
Adapt-MEMPSODE: A Memetic Algorithm with Adaptive
Selection of Local Searches

Costas Voglis
Department of Computer Science

University of Ioannina
GR–45110, Ioannina, Greece

voglis@cs.uoi.gr

ABSTRACT
MEMPSODE global optimization software tool integrates
Particle Swarm Optimization, a prominent population–based
stochastic algorithm, with well established efficient local search
procedures. In the original description of the algorithm [17]
a single local search with specific parameters was applied
at selected best position vectors. In this work we present
an adaptive variant of MEMPSODE where the local search
is selected from a predefined pool of different algorithms.
The choice of each local search is based on a probabilistic
strategy that uses a simple metric to score the efficiency of
the local search. This new version of the algorithm, Adapt-
MEMPSODE, is benchmarked against BBOB 2013 test bed.
The results show great improvement with respect to the
static version that was also benchmarked in earlier work-
shop.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization, Memetic PSO, Adap-
tive selection, Local Search

1. INTRODUCTION
It is well established in the literature that two competing

goals govern the design of a global search strategy: explo-
ration ensures that every part of the domain will be cov-
ered and exploitation concentrates the search effort in a close
neighbourhood of the so far best detected positions. Mod-
ern optimization algorithms achieve the goals by global and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$10.00.

local optimization components. Such hybrid schemes de-
fined within the broad family of Evolutionary Algorithms
(e.g Genetic Algorithms) and Swarm Intelligence methods
(Particle Swarm, Differential Evolution), are called memetic
algorithms(MAs) [7, 5, 9].

Preliminary MA schemes applied single local optimiza-
tion components throughout the global search [6]. Recently,
the focus is concentrated on algorithms that take advantage
of more than one local search. MAs that adaptively select
from a pool of local search algorithms, are usually called
Adaptive MAs [12]. Algorithms of this category can be di-
vided according to the adaptation type as static, adaptive
and self-adaptive. A static algorithm is not considering any
feedback during the search to modify the selection mecha-
nism. On the other hand, an adaptive algorithm uses on-line
feedback to govern the selection of a local optimization algo-
rithms. Self-adaptive approaches usually apply evolutionary
operators to co-evolve the local searches. Besides the afore-
mentioned classification, the adaptation may be qualitative
if each local optimization algorithm can be simply charac-
terized as good or bad, or quantitative if the exact value of
the feedback is important to score the local optimization al-
gorithm. According to their adaptation level, MAs can be
further characterized as external if a problem-specific knowl-
edge from past experience of the practitioner is exploited, lo-
cal when only a part of the historical trace of the algorithm
is used to adapt the decision, and global when the complete
historical knowledge is used.

The present work extends MEMPSODE optimization soft-
ware [17] by allowing adaptive selection of local searches.
MEMSPODE software combines Unified Particle Swarm Op-
timization (UPSO) [14] algorithm with local search algo-
rithms provided by the Merlin optimization environment [13].
We introduce a simple scoring scheme based on the perfor-
mance of each individual local search and use a roulette-
wheel algorithm to select, with higher probability, the most
effective one. The probabilities for each local search are
adapted during the search using information from past in-
vocations. At regular intervals we reset the probabilities so
that short term information is considered. The new variant
of MEMPSODE falls in the category of local-quantitative,
adaptive memetic schemes. Results from the BBOB 2013
test bed reveal that the new adaptive MEMPSODE scheme
outperforms the original static version of MEMPSODE that
uses only one local search at a time [19, 18].

The rest of the paper is organized as follows: in Section 2
we describe in detail our adaptive MA scheme. In Section 3,

we present the experimental setup , and Section 4 we present
and comment the results on BBOB 2013 test bed.

2. ADAPTIVE MEMPSODE ALGORITHM
In this section we will present the adaptive modification to

the original MEMPSODE algorithm [17, 15]. The original
algorithm is extended by having multiple local searches that
are stochastically selected following an adaptive scheme. This
scheme is based on scoring the performance of each local
search. The description of adapt-MEMPSODE is performed
in four parts: (a) the Unified PSO algorithm that serves as
the global exploration part, (b) the memetic strategy that
determines when to apply a local search, (c) the adaptive se-
lection strategy that determines which local search to choose
and (d) the short description of the local optimization algo-
rithms used in this study.

2.1 Unified PSO
Let the n-dimensional continuous optimization problem:

min
x∈X⊂Rn

f(x), (1)

where the search space X is an orthogonal hyperbox defined
as:

X ≡ [l1, r1]× [l2, r2]× · · · × [ln, rn] ⊂ Rn.

A swarm of N particles is defined as a set of search points:

S = {x1, x2, . . . , xN} ,

where each particle is an n-dimensional vector:

xi = (xi1, xi2, . . . , xin)> ∈ X, i ∈ {1, 2, . . . , N}..

The particles move by assuming an adaptable position shift,
called velocity, denoted as:

vi = (vi1, vi2, . . . , vin)> , i ∈ {1, 2, . . . , N},

and they store the best position they have found,

pi = (pi1, pi2, . . . , pin)> ∈ X, i ∈ {1, 2, . . . , N}.

in memory. If t denotes the iteration counter, the parti-
cles’ positions and velocities are updated at each iteration
as follows [1]:

v
(t+1)
ij = χ

[
v
(t)
ij + c1R1

(
p
(t)
ij − x

(t)
ij

)
+ c2R2

(
p
(t)
gij
− x(t)ij

)]
, (2)

x
(t+1)
ij = x

(t)
ij + v

(t+1)
ij , (3)

where i ∈ I ≡ {1, 2, . . . , N} and j = 1, 2, . . . , n. This is
the constriction coefficient variant of PSO, named after the
parameter χ in Eq. (2), which is used to restrict the mag-
nitude of the velocities and it was derived through the sta-
bility analysis of PSO [1]. The rest of the parameters are
the positive constants c1 and c2, also called cognitive and so-
cial parameter, respectively; and R1, R2, which are random
numbers that differ for each i and j, drawn from a uniform
distribution in the range [0, 1].

The parameter gi controls the information-sharing be-
tween the i-th particle and the rest. A neighborhood of
the i-th particle is defined in the form of a set of indices of
other particles Ni. Thus, the parameter gi is defined as:

gi = arg min
j∈Ni

f(pj).

Obviously, the topologies influence the flow of information
among the particles and, hence, may affect the algorithm’s
efficiency and effectiveness. The special case where Ni = I
for all i ∈ {1, 2, . . . , N}, is called the gbest (global) PSO
model, while all other cases with Ni ⊂ I define lbest (local)
PSO models.

The best position of each particle is updated at each iter-
ation as follows:

p
(t+1)
i =

 x
(t+1)
i , if f

(
x
(t+1)
i

)
< f

(
p
(t)
i

)
,

p
(t)
i , otherwise.

(4)

The Unified PSO (UPSO) algorithm generalizes the orig-
inal PSO model by combining lbest and gbest velocity up-
dates. UPSO stemmed from the speculation (supported
by experimental evidence) that harnessing search directions
with different exploration / exploitation properties can pro-
duce more efficient schemes. Let:

G(t+1)
ij = χ

[
v
(t)
ij + c1r1

(
p
(t)
ij − x

(t)
ij

)
+ c2r2

(
p
(t)
gj − x

(t)
ij

)]
,

L(t+1)
ij = χ

[
v
(t)
ij + c1r1

(
p
(t)
ij − x

(t)
ij

)
+ c2r2

(
p
(t)
gij
− x(t)ij

)]
,

denote the velocity update of xi in the gbest and lbest PSO
models, respectively, where g is the index of the overall best
particle, i.e.:

g = arg min
j∈{1,2,...,N}

f(pj).

Then, UPSO’s update equations are defined as in [14]:

U (t+1)
ij = uG(t+1)

ij + (1− u)L(t+1)
ij , (5)

x
(t+1)
ij = x

(t)
ij + U (t+1)

ij , (6)

where i ∈ I and j = 1, 2, . . . , n. The parameter u ∈ [0, 1] is
called unification factor and it balances the influence (trade-
off) of the gbest and lbest velocity update.

2.2 Memetic Strategy
The design process of a Memetic algorithm involves a

number of parameters that control the point (where) and
frequency (when) of application of the local search. Al-
though additional information on the objective function may
offer some guidance, in the general case these parameters
are empirically determined based on a trial-and-error pro-
cedure. These parameters control a probability distribution
that stochastically instructs the local search to begin from
specific best positions.

Both MEMPSODE and the present adaptive variant are
based on the scheme proposed for the Memetic PSO (MPSO)
in [15] called memetic strategies and reported in Table 1.
These schemes can be applied either at each iteration or
whenever a specific number of consecutive iterations has
been completed. To avoid unnecessary function evaluations,
a local search is applied on a best position only if it has not
been previously selected for local search or it has changed
from the last application of local search. Note here that in
all memetic strategies of Table 1 the local search is the same
throughout the algorithm. In this work we extend the strat-
egy by controlling which local search is going to be applied.

2.3 Adaptive selection strategy
In the present variant of MEMPSODE, we introduce a

new adaptive selection strategy based on scoring the per-
formance of each local search. Our selection algorithm is

Table 1: The memetic strategies of MEMPSODE
Scheme Point of local search application

Scheme 1 pg (overall best position)
Scheme 2 Each pi, i ∈ {1, 2, . . . , N}, with fixed probability

ρ ∈ (0, 1]
Scheme 3 pg and some randomly selected pi, i ∈

{1, 2, . . . , N}

based on roulette selection [12, 11] where the probabilities
change during the algorithm’s execution. The probabilities
are identical for all particles (global context).

Roulette selection ensures that the number of applications
of a specific local search is stochastic and proportional to a
probability. More formally let L be a local search pool:

L = {LS(1), LS(2), . . . , LS(k)},

where local search LS(i) is applied with probability P(i), i =
1, . . . , k. The probability is based on a scoring mechanism
that is updated after the application of the local search. Also
let c(i), i = 1, . . . , k count the number of applications of the
i−th local search. In the j−th application of the local search

LS(i), we define the score
(i)
j as:

score
(i)
j =

∣∣∣f̃(i)
j −f̂

(i)
j

∣∣∣∣∣∣f̂(i)
j

∣∣∣
#fevals

(i)
j

, j = 1, . . . , c(i), i = 1, . . . , k,

where f̃
(i)
j is the objective function value before the applica-

tion of LS(i), f̂
(i)
j is the approximation of the local minimum

and #fevals
(i)
j is the number of function evaluations spent

during the local search.
The average score, S(i), and the probability, P(i) are then

defined as:

S(i) =

∑c(i)

j=1 score
(i)
j

c(i)
, P(i) =

S(i)∑k
i=1 S(i)

i = 1, . . . , k,

The above probability is assigned to each local search sub-
ject to the roulette selection during the adaptive random
scheme.

The presented adaptive calculation results in the following
observations:

(a) The average score for a local search LS(i) is formed us-
ing global information constructed from the beginning
of the algorithm. This may be restrictive since not all
search areas of an objective function share the same mor-
phology.

(b) If a local search does not perform well in early stages,
then it may be assigned a low score and probability. In
this case we may prematurely exclude a local search from
the pool without properly assessing its performance.

The observations above guide us to split the adaptive ran-
dom process into two phases, which are continuously re-
peated one after the other. In the first phase, called training
phase, the algorithm collects information (average score) for
the local searches but applies roulette selection with equal
probabilities. After the training phase comes the adaptive
phase, where the probabilities are adapted to the average
score and also updated after every local search.

Algorithm 1: Pseudocode of Adapt-MEMPSODE.

Input: Objective function, f : X ⊂ Rn → R; swarm size: N ;
unification factor: UF; probability for local search: ρ;

Local search pool: L = {LS(1), LS(2), . . . , LS(k)} ;
Training period : K;

Output: Best detected solution: x∗, f (x∗).

// Initialization

1 for i = 1, 2, . . . , N do
2 Initialize xi and ui
3 Set pi ← xi // Initialize best position
4 fi ← f (xi) // Evaluate particle
5 fpi ← fi // Best position value

6 acti ← 0// By default all particles perform FEs

7 end
8 for i = 1, 2, . . . , k do

9 c(i) ← 0; S(i) ← 0; P(i) ← 1
k // Initialize

10 end

// Main Iteration Loop

11 Set t← 0 ls← 0
12 while (termination criterion does not hold) do

// Determine which particles will apply LS on their best
position

13 for i = 1, 2, . . . , N do
14 if rand() < ρ then
15 acti ← 1 // The i-th particles will perform LSs
16 else
17 acti ← 0 // The i-th particles will perform FEs
18 end

19 end
// Update Best Indices

20 Calculate global best index g1 and local best index g2

// Update Swarm/Population
21 for i = 1, 2, . . . , N do
22 Calculate lbest velocity update, Li, using g2 and ui
23 Calculate gbest velocity update, Gi, using g1 and ui
24 ui ← UFLi + (1− UF)Gi // Unified PSO
25 xi = xi + ui // Update particle’s position

26 end

// Update Best Positions/Individuals
27 for i = 1, 2, . . . , N do
28 if fi < fpi then
29 pi ← xi
30 fpi ← fi
31 end

32 end

// Evaluate Population or Apply Local search
33 for i = 1, 2, . . . , N do
34 if acti = 0 then
35 fi ← f (xi) // Perform FE
36 else
37 ← RouletteSelection(P)

38 [p+
i , f

+
pi
, fevals]← LS(j)(pi) // Perform LS

39 score(j) ←
∣∣∣fpi−f+

pi

∣∣∣/∣∣∣f+
pi

∣∣∣
fevals

40 ls← ls+ 1;
41 if train = 1 and mod(ls,K) = 0 then

// Entering adaptive phase
42 train← 0

43 else if train = 0 and mod(ls, 3 ∗ K) = 0 then
// Entering training phase

44 train← 1
// Average scores and probabilities are reset

45 for κ = 1, 2, . . . , k do

46 c(κ) ← 0; S(κ) ← 0; P(κ) ← 1
k

47 end

48 end
49 UpdateProb(j, score,S,P, train)

50 end

51 end

52 end

Training phase takes place until K local searches are per-

formed and the adaptive phase follows for an integer multiple
of K. When the adaptive phase ends, all counters are reset,
probabilities are equalized, and information is gathered from
the start during a fresh new training phase. With this two–
phase scheme, we manage to include a short memory in our
adaptation, since very old information is now excluded. In
addition, we give to all local searches the same probability
to appear during the construction of the statistics.

The complete algorithmic scheme of our memetic algo-
rithm is presented in Algorithm 1. The adaptation of the
probabilities is presented in Procedure Updater.

Procedure Updater(j, score,S,P, train)

Input: Selected index: i ; Score for the selected:
score(i); Score array: S, Probability array: P,
Phase flag: train

Output: New score: S, New probability: P; New
count: c

1 S(i) ← c(i)S(i) + score

c(i) + 1
// Update mean S(i)

2 c(i) ← c(i) + 1 // Update count c(i)

// Not in training phase, update the

probabilities

3 if train = 0 then
4 for κ = 1, 2, . . . , k do

5 P(κ) ← S(κ)∑k S(κ)

6 end

7 end

2.4 Local Search Algorithms
In MEMPSODE [17] the PSO variant is coupled with local

optimization methods from the robust Merlin optimization
environment [13]. Merlin environment implements 11 local
search algorithms and provides a rich variety of controlling
options. For this work we chose a subset of 9 diverse lo-
cal searches, all programmed either directly in the Merlin
environment or via the plugin mechanism (see [13]).

Merlin also provides scripting capabilities that verify if a
point is a local minimizer so that unnecessary local search
applications can be avoided. In the remaining we briefly
present the local optimization algorithms that constitute our
pool. Henceforth, a local search approach will be denoted as
LS(k), and we assume that it returns the approximation of
the minimizer, its function value, and the required number
of function evaluations.

Whenever first order derivative information (gradient) is
required, it is calculated via finite differences using [16]. For
the default values of the parameters of each algorithm, please
refer to Merlin user manual distributed with the software.
In the following description of local searches we provide spe-
cific Merlin parameters in parentheses. nock stands for the
maximum number of function evaluations.

2.4.1 BFGS (noc 2000)

A well-known quasi-Newton method with line search [10]
that uses the BFGS update formula [2] to approximate the
Hessian matrix. The update is performed directly on the
Cholesky factors of the Hessian.

2.4.2 Simplex (noc 2000 disp 0.5)

Designed by Nelder and Mead [8] the Simplex algorithm is
based on the concept of simplex (or polytope) in Rn, which
is a volume element defined by (n+1) vertices. This volume
element is stretched, expanded, reflected in pursuit of the
minimizer. The initial simplex is created using a displace-
ment of 50% with respect to the bounding box along each
direction ((disp 0.5)).

2.4.3 Roll (noc 2000)

This method belongs to the class of pattern search meth-
ods. It proceeds by taking proper steps along each coor-
dinate direction, in turn. Then, the method performs an
one–dimensional search on a properly formed direction, in
order to tackle possible correlations among the variables.

2.4.4 Congra (noc 2000)

This is an implementation of the Conjugate Gradient method
for unconstrained minimization. This method generates a
set of conjugate search directions and applies line search.

2.4.5 Auto (noc 2000)

AUTO is a meta–local search procedure that attempts to se-
lect the best LS algorithm among 5 already implemented in
Merlin. The methods BFGS, ROLL, SIMPLEX and TRUST
are invoked one after the other. For each method, a rate is
calculated by dividing the relative achieved reduction of the
function’s value by the number of function calls spent. The
method with the highest rate is then invoked again and the
procedure is repeated.

2.4.6 Rand (noc 2000 red 0.9)

We added a random search component to our arsenal of local
searches in order to tackle highly discontinuous problems
with low or no structure. In every iteration a random step
is taken from a uniform distribution inside a predefined box.
If the step leads to a smaller function value, it is accepted.
Subsequent rejections reduce the sampling box size, hence
leading to smaller random steps. In our case, we start with
random step inside a box of magnitude up to 5.0, reduced
by 10% ((red 0.9)) every 50 consecutive rejections.

2.4.7 Hooke and Jeeves with discrete steps (noc 2000

ls 0)

The original pattern search method of Hooke and Jeeves [4]
consists of a sequence of exploratory moves about a base
point which, if successful, are followed by pattern move.

2.4.8 Hooke and Jeeves with line search (noc 2000

ls 1)

A modification of the original Hooke& Jeeves algorithm where
discrete steps are replaced by line searches. The ls 1 option
switches to the line search version.

2.4.9 Tolmin (noc 2000)

Another implementation of the BFGS method with line search
that uses the Goldfarb-Idnani factorization [3] of the Hes-
sian.

3. EXPERIMENTAL PROCEDURE
MEMPSODE was applied for a maximum of 5× 105 × n

function evaluations per run. Whenever it terminated before
reaching the global minimum (e.g., when LS resulted in a

local minimizer), we performed an independent restart until
the maximum number of function evaluations was reached.

The memetic Scheme 2 was applied with probability of
local search set to ρi = 0.05.We used a swarm size N =
30 particles. The unification factor u was set to 1 (gbest)
and the initial velocity vector was restraint by a factor of
0.01. Each local search assumed a maximum number of 2000
function evaluations. Input options for the local searches are
presented in verbatim in parentheses after each subsection
title.

The experiments were conducted on an Intel I7-2600 3.4
GHz machine with 8GB RAM using GNU compiler suite
v.4.4.3.

4. CPU TIMING EXPERIMENT
For the timing experiment the experimental procedure de-

scribed above was run on f8 with at most 1000 function eval-
uations in each call to adapt-MEMPSODE and restarted un-
til at least 30 seconds had passed. The timing experiment
was performed on the same platform as the experimental
procedure. The results for the UPSO variant were 3.0, 2.1,
1.5, 0.8, 0.66, and 0.53 times 10−4 seconds per function eval-
uation for dimensions 2, 3, 5, 10, 20, and 40, respectively.

5. RESULTS
Results using the BBOB post-processing scripts are pre-

sented in Figures 1, 2 and 3 and in Tables 2 and 3. Com-
pared to the results of MEMPSODE in BBOB 2012 [19,
18] we witness a large improvement of the new adaptive
scheme against the original MEMPSODE. From Figure 2
we can see that the new adaptive scheme solves, with accu-
racy 10−8, almost 90% of the 5-dimensional and 40% of the
20-dimensional cases. Original MEMPSODE on the other
hand solved 50% of the 5-dimensional and less that 10% of
the 20-dimensional cases in BBOB 2012 testbed. From Fig-
ure 1 we can see that adapt-MEMPSODE achieves very good
ERTs for all dimensions, close to the result from BBOB-
2009. These results are confirmed from Figure 2 where we
can see that in the 5-dimensional case adapt-MEMPSODE
has the fourth best cumulative distribution line. In the 20-
dimensional case we still score above the average.

The proposed adapt-MEMPSODE algorithm exploits the
diversity provided by multiple local searches and achieves
better exploration of the search space. This behaviour can
be justified by the fact that different local searches may ap-
proximate different minimizers even if they begin from the
same starting point. As a consequence, the stochastic se-
lection of local search algorithm increases the coverage of
search area.

6. REFERENCES
[1] M. Clerc and J. Kennedy. The particle

swarm–explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evol.
Comput., 6(1):58–73, 2002.

[2] R. Fletcher. A new approach to variable metric
algorithms. The Computer Journal, 13(3):317–322,
1970.

[3] D. Goldfarb and A. Idnani. A numerically stable dual
method for solving strictly convex quadratic programs.
Mathematical programming, 27(1):1–33, 1983.

5-D 20-D

a
ll

fu
n
ct

io
n
s

1 2 3 4
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g1

0
of

 E
RT

 lo
ss

 ra
tio

f1-24

1 2 3 4
log10 of FEvals / dimension

-2

-1

0

1

2

3

4

lo
g1

0
of

 E
RT

 lo
ss

 ra
tio

f1-24

Figure 3: ERT loss ratio vs. a given budget FEvals.
Each cross (+) represents a single function. The
target value ft used for a given FEvals is the smallest
(best) recorded function value such that ERT(ft) ≤
FEvals for the presented algorithm. Shown is FEvals
divided by the respective best ERT(ft) from BBOB-
2009 for functions f1–f24 in 5-D and 20-D.

Table 3: ERT loss ratio compared to the respective
best result from BBOB-2009 for budgets given in
the first column (see also Figure 3). The ERT Loss
ratio equals to one for the respective best algorithm
from BBOB-2009.

f 1–f 24 in 5-D, maxFE/D=501108
#FEs/D best 10% 25% med 75% 90%

2 1.2 1.9 2.4 4.4 8.3 10
10 2.6 3.4 4.6 5.8 11 50
100 2.0 3.5 4.7 7.2 20 26
1e3 2.1 3.9 5.2 8.7 14 23
1e4 2.0 3.7 5.3 10 23 52
1e5 2.0 4.0 5.1 11 23 63

RLUS/D 5e5 5e5 5e5 5e5 5e5 5e5

f 1–f 24 in 20-D, maxFE/D=500609
#FEs/D best 10% 25% med 75% 90%

2 1.0 2.4 10 34 40 40
10 3.1 4.7 7.9 69 2.0e2 2.0e2
100 3.1 9.5 13 23 1.0e2 2.0e3
1e3 1.9 3.2 8.3 18 40 67
1e4 3.1 8.0 14 30 54 1.8e2
1e5 1.1 7.9 27 95 1.7e2 7.3e2
1e6 3.1 8.3 27 2.0e2 8.7e2 1.5e3

RLUS/D 5e5 5e5 5e5 5e5 5e5 5e5

[4] R. Hooke and T. A. Jeeves. “direct search”solution of
numerical and statistical problems. Journal of the
ACM (JACM), 8(2):212–229, 1961.

[5] N. Krasnogor and J. Smith. A tutorial for competent
memetic algorithms: Model, taxonomy and design
issues. IEEE Trans. Evol. Comput., 9(5):474–488,
2005.

[6] P. Moscato. On evolution, search, optimization,
genetic algorithms and martial arts: Towards memetic
algorithms. Technical Report C3P Report 826,
Caltech Concurrent Computation Program, California,
USA, 1989.

[7] P. Moscato. Memetic algorithms: A short
introduction. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 219–235.
McGraw–Hill, London, 1999.

[8] J. Nelder and R. Mead. A simplex method for

2 3 5 10 20 40-1
0
1
2
3

1 Sphere

 +1
 +0
 -1
 -2
 -3
 -5
 -8

2 3 5 10 20 40-1
0
1
2
3
4

2 Ellipsoid separable

2 3 5 10 20 40-1
0
1
2
3
4
5
6

3 Rastrigin separable

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

1

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40-1
0
1
2
3

5 Linear slope

2 3 5 10 20 40-1
0
1
2
3
4
5
6

6 Attractive sector

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

11

7 Step-ellipsoid

2 3 5 10 20 40-1
0
1
2
3
4
5

8 Rosenbrock original

2 3 5 10 20 40-1
0
1
2
3
4
5

9 Rosenbrock rotated

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

5

10 Ellipsoid

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

1

11 Discus

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

11 8 5

12 Bent cigar

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

1

13 Sharp ridge

2 3 5 10 20 40-1
0
1
2
3
4
5
6

13

14 Sum of different powers

2 3 5 10 20 40-1
0
1
2
3
4
5
6

11

15 Rastrigin

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

11

16 Weierstrass

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

13

17 Schaffer F7, condition 10

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

6

18 Schaffer F7, condition 1000

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

14
10

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

14

1

20 Schwefel x*sin(x)

2 3 5 10 20 40-1
0
1
2
3
4
5
6

12

21 Gallagher 101 peaks

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

4

22 Gallagher 21 peaks

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

23 Katsuuras

2 3 5 10 20 40-1
0
1
2
3
4
5
6
7

14
9

24 Lunacek bi-Rastrigin

 +1
 +0
 -1
 -2
 -3
 -5
 -8

Figure 1: Expected number of f-evaluations (ERT, lines) to reach fopt + ∆f ; median number of f-evaluations
(+) to reach the most difficult target that was reached not always but at least once; maximum number of
f-evaluations in any trial (×); interquartile range with median (notched boxes) of simulated runlengths to
reach fopt + ∆f ; all values are divided by dimension and plotted as log10 values versus dimension. Shown are

∆f = 10{1,0,−1,−2,−3,−5,−8}. Numbers above ERT-symbols (if appearing) indicate the number of trials reaching
the respective target. The light thick line with diamonds indicates the respective best result from BBOB-2009
for ∆f = 10−8. Horizontal lines mean linear scaling, slanted grid lines depict quadratic scaling.

D = 5 D = 20

se
p
a
ra

b
le

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0
pr

op
or

tio
n

of
 tr

ia
ls

f1-5,5-D1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f1-5,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5,20-D1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f1-5,20-D

m
is

c.
m

o
d
er

a
te

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f6-9,5-D1: 4/4
-1: 4/4
-4: 4/4
-8: 4/4

-6 -4 -2 0 2 4 6 8
log10 of Df

f6-9,5-D
2 3 4 5

log10 of FEvals / DIM
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f6-9,20-D1: 4/4
-1: 4/4
-4: 4/4
-8: 4/4

-6 -4 -2 0 2 4 6 8
log10 of Df

f6-9,20-D

il
l-

co
n
d
it

io
n
ed

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,5-D1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f10-14,5-D
1 2 3 4 5

log10 of FEvals / DIM
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,20-D1: 5/5
-1: 5/5
-4: 5/5
-8: 2/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f10-14,20-D

m
u
lt

i-
m

o
d
a
l

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f15-19,5-D1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f15-19,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f15-19,20-D1: 5/5
-1: 3/5
-4: 0/5
-8: 0/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f15-19,20-D

w
ea

k
st

ru
ct

u
re

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,5-D1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f20-24,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,20-D1: 5/5
-1: 4/5
-4: 3/5
-8: 3/5

-6 -4 -2 0 2 4 6 8
log10 of Df

f20-24,20-D

a
ll

fu
n
ct

io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D1: 24/24
-1: 24/24
-4: 24/24
-8: 24/24

-6 -4 -2 0 2 4 6 8
log10 of Df

f1-24,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D1: 24/24
-1: 21/24
-4: 17/24
-8: 14/24

-6 -4 -2 0 2 4 6 8
log10 of Df

f1-24,20-D

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials with an outcome
not larger than the respective value on the x-axis. Left subplots: ECDF of number of function evaluations
(FEvals) divided by search space dimension D, to fall below fopt + ∆f with ∆f = 10k, where k is the first
value in the legend. Right subplots: ECDF of the best achieved ∆f divided by 10−8 for running times of
D, 10D, 100D, . . . function evaluations (from right to left cycling black-cyan-magenta). The thick red line
represents the most difficult target value fopt + 10−8. Legends indicate the number of functions that were
solved in at least one trial. Light brown lines in the background show ECDFs for ∆f = 10−8 of all algorithms
benchmarked during BBOB-2009.

5-D 20-D
∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 12 12 15/15
5.7(4) 7.3 7.3 7.3 7.3 7.3 7.5(0.2) 15/15

f2 83 87 88 89 90 92 94 15/15
3.6(3) 4.1(3) 4.5(3) 4.7(3) 4.8(3) 5.0(3) 5.2(3) 15/15

f3 716 1622 1637 1642 1646 1650 1654 15/15
3.6(3) 9.2(6) 15(6) 15(6) 15(6) 15(6) 15(6) 15/15

f4 809 1633 1688 1758 1817 1886 1903 15/15
3.2(3) 12(4) 23(16) 25(22) 24(21) 23(21) 24(23) 15/15

f5 10 10 10 10 10 10 10 15/15
10(6) 14(5) 14(6) 14(6) 14(6) 14(6) 14(6) 15/15

f6 114 214 281 404 580 1038 1332 15/15
3.3(3) 2.9(2) 2.8(2) 2.3(1) 1.8(1) 2.2(2) 3.7(1) 15/15

f7 24 324 1171 1451 1572 1572 1597 15/15
19(14) 7.5(6) 6.5(2) 8.5(2) 9.0(2) 9.0(2) 17(12) 15/15

f8 73 273 336 372 391 410 422 15/15
3.0(1) 4.1(5) 3.6(4) 3.4(4) 3.8(5) 3.7(5) 3.8(5) 15/15

f9 35 127 214 263 300 335 369 15/15
5.9(2) 7.5(11) 4.8(7) 4.1(6) 3.8(6) 3.6(6) 3.4(5) 15/15

f10 349 500 574 607 626 829 880 15/15
3.7(7) 3.5(6) 3.2(5) 3.5(5) 4.6(8) 7.5(9) 11(8) 15/15

f11 143 202 763 977 1177 1467 1673 15/15
1.4(0.2) 7.0(11) 3.5(3) 3.7(2) 3.4(2) 4.1(0.6) 5.4(2) 15/15

f12 108 268 371 413 461 1303 1494 15/15
7.4(12) 4.8(5) 5.2(7) 5.3(6) 5.0(6) 7.7(6) 11(11) 15/15

f13 132 195 250 319 1310 1752 2255 15/15
3.8(9) 3.0(9) 2.5(7) 2.1(5) 2.9(0.5) 2.6(0.5) 2.1(0.4) 15/15

f14 10 41 58 90 139 251 476 15/15
2.6(2) 2.9(0.4) 2.4(0.2) 1.8(0.2) 1.4(0.1) 2.2(0.1) 23(2) 15/15

f15 511 9310 19369 19743 20073 20769 21359 14/15
14(15) 4.4(4) 5.6(4) 5.5(4) 5.4(4) 5.2(4) 5.1(4) 15/15

f16 120 612 2662 10163 10449 11644 12095 15/15
3.0(2) 32(31) 28(12) 13(13) 31(17) 29(15) 95(121) 11/15

f17 5.2 215 899 2861 3669 6351 7934 15/15
6.9(4) 17(20) 36(13) 22(35) 27(33) 23(19) 104(111) 13/15

f18 103 378 3968 8451 9280 10905 12469 15/15
8.9(6) 30(31) 40(87) 41(53) 41(49) 44(46) 308(347) 6/15

f19 1 1 242 1.0e5 1.2e5 1.2e5 1.2e5 15/15
60(24) 7494(7112)154(80) 3.1(2) 13(13) 13(13) 16(20) 10/15

f20 16 851 38111 51362 54470 54861 55313 14/15
5.7(2) 3.6(5) 5.5(8) 4.1(6) 3.9(5) 3.9(5) 4.2(5) 15/15

f21 41 1157 1674 1692 1705 1729 1757 14/15
5.0(5) 14(15) 11(11) 11(10) 10(10) 10(10) 14(22) 15/15

f22 71 386 938 980 1008 1040 1068 14/15
4.6(3) 7.9(10) 42(36) 42(35) 41(34) 40(33) 52(44) 15/15

f23 3.0 518 14249 27890 31654 33030 34256 15/15
3.4(3) 3.4(3) 3.4(3) 3.8(4) 3.5(4) 11(22) 10(21) 15/15

f24 1622 2.2e5 6.4e6 9.6e6 9.6e6 1.3e7 1.3e7 3/15
6.8(7) 4.4(7) 0.20(0.3) 0.27(0.2) 0.27(0.3) 0.20(0.2) 0.23(0.2) 9/15

∆f 1e+1 1e+0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 43 15/15
10(7) 16(14) 23(23) 25(25) 25(25) 25(25) 25(25) 15/15

f2 385 386 387 388 390 391 393 15/15
15(11) 18(10) 18(10) 19(11) 21(11) 25(8) 45(27) 15/15

f3 5066 7626 7635 7637 7643 7646 7651 15/15
16(11) 68(31) 110(49) 110(48) 110(49) 110(48) 116(48) 15/15

f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15
22(12) 127(96) 183(101) 183(100) 182(100) 181(99) 10(5) 15/15

f5 41 41 41 41 41 41 41 15/15
3.1(0.3) 3.1(0.3) 3.1(0.3) 3.1(0.3) 3.1(0.3) 3.1(0.3) 3.1(0.3) 15/15

f6 1296 2343 3413 4255 5220 6728 8409 15/15
7.6(3) 7.6(3) 7.8(4) 13(8) 19(8) 28(16) 63(58) 15/15

f7 1351 4274 9503 16523 16524 16524 16969 15/15
26(21) 340(370) 369(537) 247(333) 266(317) 266(309) 417(446) 11/15

f8 2039 3871 4040 4148 4219 4371 4484 15/15
6.4(3) 7.8(5) 8.2(5) 8.2(5) 8.6(5) 8.7(6) 8.5(6) 15/15

f9 1716 3102 3277 3379 3455 3594 3727 15/15
8.8(3) 11(5) 15(6) 16(8) 17(8) 19(4) 20(2) 15/15

f10 7413 8661 10735 13641 14920 17073 17476 15/15
6.2(4) 6.8(3) 6.8(5) 6.0(4) 9.2(7) 59(61) ∞1.0e7 0/15

f11 1002 2228 6278 8586 9762 12285 14831 15/15

4.5(1.0) 2.2(0.2) 0.81(0.1) 0.64(0.1)↓4 0.81(0.2) 20(16) 9880(10790) 0/15

f12 1042 1938 2740 3156 4140 12407 13827 15/15
5.7(4) 4.6(3) 5.8(3) 6.5(5) 8.0(5) 6.6(7) 124(224) 8/15

f13 652 2021 2751 3507 18749 24455 30201 15/15
8.2(2) 4.7(2) 4.2(2) 4.3(0.4) 2.2(1) 23(21) 367(415) 1/15

f14 75 239 304 451 932 1648 15661 15/15
10(14) 11(6) 11(6) 10(3) 5.9(1) 4.3(0.7) ∞1.0e7 0/15

f15 30378 1.5e5 3.1e5 3.2e5 3.2e5 4.5e5 4.6e5 15/15
38(23) ∞ ∞ ∞ ∞ ∞ ∞1.0e7 0/15

f16 1384 27265 77015 1.4e5 1.9e5 2.0e5 2.2e5 15/15
8.5(9) 869(1023) ∞ ∞ ∞ ∞ ∞1.0e7 0/15

f17 63 1030 4005 12242 30677 56288 80472 15/15
39(22) 194(137) 2971(3814) 3341(4122) ∞ ∞ ∞1.0e7 0/15

f18 621 3972 19561 28555 67569 1.3e5 1.5e5 15/15
81(61) 659(1260) 2243(2302) 4974(5344) ∞ ∞ ∞1.0e7 0/15

f19 1 1 3.4e5 4.7e6 6.2e6 6.7e6 6.7e6 15/15
4084(4842)1.8e5(1e5) 134(135) ∞ ∞ ∞ ∞1.0e7 0/15

f20 82 46150 3.1e6 5.5e6 5.5e6 5.6e6 5.6e6 14/15
26(15) 1.1(0.8) 6.7(7) 27(31) 27(28) 27(29) 27(27) 1/15

f21 561 6541 14103 14318 14643 15567 17589 15/15
4.9(7) 20(33) 22(25) 21(24) 21(24) 20(22) 19(20) 15/15

f22 467 5580 23491 24163 24948 26847 1.3e5 12/15
29(47) 47(93) 279(374) 272(364) 263(352) 245(331) 75(97) 4/15

f23 3.2 1614 67457 3.7e5 4.9e5 8.1e5 8.4e5 15/15
3.1(3) 25(20) 75(60) ∞ ∞ ∞ ∞1.0e7 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 5.2e7 3/15
31(34) ∞ ∞ ∞ ∞ ∞ ∞1.0e7 0/15

Table 2: Expected running time (ERT in number of function evaluations) divided by the best ERT measured
during BBOB-2009 (given in the respective first row) for different ∆f values for functions f1–f24. The median
number of conducted function evaluations is additionally given in italics, if ERT(10−7) = ∞. #succ is the
number of trials that reached the final target fopt + 10−8.

function minimization. The computer journal,
7(4):308–313, 1965.

[9] F. Neri, C. Cotta, and P. Moscato, editors. Handbook
of Memetic Algorithms. Springer, 2011.

[10] J. Nocedal and S. Wright. Numerical optimization.
Springer verlag, 1999.

[11] Y.-S. Ong and A. J. Keane. Meta-lamarkian learning
in memetic algorithms. IEEE Transactions on
Evolutionary Computation, 8(2):99–110, 2004.

[12] Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-K. Wong.
Classification of adaptive memetic algorithms: A
comparative study. IEEE Transactions on systems,
man, and cybernetics, 36(1):141–152, 2006.

[13] D. G. Papageorgiou, I. N. Demetropoulos, and I. E.
Lagaris. Merlin-3.1. 1. a new version of the Merlin
optimization environment. Computer Physics
Communications, 159(1):70–71, 2004.

[14] K. E. Parsopoulos and M. N. Vrahatis. UPSO: A
unified particle swarm optimization scheme. In Lecture
Series on Computer and Computational Sciences, Vol.
1, Proceedings of the International Conference of
Computational Methods in Sciences and Engineering
(ICCMSE 2004), pages 868–873. VSP International
Science Publishers, Zeist, The Netherlands, 2004.

[15] Y. G. Petalas, K. E. Parsopoulos, and M. N. Vrahatis.

Memetic particle swarm optimization. Annals of
Operations Research, 156(1):99–127, 2007.

[16] C. Voglis, P. Hadjidoukas, I. Lagaris, and
D. Papageorgiou. A numerical differentiation library
exploiting parallel architectures. Computer Physics
Communications, 180(8):1404–1415, 2009.

[17] C. Voglis, K. Parsopoulos, D. Papageorgiou, I. Lagaris,
and M. Vrahatis. Mempsode: A global optimization
software based on hybridization of population-based
algorithms and local searches. Computer Physics
Communications, 183(5):1139–1154, 2012.

[18] C. Voglis, G. S. Piperagkas, K. E. Parsopoulos, D. G.
Papageorgiou, and I. E. Lagaris. MEMPSODE: An
empirical assessment of local search algorithm impact
on a memetic algorithm using noiseless testbed. In
GECCO’12(Companion), pages 245–252, Philadelphia
(PA), USA, 2012.

[19] C. Voglis, G. S. Piperagkas, K. E. Parsopoulos, D. G.
Papageorgiou, and I. E. Lagaris. MEMPSODE:
Comparing particle swarm optimization and
differential evolution on a hybrid memetic global
optimization framework. In GECCO’12(Companion),
pages 253–260, Philadelphia (PA), USA, 2012.

