525016 0.003458
900 121 1.101163 0.000658

Table: Expected number of minima vs. the real minima found
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Illustration

(c) Iter 100
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Illustration

(d) Iter 200
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Illustration

(e) Iter 300
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Illustration

(f) Iter 400
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Illustration

(g) Iter 800
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Illustration

(h) Iter 900
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Description of compared stopping criteria

I Zielinski: Fraction of uncovered space: P(w) = w(w+1)
t(t−1)

, Stop when

P(w) ≤ ε
I Boender et al: Estimated number of local minima west = w(t−1)

t−w−2
, Stop

when west − w ≤ 1
2

I Double box(Tsoulos&Lagaris): Suppose sampling from a larger space.
δk ≡ k

Mk
, Stop when σ2

k (δ) ≤ σ2
k (δlast)

I Proposed criterion: dMSE = 1
k

∑k
i=0

(
< N(i) > −N(i)

found

)2

, Stop when

σ2
k (dMSE ) < ε
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Experimental comparison

Function Zielinski Rinnoy-Kan Tsoulos-Lagaris Proposed

nom nloc feval nom nloc feval nom nloc feval nom nloc feval

Rast(121) 121 3843 66863 121 14886 254412 121 2129 36903 121 1500 25905

Ack(49) 49 1566 42498 49 2502 67686 48.6 1079 29081 48.6 615 16457

Gri(123) 123 3906 66436 123 15378 261801 123 1842 31414 123 1500 25742

Lev3(130) 130 4128 79330 130 17163 329956 130 2078 40043 130 1605 30877

Lev5(130) 130 4128 92642 130 17163 383216 130 2206 49075 130 1605 35718

Lag(64) 63.8 2035 39807 64 4227 82401 63.95 2859 55803 62.8 845 16607

R-G(94) 92.65 2947 78023 93.2 8875.8 235069 92.6 4503 119098 91.65 1185 31340

Giu(36) 36 1155 17007 36 1371 20208 35.95 432 6405 36 500 7324

Gui 303.45 9612 190830 369.9 20000 396869 371 20000 396951 369.7 20000 396951

M0(152) 151.45 4806 71885 154.45 20000 299674 152.55 11265 168760 152 1920 28989

M5(441) 440.9 13959 1215763 440.85 20000 1742052 440.85 18623 1621518 439 5800 505057

She(10) 10 333 10183 10 123 3776 10 158.2 4808,25 10 200a 6064

Bir(25) 24.95 805 22764 24.8 668 19019 22.8 659 18639 24.85 420 12025

Tub(45) 45 1440 18457 45 2118 27140 45 483 6174 45 600 7863

Dej(64) 62.65 1997 103142 63 4099 211941 62.2 1134 58701 63 800 41508

Hol(180) 180 5709 111733 180 20000 391459 180 2881 56357 180 2300 45052

Pic(37) 37 1187 25792 37 1446 31472 37 1036 22457 37 520 10997

aThe minimum number of local searched needed to start evaluate our stopping rule
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Presentation Outline

9 Convex Quadratic Programming With Bound Constraints

10 A Rectangular Trust Region Optimization Algorithm

11 A Hybrid Local Search For Neural Network Training
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Problem Definition

The Quadratic Programming problem with simple bounds is stated as:

q(x) = min
x

1

2
xTBx + xTd , (1)

subject to: ai ≤ xi ≤ bi ,∀i ∈ I = {1, 2, · · · , n}

where x , d ∈ Rn and B is a symmetric, positive definite n × n matrix.
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Applications of Quadratic Programming with simple bounds

I Computational Physics

I Engineering

I Training Support Vector Machines

I Biomedical Applications (Radiation Intensity Optimization)

I Part of Optimization Algorithm (see Rectangular Trust Region)
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Solution Methods

I Active Set Techniques: Iterates on a face of the feasible box until either a
minimizer of the objective function is found or a point on the boundary of
that face is reached.

I Gradient Projection: Like active set, but allowing more than one faces of
the feasible box

I Interior Point Techniques: In brief, an interior point algorithm consists of
adding a series of parameterized barrier functions which are minimized
using Newton’s method
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KKT Conditions

Quadratic Problem

q(x) = min
x

1

2
xT Bx + xT d,

subject to: ai ≤ xi ≤ bi , ∀i ∈ I = {1, 2, · · · , n}

Lagrangian

L(x, λ, µ) =
1

2
xT Bx + xT d − λT (x − a)− µT (b − x)

KKT Conditions for Quadratic Problem

Bx∗ + d − λ∗ + µ
∗ = 0 (2)

λ
∗
i ≥ 0, µ

∗
i ≥ 0, ∀i ∈ I (3)

λ
∗
i (x∗i − ai ) = 0, ∀i ∈ I (4)

µ
∗
i (bi − x∗i ) = 0, ∀i ∈ I (5)

x∗i ∈ [ai , bi ], ∀i ∈ I (6)

Active Set A

A = {i ∈ I : µ∗i ≥ 0 or λ
∗
i ≥ 0}
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Basic sketch

I Given the Active Set A (let S̃ = I − A), solve the system

BS̃ S̃xS̃ = −dS̃

I The first KKT condition is a nxn linear system but the number of
unknowns is 3n (x , λ, µ)

I Construct three sets L(k),U(k),S (k) such that I = L(k) ∪ U(k) ∪ S (k) and
L(k) ∩ S (k) = L(k) ∩ U(k) = U(k) ∩ S (k) = Ø

I Start with a guess for the solution (x (0))

I Enforce the complementarity conditions (3) and (4) of KKT Conditions to
obtain λ(0) and µ(0).

I Solve a reduce linear system for the next iteration (x (1)).

I Calculate using substitution from Eq.(1) of KKT λ(1) and µ(1)
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The Algorithm (I)

Algorithm BOXCQP

Initially set: k = 0, λ(0) = µ
(0) = 0 and x (0) = −B−1d .

If x (0) is feasible, Stop, the solution is: x∗ = x (0).

At iteration k, the quantities x (k), λ(k), µ(k) are available.

1. Define the sets:

L(k) = {i : x
(k)
i < ai , or x

(k)
i = ai and λ

(k)
i ≥ 0}

U(k) = {i : x
(k)
i > bi , or x

(k)
i = bi and µ

(k)
i ≥ 0}

S (k) = {i : ai < x
(k)
i < bi , or x

(k)
i = ai and λ

(k)
i < 0,

or x
(k)
i = bi and µ

(k)
i < 0}

Note that L(k) ∪ U(k) ∪ S(k) = I

2. Set:

x
(k+1)
i = ai , µ

(k+1)
i = 0, ∀i ∈ L(k)

x
(k+1)
i = bi , λ

(k+1)
i = 0, ∀i ∈ U(k)

λ
(k+1)
i = 0, µ

(k+1)
i = 0, ∀i ∈ S(k)

Constantinos Voglis Methods for Local and Global Optimization 89 / 118



Convex Quadratic Programming With Bound Constraints
A Rectangular Trust Region Optimization Algorithm
A Hybrid Local Search For Neural Network Training

Problem definition
Applications & Solution approaches
KKT conditions
The Algorithm
Experimental Results

The Algorithm (II)

3. Solve:

Bx (k+1) + d = λ
(k+1) − µ(k+1)

for the n unknowns:

x
(k+1)
i , ∀i ∈ S(k)

µ
(k+1)
i , ∀i ∈ U(k)

λ
(k+1)
i , ∀i ∈ L(k)

4. Check if the new point is a solution and decide to either stop or iterate.

If (x
(k+1)
i ∈ [ai , bi ] ∀i ∈ S(k) and µ

(k+1)
i ≥ 0, ∀i ∈ U(k)

and λ
(k+1)
i ≥ 0, ∀i ∈ L(k)) Then

Stop, the solution is: x∗ = x (k+1).
Else

set k ← k + 1 and iterate from Step 1.
Endif
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Solution of Linear System (Step 3)

Linear System Step 3 ∑
j∈I

Bij x
(k+1)
j + di = λ

(k+1)
i − µ(k+1)

i , ∀i ∈ I

∀i ∈ S(k) we have that λ
(k+1)
i = µ

(k+1)
i = 0, hence we can calculate x

(k+1)
i , ∀i ∈ S(k)

Splitting the sum, calculate x∑
j∈S(k)

Bij x
(k+1)
j = −

∑
j∈L(k)

Bij aj −
∑

j∈U(k)

Bij bj − di , ∀i ∈ S(k)

Calculate λ and µ

λ
(k+1)
i =

∑
j∈I

Bij x
(k+1)
j + di , ∀i ∈ L(k)

µ
(k+1)
i = −

∑
j∈I

Bij x
(k+1)
j − di , ∀i ∈ U(k)
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Illustration
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Properties of the algorithm

I Depends on the condition number of B

I For well conditioned problems only a few iterations are performed

I No convergence theory (yet!)

If L(k+1) = L(k) and U(k+1) = U(k) and S (k+1) = S (k) then L(k),U(k), S (k) satisfy
the KKT conditions.
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Experimental Testbed

I Matlab Implementation

I MOSEK Commercial optimization product that includes Convex Quadratic
solver.

I Quadprog Matlab’s own Quadratic solver

I Fortran Implementation

I QPBOX is a Fortran77 package for box constrained quadratic programs
developed at IMM of the Technical University of Denmark.

I QLD This program [?] is due to K.Schittkowski of the University of
Bayreuth, Germany.

I QUANCAN This program combines conjugate gradients and gradient
projection techniques

BoxCQP Variations

I Conjugate gradient solver

I Cholesky factorization solver

I Mixed approach
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Test Problems

I Random problems
I R1: Equal probability for

upper-lower
I R2: 90% of the variables on

upper bound
I R3: 90% of the variables on

lower bound

I Circus Tent

I Biharmonic Equation

I Intensity Modulation Radiation
Therapy

I Support Vector Classification
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Prob. Name Var.1 Var.2 Var.3 QUACAN QPBOX QLD

SVM (n = 100), f ∗ = −167.79 0.00 0.00 0.00 0.01 0.01 0.00

SVM (n = 200), f ∗ = −384.11 0.0430 0.0352 0.0391 0.1523 0.0703 0.0742

SVM (n = 300), f ∗ = −545.54 0.1367 0.0977 0.1016 0.3945 0.2305 0.2539

SVM (n = 400), f ∗ = −736.00 0.3672 0.2891 0.3359 2.0039 0.5352 0.6289

SVM (n = 500), f ∗ = −933.94 0.7031 0.6133 0.7070 4.6914 1.0508 1.2734

SVM (n = 600), f ∗ = −1073.77 1.1797 0.8398 0.9727 6.5430 1.8516 2.3633

SVM (n = 700), f ∗ = −1222.33 2.2656 1.5078 1.8516 14.3320 3.0273 3.8125

SVM (n = 800), f ∗ = −1323.44 3.3789 1.8750 2.2539 21.7461 4.6836 6.1953

SVM (n = 900), f ∗ = −1431.59 5.6680 3.3984 3.8438 27.1602 7.3281 8.2031

SVM (n = 1000), f ∗ = −1539.77 7.2578 4.2930 5.0117 34.0078 10.3945 11.3281

SVM (n = 2000), f ∗ = −2849.68 68.7852 22.0078 36.2461 256.2266 77.2969 104.3086

SVM (n = 3000), f ∗ = −4490.68 263.3477 63.9688 151.4023 1068.9766 264.5586 354.4297

Tent (n = 100), f ∗ = 0.0168 0.0078 0.0039 0.0039 0.0039 N.C 0.0039

Tent (n = 400), f ∗ = 0.3162 0.322 0.132 0.217 N.C N.C 0.248

Tent (n = 900), f ∗ = 0.4442 5.570 1.453 3.273 N.C N.C 2.77

Tent (n = 1600), f ∗ = 0.5023 48.3008 9.5742 29.1133 N.C N.C 20.5352

Tent (n = 3600), f ∗ = 0.5455 557.74 55.74 284.05 N.C N.C 246.04

Tent (n = 4900), f ∗ = 0.5540 1333.51 150.49 696.21 N.C N.C 617.58

Biharm (n = 100), f ∗ = −0.0001 0.0030 0.0030 0.0020 0.0040 0.0120 0.0130

Biharm (n = 400), f ∗ = −0.0004 0.1958 0.2090 0.1880 0.6450 0.6382 0.7539

Biharm (n = 900), f ∗ = −0.0008 4.2788 3.1328 2.9180 18.5229 10.4912 9.2886

Biharm (n = 1600), f ∗ = −0.0015 23.3280 17.8920 15.3110 119.6610 82.1220 60.8680

Biharm (n = 2500), f ∗ = −0.0023 106.1869 77.2411 60.5740 775.0340 333.9110 222.7870

Biharm (n = 3600), f ∗ = −0.0033 308.7246 271.4639 186.8857 2988.0826 1071.3447 684.5688

Biharm (n = 4900), f ∗ = −0.0045 816.13 705.52 484.45 8282.04 3067.21 1837.66

IMRT (n = 2342), f ∗ = 0.0563 54.22 33.11 40.56 85.11 67.88 73.22
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Prob. Name Var.1 Var.2 Var.3 QUACAN QPBOX QLD

Random (ncond = 0.1, n = 500, f ∗ = −762.53) 0.40 0.05 0.09 0.10 0.86 1.23

Random (ncond = 1, n = 500, f ∗ = −1133.68) 0.4141 0.15 0.18 0.48 0.85 1.19

Random (ncond = 5, n = 500, f ∗ = −1692549) 0.63 4.04 0.87 48.75 1.24 1.25

Random (ncond = 0.1, n = 600, f ∗ = −994.19) 0.78 0.06 0.12 0.14 1.43 2.13

Random (ncond = 1, n = 600, f ∗ = −1288.29) 0.90 0.24 0.37 0.66 1.57 2.14

Random (ncond = 5, n = 600, f ∗ = −2049820) 1.16 9.72 1.27 48.69 1.97 2.14

Random (ncond = 0.1, n = 700, f ∗ = −838.28) 1.34 0.09 0.20 0.23 2.35 3.46

Random (ncond = 1, n = 700, f ∗ = −1703.28) 1.31 0.28 0.34 0.73 2.45 3.68

Random (ncond = 5, n = 700, f ∗ = −2328669) 2.49 20.45 2.84 164.35 3.92 3.45

Random (ncond = 0.1, n = 800, f ∗ = −645.14) 2.58 0.13 0.27 0.31 3.80 5.44

Random (ncond = 1, n = 800, f ∗ = −1824.65) 2.59 0.42 0.53 1.26 3.76 5.37

Random (ncond = 5, n = 800, f ∗ = −2630417) 3.58 32.21 3.72 108.13 5.76 5.47

Random (ncond = 0.1, n = 900, f ∗ = −596.17) 4.02 0.19 0.40 0.68 5.70 7.50

Random (ncond = 1, n = 900, f ∗ = −1951.62) 4.04 0.63 0.77 2.13 5.60 7.44

Random (ncond = 5, n = 900, f ∗ = −2904251) 5.16 46.01 5.87 145.91 7.39 7.64

Random (ncond = 0.1, n = 1000, f ∗ = −1327.91) 4.52 0.22 0.54 0.50 7.83 10.17

Random (ncond = 1, n = 1000, f ∗ = −2677.47) 4.58 0.66 0.95 1.68 7.93 10.00

Random (ncond = 5, n = 1000, f ∗ = −3082720) 6.82 72.48 8.19 143.93 10.02 9.93

Random (ncond = 0.1, n = 1100, f ∗ = −1464.97) 7.86 0.35 0.77 0.81 10.69 13.79

Random (ncond = 1, n = 1100, f ∗ = −2061.31) 7.98 1.01 1.45 3.50 10.31 13.57

Random (ncond = 5, n = 1100, f ∗ = −4224564) 10.84 85.98 12.03 213.99 14.21 13.77

Random (ncond = 0.1, n = 1200, f ∗ = −1332.93) 9.40 0.33 1.23 0.75 13.26 18.05

Random (ncond = 1, n = 1200, f ∗ = −1978.65) 9.02 0.96 2.29 3.32 13.49 19.19

Random (ncond = 5, n = 1200, f ∗ = −4071507) 11.08 90.54 11.95 187.50 16.90 19.31

Random (ncond = 0.1, n = 1300, f ∗ = −2247.07) 10.73 0.41 1.29 1.14 17.33 23.89

Random (ncond = 1, n = 1300, f ∗ = −2698.07) 11.67 1.46 2.91 4.43 17.73 24.35

Random (ncond = 5, n = 1400, f ∗ = −1537.81) 16.66 136.48 20.56 733.69 25.75 24.06

Random (ncond = 0.1, n = 1400, f ∗ = −2247.07) 12.03 0.43 1.57 1.14 20.94 30.16

Random (ncond = 1, n = 1400, f ∗ = −2860.81) 11.97 1.20 2.15 3.51 21.41 30.57

Random (ncond = 5, n = 1400, f ∗ = −4446068) 17.48 118.56 17.92 300.58 27.72 30.07

Random (ncond = 0.1, n = 1500, f ∗ = −1287.82) 17.70 0.50 2.16 1.14 25.30 36.80

Random (ncond = 1, n = 1500, f ∗ = −2952.20) 20.42 1.92 5.78 5.21 26.37 35.48

Random (ncond = 5, n = 1500, f ∗ = −3811836) 27.47 226.89 34.67 624.51 47.77 36.22
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Trust Region Idea

Problems applied

min
x∈Rn

f (x) subject to ai ≤ x ≤ bi

Approximate f (x)

f (xk + s) ≈ mk (s) = f (xk ) + gT
k s +

1

2
sTBks (7)

where gk = ∇f (xk ) and Bk is a symmetric approximation to ∇2f (xk ).
The trust region may be defined by:

Tk = {x ∈ <n | ||x − xk || ≤ ∆k} (8)

It is obvious that different choices for the norm lead to different trust region
shapes. The Euclidean norm || · ||2, corresponds to a hypershpere, while the
|| · ||∞ norm defines a hyperbox.
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Trust Region Basic Algorithm

Basic trust region

S0: Pick the initial point and trust region parameter x0 and ∆0, and set
k = 0.

S1: Construct a quadratic model:
mk (s) ≈ f (xk + s)

S2: Calculate sk with ||sk || ≤ ∆k , so as to sufficiently reduce mk .

S3: Compute the ratio of actual to expected reduction, rk = f (xk )−f (xk +sk )
mk (0)−mk (sk )

.
This value will determine if the step will be accepted or not and the
update for ∆k .

S4: Increment k ← k + 1 and repeat from S1.
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Solving the quadratic subproblem

I Cauchy point calculation:
pC

k = −tk
∆k
||gk ||

gk .

I Dogleg path: Linear combination of
Cauchy point and unconstrained
minimizer.

I Two dimensional subspace minimization:
Search entire subspace spanned by the
Cauchy point and the unconstrained
minimizer

I Iterative solution to the subproblem:
pk (λ) = −(Bk + λI )−1gk
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Rectangular Trust Regions

Rectangular Choice

min
s

f (xk ) + g T
k s +

1

2
sT Bk s, subject to: ||s||∞ ≤ ∆k

min
s

f (xk ) + g T
k s +

1

2
sT Bk s, subject to: −∆k ≤ max

i
si ≤ ∆k

I Straightforward choice for problems with bound constraints.

min
x∈Rn

f (x) subject to ai ≤ xi ≤ bi

Final problem

mins f (xk ) + g T
k s +

1

2
sT Bk s,

subject to: max(ai − (xk )i ,−∆k ) ≤ si ≤ min(bi − (xk )i ,∆k )

since xk + sk must be feasible.
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Dogleg Solution

Dogleg path

s(λ) =

{
λC for 0 ≤ λ ≤ 1

C + (λ− 1)(N − C) for 1 ≤ λ ≤ 2

where C = − gT
k gk

gT
k

Bk gk
gk is the Cauchy step, and N = −H−1

k gk is the Newton step, that is the

unconstrained minimizer of mk .
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Dogleg Solution

I Model mk (s) decreases monotonically along the Dogleg path, assuming
that Hk is positive definite.

I We can distinguish three cases:
Case 1: N ∈ Tk

Case 2: C ∈ Tk and N /∈ Tk
Case 3: C /∈ Tk and N /∈ Tk

I Original approach: Maximum feasible step along C (PC: projected Cauchy Point)
I Our approach: Begin from N and follow direction B − PC until a bound is

encountered.

Dogleg path

s(λ) =

{
λC for 0 ≤ λ ≤ b

bC + (λ− b)(N − bC) for b ≤ λ ≤ 1 + b

where b =
||PC||2
||C||2

∈ [0, 1].

Constantinos Voglis Methods for Local and Global Optimization 104 / 118



Convex Quadratic Programming With Bound Constraints
A Rectangular Trust Region Optimization Algorithm
A Hybrid Local Search For Neural Network Training

Trust Region Algorithms
Rectangular Trust Region
Dogleg Solution
Exact Solution
Experimental results

Threes Cases Illustration

Case 1 Case 2 Case
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Solve:

Quadratic subproblem

mins f (xk ) + gT
k s +

1

2
sTBks,

subject to: max(ai − (xk )i ,−∆k ) ≤ si ≤ min(bi − (xk )i ,∆k )

using the proposed convex quadratic programming method.
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Unconstrained case

Test Point 1 Test Point 2
Problem TRUST DOGBOX TRUST DOGBOX
Name It. FC GC It. FC GC It. FC GC It. FC GC

ROSEN 40 47 41 37 44 38 26 31 27 27 34 28

FRE-ROT 13 40 13 14 34 14 14 40 14 14 40 14

BRO-B-S 34 43 35 34 43 35 37 50 37 37 50 38

BEA 19 20 19 18 19 18 16 19 16 18 19 20

JEN-SAM 1 7 2 1 7 2 1 17 2 1 17 2

HEL-VAL 33 43 34 30 38 30 * * * * * *

BARD 23 42 23 20 39 20 23 41 23 22 40 22

GAUS 7 19 7 7 18 8 15 15 16 13 14 14

GULF 1 2 1 1 2 1 2 22 2 2 22 2

BOX3 37 39 38 39 40 42 52 57 53 51 57 52

POW-SIN 67 71 68 88 89 94 92 97 93 71 74 72

WOOD 36 44 36 37 46 37 24 30 25 34 43 35

KOW-OSB 33 49 33 34 49 34 41 56 41 42 62 42

BRO-DEN 37 65 37 41 69 41 42 69 42 49 83 49

OSB1 67 91 67 69 92 69 111 142 111 101 133 101

BIG-E6 44 62 44 46 69 46 41 57 41 40 58 40

OSB2 66 89 66 61 89 61 49 75 49 40 63 40

WATS 159 177 159 131 156 131 180 216 180 188 225 188

X-ROS 92 107 92 104 123 104 95 115 95 98 121 98

X-POW-S 204 218 204 221 247 231 254 274 254 204 221 204

PENI 202 226 202 172 217 172 57 81 57 38 61 38

PENII 203 241 203 270 300 271 259 300 260 253 300 254

VAR-DIM 15 21 15 25 31 25 23 28 23 24 29 24

TRIG 34 48 34 30 46 30 36 50 36 39 54 39

BR-A-LIN 19 36 19 18 34 18 1 1 1 1 1 1

DISC-INT 29 30 29 33 35 33 29 29 29 34 37 35

LIN-FR 3 5 4 2 3 2 3 4 3 2 3 2

LIN-R1 3 25 3 3 25 3 3 27 3 3 25 3

LIN-R10 3 24 3 4 28 4 5 28 5 4 27 4

CHEB 38 55 38 40 63 40 150 186 150 106 144 106
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Unconstrained case

Test Point 1 Test Point 2
Problem TRUST BOXDOG TOLMIN TRUST BOXDOG TOLMIN
Name It. FC GC It. FC GC FC GC It. FC GC It. FC GC FC GC

ROSEN 6 39 6 2 2 2 3 2 5 11 6 2 2 2 3 2

FRE-ROT 39 84 39 2 2 2 3 2 1 2 1 2 2 2 3 2

POW-B-S 11 29 11 2 2 2 3 2 13 32 13 3 3 3 5 4

BROW-B-S 8 65 8 3 48 3 37 36 6 63 6 3 3 3 4 3

BEAL 46 93 46 3 3 3 4 3 1 2 1 3 3 3 4 3

JEN-SAM 1 2 1 3 3 3 5 4 1 13 2 3 3 3 6 5

GAUS 15 16 15 7 18 8 14 15 56 73 56 9 9 9 31 32

MEYE 63 117 63 20 47 20 25 24 - - - 12 12 12 23 22

GULF 50 100 50 6 6 6 8 7 50 97 50 10 10 10 8 7

BOX3 5 5 6 4 4 4 5 4 7 32 7 4 4 4 5 4

POW-SI - - - 4 4 4 5 4 - - - 3 3 3 4 3

KOW-OSB 68 84 68 13 13 13 20 19 58 105 58 7 7 7 8 7

BRO-DEN 1 9 2 3 3 3 7 6 1 12 2 3 3 3 5 4

OSB1 66 115 66 250 339 250 19 18 - - - 11 11 11 16 15

BIG-EX 53 70 53 10 11 10 19 18 30 46 30 16 32 16 27 26

OSB2 73 91 73 33 53 33 59 58 58 76 58 14 30 14 22 21

WATS 1 0 0 0 0 0 0 0 1 3 2 21 21 21 42 41

X-ROSE 7 33 7 2 2 2 3 2 6 40 6 2 2 2 3 2

X-POW-S - - - 6 6 6 6 5 - - - 3 3 3 4 3

PEN1 2 36 2 5 5 5 6 5 1 2 1 5 5 5 6 5

PEN2 50 97 50 5 5 5 10 9 90 136 90 5 5 5 7 6

VAR-DIM 22 82 22 10 10 10 11 10 20 70 20 10 10 10 11 10

TRIG 61 78 61 19 36 19 33 32 53 99 53 11 11 11 13 12

BR-A-LIN 8 41 8 3 3 3 4 3 0 0 0 0 0 0 0 0

DISC-BOUN - - - 20 35 20 39 38 0 0 0 0 0 0 0 0

LIN-FR 46 90 46 2 2 2 3 2 45 89 45 2 2 2 3 2

LIN-R1 1 5 2 11 11 11 12 11 1 7 2 11 11 11 12 11

LIN-R10 1 4 2 9 9 9 10 9 1 6 2 9 9 9 10 9
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A Hybrid Local Search For Neural Network Training

Problem definition: Nonlinear Least-squares

min
x

F (x) =
1

2
fT f =

1

2

m∑
i=1

f 2
i (x),

subject to : ai ≤ xi ≤ bi ,∀i ∈ I = {1, 2, · · · , n}

Method properties:

I Employ first and second order derivatives

I Line search framework

I Use Fletcher & Xu criterion for the Sum of squares

I Application to neural network training
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Large and small residuals

Derivatives

g(x) = ∇F (x) = J(x)f(x)

H(x) = ∇2F (x) = JT (x)J(x) +
m∑

i=1

fi (x)∇2fi (x)

Small residual case

fi (x∗) ' 0

m∑
i=1

fi (x∗)∇2fi (x∗) ' 0

Happrox (x∗) = JT (x∗)J(x∗) Gauss-Newton approximation

Large residual case

fi (x∗) ' 0

m∑
i=1

ri (x)∇2ri (x) is significant
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Fletcher & Xu criterion

Consider the model line search algorithm

S1. [Initialize] Set k = 0, xk = initial estimate

S2. [Compute search direction] Compute a non-zero vector pk , by solving
H̃kpk = −gk

S3. [Compute step length] λk = argminλf (xk + λpk )

S4. [Update the estimate of the minimum] xk+1 = xk + λk + pk

The matrix H̃k :

I Positive definite correction of hessian matrix H(xk )→ Newton’s method

I Positive definite approximation JT (xk )J(xk )→ Gauss-Newton method.

I For large residuals use Newton’s method

I For small residuals use Gauss-Newton approximation
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Fletcher & Xu criterion

I Instead of choosing an algorithm (Newton or Gauss-Newton)

I Unify both approaches using a switching criterion

I The switching criterion is based on relative decrease of F (x)

I Originally proposed for quasi-Newton instead of Newton directions

lim
k→∞

Fk − Fk+1

Fk
=

{
0 for the LRP,
1 for the ZRP.

Modification of the algorithm

S2. Compute search direction.

Set Bk =

{
∇2fk if fk−1 − fk/fk−1 < ε,

JT
k Jk otherwise.

Solve Bk pk = −gk to get the search direction pk
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Neural network training

Let N(x, p) denote an ANN with input vector x and weights p. In
our case this will be a perceptron with one hidden layer with
sigmoidal units and linear output activation, i.e.

N(x, p) =
h∑

i=1

pi(n+2)−(n+1)σ

(
n∑

k=1

pi(n+2)−(n+1)+k xk + pi(n+2)

)
where:

I xi , ∀i = 1, · · · , n are the components of the input vector

x ∈ R(n).

I pi , ∀i = 1, · · · , h(n + 2) are the components of the weight
vector p.

I h, denotes the number of hidden units.

I σ(z) ≡ (1 + exp(−z))−1 is the sigmoid used as activation.

The training of the ANN to existing data is performed by minimizing
the following “Error function”:

f (p) =
1

2

M∑
K=1

r 2
K ≡

1

2

M∑
K=1

[N(xK , p)− yK ]2
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Neural network training

I Nonlinear Least-square case fi (x) = N(xi , p)− yi

I Many minima having zero and nonzero Error function value

I Large residual and small residual cases

I Analytical first and second order derivatives

∂2N(xK , p)

∂pl(n+2)−(n+1)+m∂pr(n+2)−(n+1)+s

=

l = r m = 0 s = 0 0
s = 1 . . . n σ′(Yj )xs

s = n + 1 σ′(Yj )
m = 1 . . . n s = 0 σ′(Yj )xm

s = 1 . . . n pl(n+2)−(n+1)xmxsσ
′′(Yj )

s = n + 1 pl(n+2)−(n+1)xmσ
′′(Yj )

m = n + 1 s = 0 σ′(Yj )
s = 1 . . . n pl(n+2)−(n+1)xsσ

′′(Yj )
s = n + 1 pl(n+2)−(n+1)σ

′′(Yj )
l 6= r m = 0 . . . n + 1 s = 0 . . . n + 1 0

Yj =
∑n

k=1 pj(n+2)−(n+1)+kxk + pj(n+2)

Constantinos Voglis Methods for Local and Global Optimization 114 / 118



Convex Quadratic Programming With Bound Constraints
A Rectangular Trust Region Optimization Algorithm
A Hybrid Local Search For Neural Network Training

Introduction
Large and small residuals
Fletcher & Xu criterion
Application on neural networks
Experimental results

General test functions

Test name
BFGS LEVE Hybrid Newton

Func Eval/Iter Func Eval/Iter Func Eval/Iter(Gauss Steps)

ROSENBROCK
1.986 *10-16 0.000 3.958*10-16

80/12 10//3 16/2(1)

FREUDENSTEIN AND ROTH
7.183 *10-16 7.888 *10-31 48.984

77/14 28//9 64/10(2)

POWELL BADLY SCALED Acc Stop
1.232 * 1032 1.102 * 10-8

202/59 23/4(2)

BROWN BADLY SCALED
7,17244E+11 2.549 * 10-29 1.139*10-14

40/2 50/17 1198/125(63)

BEALE
1.359*10-18 0.452 0.452

161/24 5545/1700 10016/1269(1)

JENNRICH AND SAMPSON
2020 259.58 2020
38/1 74/24 57/10(8)

HELICAL VALEY
3.024*10-34 1.271*10?57 5.933*10-38

183/24 30-8 110/13(10)

BARD
8.214*10-3 8.214*10-3 8.214*10-3

142/18 46/9 148/17(6)

GAUSSIAN
1.128*10-8 0.564 1.128*10-8

256/32 21/5 240/27(9)

MEYER Acc Stop
87.94 8477691

28813/6708 10006/1005(6)

GULF
3.849*10?2
0 Iterations

The gradient criterion is satisfied

BOX 3-D
1.036*10-24 2.773*10-32 5.718*10-22

102/12 92/20 118/5(4)

POWELL SINGULAR
7.263*10?24 1.609*10-63 7.222*10-32

712/75 367/70 1471/73(62)

WOOD
1.187*10-17 0.000 1.187*10-17

587/62 36/7 169/18(13)
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General test functions

Test name
BFGS LEVE Hybrid Newton

Func Eval/Iter Func Eval/Iter Func Eval/Iter(Gauss Steps)

KOWALIK AND OSBORNE
3.075*10-4 1.027*10?3 1.027*10?3

665/68 569/110 10001/833(5)

BROWN AND DENNIS
85822.22 85822.22 85822.22
254/21 358/69 207/18(5)

OSBORNE 1
1.106 1.106 1.106
50/4 51/7 60/5(1)

BIGGS EXP6
0.306 0.180

Acc Stop
228/17 16730/2307

OSBORNE 2
1.790 1.790 1.790

549/17 171/14 466/7(1)

WATSON
2.829*10-13 2.836*10-3 868908

7963/184 8210/39 424/6(2)

EXTENDED ROSENBROCK
1.998*10-15 0.000 1.987*10-15

8976/406 46/5 231/10(9)

EXTENDED POWELL SINGULAR
3.705*10-16 3.112*10-68 7.928*10-32

3739/147 952/72 4166/87(70)

PENALTY I
2.249*10-5 2.249*10-5 2.249*10-5
1886/195 179/32 918/90(10)

PENALTY II
9.376*10-6 9.376*10-6

Acc Stop
12825/1351 160/29

VARIABLY DIMENSIONED
2.674*10-30 0.000 0.000

715/33 155/14 85/3(2)

TRIGONOMETRIC
4.224*10-5 8.788*10-4 2.795*10-5

1749/81 277/23 1120/48(17)

BROWN ALMOST LINEAR
1.316*1013 1.000 9.478*10-30

50/0/1 179/16 682/25(21)

DISCRETE BOUNDARY PR
9.358*10-21 2.503*10-33 8.962*10-21

751/35 90/9 203/9(7)

DISCRETE INTEGRAL EQ
1.116*10-22 3.229*10-33 1.034*10-22

574/27 90/9 222/10(8)
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Neural network training: Large residual case

n = 2 hidden nodes h = 5 and training data M = 100.

Table: LRP: Minimum No 1

Method Iterations Function/Gradient calls
Hybrid Newton 126 357
Hybrid BFGS 335 652
Newton 719 1000
Gauss-Newton 1000 3000
Tolmin 174 252
Conjugate Gradient 1480 6000

Minimum value 18.486

Table: LRP: Minimum No 2

Method Iterations Function/Gradient calls
Hybrid Newton 20 64
Hybrid BFGS 33 100
Newton 35 57
Gauss-Newton 150 301
Tolmin 74 107
Conjugate Gradient 77 302

Minimum value 19.266
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Introduction
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Fletcher & Xu criterion
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Experimental results

Neural network training: Small residual case

n = 2 hidden nodes h = 5 and training data M = 100.

Table: SRP: Minimum No 1

Method Iterations Function/Gradient calls Minimum reached
Hybrid Newton 115 275 0
Hybrid BFGS 363 487 0
Newton 316 364 0
Gauss-Newton 257 296 0
Tolmin 513 697 0
Conjugate Gradient 2318 10000 1.0768

Minimum value 0

Table: SRP: Minimum No 2

Method Iterations Function/Gradient calls Minimum reached
Hybrid Newton 599 1000 0.0961
Hybrid BFGS 623 713 0.0101
Newton 759 1000 2.3282
Gauss-Newton 734 1000 0.4374
Tolmin 710 1000 0.0733
Conjugate Gradient 965 4000 1.2228

Minimum value 0
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