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Abstract—A methodology for the automated development of
fuzzy expert systems is presented. The idea is to start with a crisp
model described by crisp rules and then transform them into a
set of fuzzy rules, thus creating a fuzzy model. The adjustment
of the model’s parameters is performed via a stochastic global
optimization procedure. The proposed methodology is tested by
applying it to problems related to cardiovascular diseases, such as
automated arrhythmic beat classification and automated ischemic
beat classification, which, besides being well-known benchmarks,
are of particular interest due to their obvious medical diagnostic
importance. For both problems, the initial set of rules was de-
termined by expert cardiologists, and the MIT-BIH arrhythmia
database and the European ST-T database are used for optimizing
the fuzzy model’s parameters and evaluating the fuzzy expert
system. In both cases, the results indicate an escalation of the
performance from the simple initial crisp model to the more so-
phisticated fuzzy models, proving the scientific added value of the
proposed framework. Also, the ability to interpret the decisions of
the created fuzzy expert systems is a major advantage compared
to “black box” approaches, such as neural networks and other
techniques.

Index Terms—Arrhythmic beat classification, expert systems,
fuzzy modeling, ischemic beat classification.

I. INTRODUCTION

MEDICAL expert systems are a challenging field, re-
quiring the synergy of different scientific areas. The

representation of medical knowledge and expertise, the decision
making in the presence of uncertainty and imprecision, and
the choice and adaptation of a suitable model are some issues
that a medical expert system should take under consideration.
Uncertainty is traditionally treated in a probabilistic manner;
recently, however, methods based on fuzzy logic have gained
ground [1], [2]. The model’s parameter adaptation (training)
amounts to optimizing a properly constructed “error” function.
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There is a variety of methods with diverse features that may
be proper. Understanding the subtleties of the optimization
procedures is a key to choosing an effective training approach.

Expert systems are a branch of artificial intelligence, which
make extensive use of specialized knowledge to solve problems
at the level of a human expert. This knowledge is represented in
by a set of rules [3]. An expert system’s review of applications is
presented in [4]. An expert system is created by defining a crisp
or fuzzy model (set of rules) and then optimizing its parameters
to fit a given dataset. Several approaches have been proposed in
the literature for the development of fuzzy or crisp models. In
most of them, the model is trained using a known optimization
technique, i.e., fuzzy rules with genetic algorithms [5], fuzzy
rules with simulated annealing [6], multicriteria decision anal-
ysis with genetic algorithms [7]. Neuro-fuzzy algorithms have
also been proposed, where, the fuzzy rules are modeled by arti-
ficial neural networks (ANNs) and popular training techniques
are applied [8].

In this paper, a framework for the automated generation of
a fuzzy expert system (FES) is proposed. The framework is
based on rules, which are initially represented using the crisp
membership function, forming a crisp model. The rules are then
transformed from crisp to fuzzy ones, using a fuzzy member-
ship function and and , which are fuzzy equiva-
lence for the binary AND and OR operators, respectively [1].
Using different selections for the fuzzy membership function
and different definitions for the and , several fuzzy
models can be created. Then, the fuzzy model is tuned so as
to find optimal parameters of the fuzzy membership functions,
and, if necessary, parameters for the and ; the fuzzy
model combined with the optimal parameters comprises a FES.
The proposed framework is applied to two well-known cardio-
vascular domain problems, the arrhythmic beat classification
and the ischemic beat classification from electrocardiograms
(ECGs).

In the following, initially some basics of the classification
problem and fuzzy logic are briefly described and then the
framework for the automated FES creation is presented in
detail. Next, the two domains of application are described (ar-
rhythmic beat classification, ischemic beat classification) along
with the employed datasets for each one, the initial medical
rules, the respective crisp models and the FESs, automatically
generated from the proposed methodology. Also, results from
the evaluation of the created FESs are presented. In the fol-
lowing, the scientific added value of the methodology along
with its advantages and disadvantages are addressed. Also, the
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generated FESs and their results are discussed. Finally, further
improvements of the automated methodology are discussed.

II. METHODOLOGY

First, definitions and related terminology used in the classi-
fication problems and fuzzy logic, are introduced. Having the
data , , where is a single
pattern with features, is its class ( is the
number of classes), and is the total number of patterns (the
size of ), a classification problem is defined as the determi-
nation of a mapping model , where [9]. An
alternative representation for the class is , where, if

belongs to class , then
. A common

methodology to treat a classification problem is to define
a mapping model and train it, using a subset of the data and a
cost function, which is minimized. A tool that is used for the
evaluation of a classification model is the normalized confusion
matrix, having dimension , defined as

of patterns in class classified to class
total patterns in class

(1)

where is the element of the confusion matrix. Crisp
logic is the binary reasoning. Membership functions are fun-
damentals in set theory, measuring the certainty of an object
belonging to a set . The membership function used in crisp
logic, is a binary operator and its value is 1 or 0, representing
that does or does not belongs to , respectively. Fuzzy logic
is a generalization of the classical set theory [1], [2]. It has been
used to represent and manage the vagueness, which arises in
data or in expert’s knowledge [10]. The fuzzy logic is based on
fuzzy membership functions, which are continuous approaches
that have values in the interval , representing the relation-
ship between the object and the set .

A. Crisp Model

A crisp model consists of crisp rules
, where is a vector containing all pa-

rameters (thresholds) used in the th rule and is the number
of classes; thus, one rule is defined for each class. Each
consists of several simple rules ,
defined as (the th simple
rule in the th rule), where is a function of the data ,

is a parameter (the th parameter in the vector), is the

number of simple rules used in and is the crisp
membership function (increasing or decreasing), defined as

increasing or

decreasing (2)

Each rule can be expressed as a combination of
simple rules, as follows [see (3), shown at the

bottom of the page] where , . A
simple rule is a rule that contains only one inequality
(e.g., ). Having several instances of an object belonging
to category , each row of the includes all simple
rules , which are related to a single object in-
stance. Then, the combines all instances related to
the same class. The final decision (class) of the crisp model

is made using the results from all rules:
, where is

a vector containing all thresholds
and is a function that combines the outcomes of all

crisp rules and results to one of the classes. De-
pending on the representation selected for , the final decision
is , where is the number of classes, or

, where, if is classified to class , then .
A more general definition of the function could include
an additional result , which states that the classification
process failed (i.e., for a single case two or more rules were
true). In this case the final decision is
or (but not necessary ).

Each row of the rule (i.e.,
AND AND AND )

is a conjunction (sequence of AND) of one or more simple
rules and the rule is a disjunction (sequence of OR)
of its rows. This form is known as disjunctive normal form
(DNF) and has been chosen because every logical expression
(i.e., set of rules) can be written in DNF.

B. Fuzzy Model

The crisp model is transformed into a fuzzy model using
a fuzzy membership function instead of the crisp

. In this case, is a vector containing all parameters
used in the fuzzy membership function and its size depends on
the selection of the fuzzy membership function. Table I presents
some monotonic fuzzy membership functions along with the
parameters needed for each one. Also, and are
used; Table II presents some common definitions for the

AND AND AND OR
AND AND AND OR

AND AND AND

(3)
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TABLE I
MONOTONIC FUZZY MEMBERSHIP FUNCTIONS

and . Depending on the definition, the and
might need parameters or not (also shown in Table II).

A fuzzy model consists of fuzzy rules
, where is a vector containing all parameters

used in the th rule. Again, each consists of several simple
rules , defined as (the th simple
rule in the th rule): , where

is the same function of the data as in the crisp model
and is a vector of parameters. Each rule is
again formed as a combination of simple rules

, as follows [see (4), shown at the bottom of the
page], where , , ,
with each being a vector with parameters used in the
membership function of the th simple rule of the th rule,
each being a parameter entering the of the th
raw of the th rule (with being the total number of rows)
and being a parameter (one for each rule) entering the

. If the and does not need parameters,
then , . The final decision (class) of
the fuzzy model is made using the result of all rules:

,
where is a vector containing all parameters used in the rule

and is a function that combines

the outcomes of all fuzzy rules (defuzzifier). Again,
the definition of the function can include the “unclas-
sified” state. Depending on the representation selected for ,
the final decision of the model could be
or , where, if is classified to class , then

. Also, if unclassified state is included, then the final
decision of the model could be or

.
The transformation of the crisp set of rules to the respective

fuzzy greatly depends on the selection of the fuzzy membership
function, the and and the defuzzifier; if specific
combinations among these are selected then known solutions
from the literature can be used to express the explicit mathe-
matical input-output of the fuzzy model [2], [11].

C. Optimization

The parameters entering a fuzzy model can be optimally
determined using an optimization procedure. Formulating the
training process of a model as an optimization problem is a
common practice in order to construct efficient expert systems.
The efficiency of the system highly depends on the quality of
the cost function and the choice of a training dataset. Also, a ro-
bust optimization method increases the speed of training process
and enhances the quality of the final solution. The selection of
the optimization method greatly depends on the equations de-
scribing the fuzzy model and the selection of the cost function;
if these are differentiable then an optimization method making
use of the first derivatives information can be employed, else
methods that do not require first derivatives must be used (e.g.,
[47]).

The optimization problem can be formulated as: minimize
function subject to , where and

. It can be viewed as a decision problem which involves
the computation of the “best” vector of the decision variables
over all possible vectors in . This vector is called the mini-
mizer of over . Considering the optimization problem,
two kinds of minimizers can be distinguished, local and global
minimizers. A point is a local minimizer of over
if there exists such as for all
and . A point is a global minimizer of

over if for all [12]. Finding
global minimizers is a challenging task and several techniques
have been proposed: Branch and Bound techniques [13], sim-
ulated annealing [6], [14], genetic algorithms [5], [7], and sto-
chastic methods.

(4)
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TABLE II
DEFINITIONS OF T AND S

In the case of a fuzzy model, a cost function must be defined
over a dataset , . The minimization
of this function leads to an improved model, in terms of its clas-
sification ability. A common cost function is the mean square
error (MSE) function, which is defined as

MSE (5)

where ; therefore, .
A second approach is to use the trace of the normalized confu-
sion matrix [confusion matrix error (CME)]

CME (6)

where is a penalty term, which can be a function of the
unclassified rates of each classification category. In this case,

and . If
, then the normalized

confusion matrix is defined as

, and if the unclassified
ratio for each classification category is defined as

. In this case, the penalty term can be
defined as .

Fig. 1 presents a flowchart of the above described method-
ology; using a hypothetical initial set of crisp rules, the three
stages of the methodology (crisp model, fuzzy model, and opti-
mization) are shown.

III. APPLICATION TO CARDIOVASCULAR DISEASES

The above described framework was applied to two well-
known classification problems from the cardiovascular domain,
the arrhythmic beat classification and the ischemic beat classi-
fication from electrocardiograms (ECGs). For both cases, med-

Fig. 1. Flowchart of the proposed methodology and its application on a hypo-
thetical initial set of crisp rules.

ical experts determined the initial set of rules, while well-known
benchmark databases were used for the creation of the expert
systems and their evaluation.

A. Medical Background

1) Arrhythmic Beat Classification: Arrhythmia can be de-
fined as any type of rhythm that deviates from the normal sinus
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TABLE III
DESCRIPTION OF DATASETS

rhythm. An arrhythmia can be either a single or a group of heart-
beats, and it can affect the heart rate causing slow, fast or ir-
regular rhythms [15]. Arrhythmias can take place in a healthy
heart and be of minimal consequence but they may also indicate
serious cardiac problems [16], [17]. Therefore, automatic ar-
rhythmic beat detection and classification, using the ECG and/or
features extracted from it, is a critical task in clinical cardiology,
especially when performed in real time. In the later, each beat
is classified into several different rhythm types. The techniques
for beat classification are based on artificial neural networks
[18], [19], “mixture of experts approach” [20], hermite func-
tions combined with self-organizing maps [21], fuzzy neural
networks [22], AR models [23], artificial neural networks and
fuzzy equivalence data [24], support vector machines [25], ECG
morphology and linear discriminates [26], time-frequency anal-
ysis combined with knowledge-based systems [27], and rule-
based systems [28].

2) Ischemic Beat Classification: Myocardial ischemia is the
condition where oxygen deprivation to the heart muscle is ac-
companied by inadequate removal of metabolites due to reduced
blood flow or perfusion. This reduced blood supply to the my-
ocardium causes alterations in the ECG signal, such as devia-
tions in the ST segment and changes in the T wave [29]. The
accurate ischemic episode detection, where a sequence of car-
diac beats is assessed [30], is based on the correct detection of
ischemic beats [31]–[33]. Several techniques that evaluate the
ST segment changes and the T-wave alterations have been pro-
posed for ischemic beat detection. More specifically, the use of
approaches like parametric modeling [34], wavelet theory [35],
set of rules [36], [37], artificial neural networks [30], [38], multi-
criteria decision analysis and genetic algorithms [7] have been
previously reported.

B. Datasets

1) Arrhythmia Dataset: All the records from the MIT-BIH
arrhythmia database [42] were used for the training and the eval-
uation of the arrhythmic beat classification FES. Initially, the
RR-interval signal was extracted from the ECG recordings using
QRS detection [43], [44], except in the case of VF episodes in
record 207, where the actual beats from the annotation of the

database were used. Then, windows of three consecutive RR in-
tervals , where is the th RR interval
in the RR interval signal, were defined and both rhythm and beat
annotations (defined in the database) were used to specify the
class of each window, as follows: if the middle beat of the
window belongs to 2 heart block episode (rhythm an-
notation BII in the database), ventricular flutter/fibrillation wave
(beat annotations [, !, ], respectively, in the database) or it is an-
notated as premature ventricular contraction (beat annotation
in the database) then or or , respectively.
Everything else was considered as normal sinus rhythm

. Therefore, the dataset was defined as: ,
, with being a single

pattern with three features, its class with four different classes,
and is the number of patterns (beats in the dataset). The class

can be represented either as or ,
where, if belongs to class , then , i.e.,

. The car-
diac rhythm categories and the number of beats used in each
cardiac rhythm category, are shown in Table III.

2) Ischemia Dataset: The European Society of Cardiology
(ESC) ST-T database [45] was used for the training and the
evaluation of the ischemic beat classification FES; 11 h of
two-channel ECG recordings were selected. Those, contain the
first hour of the e0103, e0105, e0108, e0113, e0114, e0147,
e0159, e0162, and e0206 recordings and the whole e0104
recording. These ten recordings were selected because their
ischaemic ECG beats are characterized by significant wave-
form variability. First, the preprocessing of the recorded ECG
signal was performed (for both channels) in order to eliminate
noise distortions (e.g., baseline wandering, A/C interference
and electromyographic contamination) [7] and locate the iso-
electric line and the J point [46]. Then, the following features
were extracted from each cardiac beat. i) The ST segment
deviation , which is the amplitude deviation of the ST
segment from the isoelectric line. The ST segment changes
were measured either 80 ms after the J point (J80) (heart
rate bpm), or 60 ms after the J point (J60) (heart rate

bpm). ii) The ST segment slope , which is
the slope of the line connecting the J and J80 (or J60) points.
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iii) The T-wave amplitude , which is the amplitude
deviation of the T-wave peak from the isoelectric line. iv) The
T-wave normal amplitude together with its respected polarity

which refer to the amplitude and polarity of normal
beats for a specific ECG lead. It was calculated using the first
30 s of each recording and was computed by using the mean
value of the T-wave amplitudes at this interval. In order to
define the class of each beat, three medical experts annotated
independently each beat as normal, ischemic or artefact. In the
case of disagreement, the decision was taken by consensus.
After removing the artefacts and the misdetected beats the
remaining were diagnosed as normal or ischaemic. Thus, the
dataset was defined as: , with

being the th feature

vector ( , , and of the th beat),
the class of the beat (normal or ischemic), and is the

number of beats in the dataset. The class is represented either
as or i.e., if the beat is
normal and if the beat is ischaemic. The ischemic
beat categories and the number of beats in each category are
also shown in Table III.

C. Initial Set of Rules

1) Arrhythmic Set of Rules: The three RR-intervals window
was used to classify the middle RR interval into one
of the four categories: 1) ventricular flutter/fibrillation (VF),
2) premature ventricular contraction (PVC), 3) normal sinus
rhythm (N), and 4) 2 heart block (BII). Also, if the classifi-
cation process fails, the middle RR interval was classified as (5)
unclassified. Three rules were used for the classification (see the
first equation shown at the bottom of the page). In the case that
none of the three rules was true, then the interval was clas-
sified as while is the case of more than one of the three
rules was true the interval was unclassified (5).

2) Ischemic Set of Rules: In the case of ischemic beat classifi-
cation, the rules used in [37] were employed. The feature vector

was used to classify the beat
as normal or ischemic (see the second equation shown at the
bottom of the page).

D. Crisp Models

1) Arrhythmic Crisp Model: The arrhythmic beat clas-
sification crisp model includes three crisp rules

Rule If AND AND OR

then is classified as

Rule If AND OR

AND OR

AND AND

AND OR

AND AND

AND

then is classified as

Rule If AND OR

AND

then is classified as

Rule If AND OR OR OR

OR AND

then the beat is classified as ischemic else the beat is classified as normal
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[see (7)–(9), shown at the bottom of the page], where
, , ,

and , . The final decision of
the was made using the results from all rules, i.e.,:

,
where is a vector containing all thresholds used in the model

and is a function that combines the
outcomes of all crisp rules and its definition depends on the
error function that was used. In the case of the CME function
(5), see (10), shown at the bottom of the page.

In a similar way, if the MSE function was used (6), then
was defined as (11), shown at the bottom of the page.

2) Ischemic Crisp Model: The ischemic beat classification
crisp model includes one crisp rule [see (12), shown at

the bottom of the next page], where , .
The final decision of the was made as:

, where and , if the CME func-
tion (5) was used for optimization, was defined as

if is true
if is false

(13)

while, if the MSE function (6) was used, then was defined
as

if is true
if is false.

(14)

AND AND OR (7)

AND OR

AND OR

AND AND AND OR

AND AND AND

(8)

AND AND OR
AND AND

(9)

if only is true
if only is true
if all , and are false
if only is true
if more than one of the , or are true

(10)

if only is true
if only is true
if all , and are false
if only is true
if and are true
if and are true
if and are true
if all and are true

(11)
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E. Fuzzy Models

1) Arrhythmic Fuzzy Models: Several fuzzy models were de-
veloped, depending on the selection of the fuzzy membership
function and the and definitions. Each fuzzy model

, where was the fuzzy membership function and
were the and definitions had three fuzzy rules,
defined as (15)–(17), shown at the bottom of the page, where

, , ,
, and ,

, , 2 (if the and do not need pa-
rameters, then , , ,

and , ). The final decision for
each was made combining the results of all fuzzy rules:

,
where is a vector containing all parameters used in the model
( ; is a parameter defined below) and

is the defuzzification function, which combines the out-
comes of all fuzzy rules and its definition depends on

the error function used. In the case of CME, was defined
as (18), shown at the bottom of the next page.

The defuzzification function is problem-specific and it is de-
signed so as to reflect the expert’s knowledge on this specific
domain. Each was considered a priori normal sinus rhythm
(category 3). Therefore, if the maximum value of the results of
the three rules is , then was classified as normal sinus
rhythm ( is a parameter). If the maximum value of the results
of the three rules was , then was classified in the category
of the rule that had the maximum result, i.e., in category 1 if the

was the maximum, category 2 if was the
maximum and category 4 if was the maximum. Fi-
nally, if the maximum value of the results of the three rules was

but two or more of the rules had the maximum value, then
was classified as category 5 (unclassified). If MSE was used,

was defined as

(19)

AND OR OR

OR OR

AND

(12)

R1 d
l
; �1

=Snorm Tnorm g
dec
f (RRl�1; �1;1) ; g

dec
f (RRl; �1;2) ; g

dec
f (RRl+1; �1;3) ; �1;1 g

dec
f (RRl�1 +RRl +RRl+1; �1;4) ; �1 (15)

R2 d
l
; �2

=Snorm Tnorm g
inc
f

RRl�1

RRl

; �2;1 ; g
inc
f

RRl+1

RRl

; �2;2 ; �2;1

Tnorm g
inc
f

RRl+1

RRl�1

; �2;3 ; g
inc
f

RRl�1

RRl

; �2;4 ; �2;2

Tnorm g
dec
f (jRRl�1 �RRlj ; �2;5) ; g

dec
f (RRl�1; �2;6) ; g

dec
f (RRl; �2;7) ; g

dec
f

RRl�1 +RRl

2RRl+1

; �2;8 ; �2;3

Tnorm g
dec
f (jRRl �RRl+1j ; �2;9) ;g

dec
f (RRl; �2;10) ;g

dec
f (RRl+1; �2;11) ;g

dec
f

RRl +RRl+1

2RRl�1

; �2;12 ; �2;4 ; �2 (16)

R3 d
l
; �3

= Snorm Tnorm g
inc
f (RRl; �3;1) ; g

dec
f (RRl; �3;2) ; g

dec
f (jRRl�1 �RRlj ; �3;3) ; �3;1

Tnorm g
inc
f (RRl; �3;4) ; g

dec
f (RRl; �3;5) ; g

dec
f (jRRl+1 �RRlj ; �3;6) ; �3;2 ; �3 (17)
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2) Ischaemic Fuzzy Models: Again, several fuzzy models
were developed, depending on the selection of the fuzzy
membership function and the and defini-
tions. Each fuzzy model included a single fuzzy
rule [see (20), shown at the bottom of the page], where

, , , 2 (if the
and does not need parameters, then ,

). Again, the final decision for each fuzzy model
was made using a problem-specific defuzzification function:

, where
( is defined below) and was defined as

if
else

(21)

when the CME function was used, while in the case of using the
MSE function, then was defined as

(22)

Detailed versions of the equations of the fuzzy rules for both
arrhythmic and ischemic fuzzy models, for specific selections of
fuzzy membership functions and and definitions
are presented in the Appendix.

F. Expert Systems

Once a fuzzy model were created, the parameters entering the
model must be identified; thus, a cost function was mini-
mized. It should be mentioned that the number of parameters en-
tering each fuzzy model differs significantly, depending on the
fuzzy membership function selection and the and
definitions. Both mean square error and confusion matrix cost
functions, defined in (5) and (6), respectively, were tested. To
perform the optimization a training dataset was needed,
which was a randomly selected subset of or , de-
pending on the problem. In the case of arrhythmic beat clas-

sification, the contained 250 patterns from classes VFL
and BII, 1000 patterns from class PVC and 10 000 patterns from
class N. Thus, the size of the dataset for the arrhythmic
beat classification was 11 500 beats. Appropriate weights were
used for each class so as there would be no bias for larger classes
(i.e., each VFL or BII pattern entered the optimization proce-
dure 40 times and each PVC pattern ten times). In the case of
ischemic beat classification the contained 3766 normal
and 3932 ischemic beats, and, thus, its size was 7698 beats (the
training set was constructed by selecting iteratively the first beat
out of a sequence of ten beats). and are shown in
Table III.

The optimization method that it was used is a modification of
controlled random search (MCRS) [47]. The MCRS is inspired
from simplex method for local optimization, because of the ir-
regular simplex comprised from points, which is main-
tained in each iteration of the method. In the main step of the
algorithm, the simplex’s points are used to obtain a trial point
which, under certain conditions, will replace the previous best
from the simplex. Note that if more than one global minima
exist, the method will locate only one of them. The MCRS
method is described in the Appendix. Given a specific fuzzy
model (e.g., where the sigmoid function was se-
lected as fuzzy membership function and the min-max definition
for the and ), a cost function (e.g., the mean square
error), a training dataset and a range where the model’s
parameters were constrained, the MCRS algorithm was applied
for a specified number of iterations or until a stopping criterion
was met (see Appendix), and it attempted to optimize the value
of the cost function with respect to the parameters entering
the fuzzy model (e.g., the parameters used for the fuzzy mem-
bership functions and the parameters of the and , if
any). The FES was formulated by setting the parameters of each
model to the best solution found.

if
if
if
if
if

and two or more of the , or are equal

(18)

(20)
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TABLE IV
SENSITIVITY (%), SPECIFICITY (%) AND POSITIVE PREDICTIVE VALUE (%) OF THE CRISP MODEL AND THE AVERAGE CONFUSION MATRICES

FOR ALL FUZZY EXPERT SYSTEMS FOR THE ARRHYTHMIC BEAT CLASSIFICATION PROBLEM, USING THE CME COST FUNCTION

IV. RESULTS

The crisp model and the FESs (all combinations between the
fuzzy membership functions and the and defini-
tions) were tested using both MSE cost function and total ac-
curacy cost function (CME), for both arrhythmic and ischemic
beat classification. The test dataset consisted of the re-
maining patterns of after selecting (the selec-
tion was made as described above for each problem); both
and are presented in Table III. Ten different pairs of
and were created. The crisp model of both arrhythmic beat
classification and ischemic beat classification problems were
evaluated for all datasets, resulting to ten normalized con-
fusion matrices which were combined using gross statistics to
result to the average confusion matrix. Finally, sensitivity (Se),
specificity (Sp), and positive predictive value (PPV), for the
average confusion matrix, were calculated. The same proce-
dure was followed for the FESs; they were optimized (using

) and evaluated (using ) with each pair of them. The
maximum number of iterations of the MCRS algorithm was
set to 10 000; this ensures that the algorithm would stop ei-
ther when the convergence criterion was satisfied (Appendix,
MCRS algorithm, Step 1, third bullet), or when the maximum
number of iterations was reached. For the arrhythmic beat clas-
sification problem, Se, Sp, and PPV of the crisp model and
the FESs created using the CME cost function are presented

in Table IV. The results using the MSE cost function are quite
similar; the average absolute difference is 0.25% while the max-
imum absolute difference is 2.25%. For the ischemic beat classi-
fication problem, all evaluation results are presented in Table V.
In Table VI, accuracy for the crisp model and all FESs,
for both arrhythmic and ischemic beat classification problems,
using both and MSE cost functions are presented, along with
the number of parameters entering each fuzzy model.

From the obtained results it is clear that the application of
the proposed methodology improved the efficiency of the ini-
tial crisp model; the best FES for the arrhythmic beat classifica-
tion results to 96.43% accuracy, improving by 5.36% the corre-
sponding accuracy of the crisp model, while, in the case of the
ischemic beat classification the corresponding improvement is
11.27%. The number of beats in test sets is sufficiently large;
thus, the error rates, defined as: , of the crisp model
and the best fuzzy model in both cases (i.e., arrhythmic and is-
chemic beat classification) can be approximated using normal
distributions [48]. If the observed difference in is defined as:

, then is also normally distributed, with vari-
ance: , where
the number of test records (i.e., number of beats), is the
accuracy of the crisp model and is the accuracy of the best
fuzzy model. At 95% confidence level, the upper bound for the
standard normal distribution is 1.96, and, thus, the confidence
interval for the true difference is given by: .
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TABLE V
SENSITIVITY (%), SPECIFICITY (%) AND POSITIVE PREDICTIVE VALUE (%) OF THE CRISP MODEL AND THE AVERAGE CONFUSION MATRICES

FOR ALL FUZZY EXPERT SYSTEMS FOR THE ISCHEMIC BEAT CLASSIFICATION PROBLEM, USING BOTH CME AND MSE COST FUNCTIONS

For arrhythmic beat classification, the confidence interval for
at 95% confidence level is , which does

not spam the zero value, and, thus, the observed difference is
statistically significant. Similarly, for ischemic beat classifica-
tion, the confidence interval for at 95% confidence level is

, which also does not spam the zero value,
and, thus, the observed difference is statistically significant. In
both cases the observed difference is also statistically significant
if the confidence level is set to 99%; in this case, the upper bound
for the standard normal distribution is 2.58 and the confidence
intervals for are and
for arrhythmic and ischemic beat classification, respectively.

The selection of the cost function does not have an impact on
the obtained results; for both CME and MSE cost functions the
results were similar for arrhythmic and ischemic beat classifi-
cation. The obtained results are slightly improved if a param-
eter-based approach was incorporated for the and
definitions (i.e., Dompi, Dubois–Prade or Yager class), com-
pared to the approaches which are based on parameter-free def-
initions (i.e., minimum and maximum, algebraic product and
probabilistic OR, Einstein product and sum). An average in-
crease 1.2% exists independently of the examined problem or
the incorporated cost function or the fuzzy membership func-
tion selection. The extra and parameters make
the fuzzy models more flexible, and, thus, the optimization re-
sults to better FESs. However, with respect to the fuzzy mem-

bership function selection, the FESs for the arrhythmic beat
classification problem using fuzzy membership functions with
less parameters (sigmoid or sum of a sigmoid and its gradient)
have slightly better results than the ones with more parameters
(nested sigmoid or sum of two sigmoids); the results of the FESs
for the arrhythmic beat classification problem when the sigmoid
or sum of a sigmoid and its gradient fuzzy membership func-
tions are incorporated are 0.22% on average better than when
the nested sigmoid or sum of two sigmoids fuzzy membership
functions are used. The FESs, for the ischemic beat classifica-
tion problem show similar performance. In all cases, the linear
fuzzy membership function has the worst results; 1.12% reduc-
tion for arrhythmic beat classification and 1.9% for ischemic
beat classification.

V. DISCUSSION

In this paper, we describe a methodological framework for
the automated generation of FESs, which are based on an ini-
tial crisp model that includes a set of rules. The set of rules is
represented in DNF, using the crisp memberhip function, for-
mulating a crisp model. Then, the rules of the crisp model are
transformed to fuzzy ones, forming the fuzzy model. This fuzzi-
fication is based on the use of a fuzzy membership function in-
stead of the crisp one and the use of and instead
of the binary operators. The produced fuzzy models are tuned
using global optimization. Given an initial set of rules, the pro-
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TABLE VI
ACCURACY (%) FOR THE CRISP MODEL AND ALL FUZZY EXPERT SYSTEMS, FOR BOTH ARRHYTHMIC

AND ISCHEMIC BEAT CLASSIFICATION PROBLEMS, USING BOTH CME AND MSE COST FUNCTIONS

posed methodology can automatically produce a FES, for any
problem under consideration. This is a due to: a) the employ-
ment of the DNF which can be used to every logical expres-
sion; b) the transformation of the crisp rules into fuzzy rules is
performed using a fuzzy membership function and an approach
for the binary operators and; therefore, it can be carried out for
any set of rules written in a DNF in an simple and automated
manner; and c) the optimization technique is a “derivative-free”
algorithm and it does not need any information other than the
objective function.

There are some approaches proposed in the literature which
are based on the same philosophy, i.e., proposing a model and
optimizing its parameters [5]–[7]. In [6] and [7], the method-
ology followed is designed for a specific problem, and it is not
a general approach. In [5], a framework for the development
and optimization of fuzzy models is described, but the initial
model is based on the entropy of the data and not on a set of
rules. Also the methodology is evaluated using only artificial
data. All the optimization techniques used in [5]–[7] are “deriva-
tive free.” In the proposed methodology, although the optimiza-
tion technique does not require derivatives, there are available
for all fuzzy models, except is the case where the minimum &
maximum approach is used for the and definition
[49]. We have not tested other optimization methods; MCRS is a
recently developed global optimization technique, having sev-
eral advantages and presenting superior robustness among its
peers, although is not the most efficient one [47]. Furthermore,

our main concern was to locate the global minimum and not to
find the most efficient optimization method. However, this must
be examined in a future communication.

This general framework is evaluated in the development of
FESs for two cardiovascular domain problems, the arrhythmic
and the ischemic beat classification, using ECG recordings.
Medical experts provided the initial set of rules, which are
represented in a DNF, forming the crisp model. The crisp rules
are transformed into fuzzy, using several different combinations
of common fuzzy membership functions and approaches for
the and definitions. However, for both presented
applications, the defuzzifiers are designed based on knowledge
provided by experts on the specific domains and they are
not common approaches proposed in the literature. These,
task-specific defuzzification procedures can be considered as
an advantage compared to common defuzzification procedures,
since they reflect the experts’ knowledge for the specific do-
mains, but they have also the disadvantage that known implicit
input-output formulas, proposed in the literature, cannot be
applied. The MCRS algorithm is used to tune the parameters
of the models . The MIT-BIH arrhythmia database and the
ESC ST-T database are used for the model’s optimization, for
the arrhythmic and the ischemic beat classification, respec-
tively. In both cases, the obtained results indicate a significant
improvement compared to the initial crisp models. Thus, our
methodology can be proven to be a useful tool for the improve-
ment of the efficiency of existing knowledge-based systems.
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TABLE VII
SUMMARY OF PREVIOUS METHODS FOR ARRHYTHMIC BEAT CLASSIFICATION AND ISCHEMIC BEAT CLASSIFICATION

The proposed methodology produced very efficient FESs for
the arrhythmic beat classification problem, which present sev-
eral advantages compared to other methods for arrhythmic beat
classification: a) they use only the RR-interval signal, which can
be extracted with high accuracy even for noisy or complicated
ECG recordings (e.g., the 200 series of the MIT-BIH arrhythmia
database), while the extraction of all other ECG features or any
other type of ECG analysis is seriously affected by noise; b) they
are based on medical knowledge, which is usually ignored in
similar systems; c) they perform in real time; d) all other ap-
proaches use “closed” datasets, i.e., datasets containing data
belonging only to the classes that are classified, which is not
possible in real life data. In the proposed method the dataset does
not contain data only from the classes that are classified; a more
realistic approach is used: three classes (VF, VT, BII) are classi-
fied and the remaining data are classified as N; e) they are fully
automated; and f) interpretation is available for the decisions
made. A limitation is the use of the actual beats instead of QRS
detection in the VF episodes of the 207 record. A summary of
the results obtained for arrhythmic beat classification by other
methods is shown in Table VII—all methods are evaluated using
the MIT-BIH arrhythmia database. Most of the approaches are
based on the analysis of the ECG signal [18]–[26] while the
approaches proposed in [27], [28] and in the present work is
based on the analysis of the RR-interval signal only. All methods
indicate high performance, 94.26%–98.49%; the proposed
FESs results in comparable performance. However, some of the
methods are evaluated using very small datasets [18], [19], [22],

[23]. In [20], initial labeling of the beats was required and there
was no automatic QRS detection. A similar approach was used in
[26] for the fiducial points. In [21], the primary objective was to
perform clustering with a human expert performing the final beat
classification. In our case, the resulted FES is evaluated using
all records from the MIT-BIH arrhythmia database. It is fully
automated, compared to [20] and [21] and there is no training
stage, as in other approaches [18], [22].

Table VII also presents a summary of previous methods for
ischemic beat classification. A direct comparison is not fea-
sible, since the evaluation is made with other datasets [34],
[35], or different subsets of the ESC ST-T database [32], [39],
[40], or employing different performance measures [34], [39],
[40]. The FESs produced from the methodology, present sev-
eral advantages compared to other methods for ischemic beat
classification: a) they are based on medical knowledge. In [36]
a medical rule-based methodology is employed, however the
results are rather poor; b) they performs in real time; c) they
are fully automated; and d) they can provide interpretation for
the decisions made. Most of the proposed approaches are based
on ANNs [32], [38], and, thus, interpretation is not available.
The interpretation ability characterizes also the methods pro-
posed in [7] and [36]. In [7], genetic algorithms were utilised
for ischemic beat detection; the latter performed better than
our approach but it requires high computational effort and pro-
cessing time to tune the parameters and it is not based on med-
ical knowledge.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 6, 2009 at 04:54 from IEEE Xplore.  Restrictions apply.



2102 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 11, NOVEMBER 2007

The application of the proposed methodology is not limited to
medical domain problems and can be extended to other domains
for problems having the same structure, i.e., decision based on
a set of rules. An additional advantage is that the method can be
used along with data mining methods, which usually lead to a
set of crisp rules. The incorporation of data mining for the initial
set of rules acquisition leads to a fully automated method, where
only the diagnostic experience of doctors is needed. However,
the proposed methodology has some limitations: a) it is not easy
to express the fuzzy inference model to a closed form, b) it is
limited to applications that are based on crisp rules, and c) it
greatly depends on the selection and the quality of the initial set
of rules. The third limitation can be overcame if the initial set
of rules is combined with a data mined set of rules.

VI. CONCLUSION

A methodology for FES creation is proposed. The method-
ology, which is fully automated, uses an initial set of crisp rules,
provided by experts, and produces a FES. The methodology has
been tested in the arrhythmic and ischemic beat classification
problems and the produced FESs indicate significant improve-
ment of the initial classification system, which is based on ex-
pert’s knowledge and has the form of a set of rules. The obtained
results are also fully interpretable, which is a major advantage
compared to other approaches proposed in the literature for the
specific problems.

In the proposed methodology, the initial crisp set of rules are
determined by experts. Starting from a crisp set of rules and
then transforming it into a fuzzy model allows our method-
ology to be applied in cases where the initial set of rules is
strictly crisp. Based on this feature, an alternative is to extract
rules from the data, using a data mining technique, instead of a

knowledge-based origin of the initial set of rules. In this case,
the methodology would be fully automated, data driven, but the
knowledge introduced from the experts through the initial set
of rules, would be lost. Furthermore, hybrid approaches, com-
bining to expert’s knowledge and data-mined rules are also ap-
plicable. In this context, also the ability to automatically pre-
determine some of the fuzzy model’s basic aspects, such as the
fuzzy membership function and the and definitions
based on the natural characteristics of the problem, is a signifi-
cant field of research. Another important feature is that the gra-
dient is available for some of the fuzzy models; this feature can
lead to the use of more efficient optimization methods, which
take advantage of the first derivative information.

APPENDIX

In this Appendix, details regarding the equations of the fuzzy
models (15)–(21) will be provided along with a detailed descrip-
tion of the MCRS algorithm.

Substituting in (15)–(17), the sigmoid membership function
(Table III) and the minimum and maximum definitions for
the and , for the arrhythmic fuzzy rules it, see
(23)–(25), shown at the bottom of the page.

In (19), the results of the fuzzy rules are
used without the use of a defuzzifier. In (18),

is used,
which can be considered as a separate fuzzy model, using

, and fuzzy rules and
maximum defuzzifier [see (26), shown at the bottom of the
next page].

Again, substituting in (20), the sigmoid membership function
(Table III) and the minimum & maximum definitions for the

and , for the ischemic fuzzy rule, it is (27), shown
at the bottom of the next page.

R d ;� = max min
1

1+e

;
1

1+e

;
1

1+e

1

1+e

(23)

R d ;�

= max min
1

1 + e

;
1

1 + e

;

min
1

1 + e

;
1

1 + e

min
1

1 + e
j j

;
1

1 + e

;
1

1 + e

;
1

1 + e

min
1

1 + e
j j

;
1

1 + e

;
1

1 + e

;
1

1 + e

(24)

R d ; �

= max min
1

1 + e

;
1

1 + e

;
1

1 + e

min
1

1 + e

;
1

1 + e

;
1

1 + e
j j

(25)
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The MCRS algorithm, which is a modification of the Price’s
algorithm seeking for one global minimum in a given domain

, is described.

MCRS Algorithm

Input Data

• , an integer such that , where is the space
dimension (suggested value: )

• , a small positive constant (suggested value )

• , a rather large positive constant (suggested value )

Step 0:

• Set . Form the initial set by
picking points randomly from .

• Evaluate for .

Step 1:

• and let the corresponding point be
denoted as . Similarly

• and let the corresponding point be denoted
as .

• IF polish via a local search procedure
and STOP.

Step 2:

• Choose random by points from
.

• Calculate the weighted centroids:
, , where

,

max R d ; � ; R d ; � ; R d ; �

= max min
1

1 + e

;
1

1 + e

;
1

1 + e

min
1

1 + e

min
1

1 + e

;
1

1 + e

min
1

1 + e

;
1

1 + e
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1

1 + e
j j

;
1

1 + e

;
1

1 + e

;
1

1 + e
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1

1 + e
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1 + e
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1

1 + e
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1

1 + e
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1

1 + e
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• Calculate the trial point as:
,

where if and
if

• IF REPEAT Step 2

• Compute .

Step 3:

• IF THEN

— Calculate the success rate (the fraction of function
evaluations that led to a new lower upper bound)

— IF success rate set , and GOTO
Step 2

— Calculate , compute

— IF , set , and GOTO Step 2

— Set , and GOTO
Step 1

• ENDIF

Step 4:

• Set

• Increment and GOTO Step 1.
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