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CMOS Integrated Circuit Design Techniques

Overview

1. Reliability issues — Transient faults

2. Softerrors

3. Timing errors

e 4. Error tolerance design techniques
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Reliability in Nanometer Technologies

Soft Error Rate (SER) increases
with technology scaling

1MB SRAM

The evolution (scaling) of CMOS technology
results in:

e the reduction of the transistor size

e the increment of the operating frequency
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e the reduction of the power supply
voltage
e the increment of the transistors’ number
in a die
which in turn affect the circuit noise margins
and reduce their reliability.
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Transient Faults and On-Line Testing

e Permanent Faults: faults that permanently affect the circuit operation.
e Temporary Faults: faults that do not affect permanently the circuit
operation and are discriminated to:
= Transient Faults: due to random fault generation mechanisms like power
supply disturbance, electromagnetic interference, radiation e.t.c.
= |ntermittent Faults: due to the degradation of the circuit characteristics.

e On-Line Testing: testing procedures are performed during the circuit

operation.

= Concurrent Testing: testing is performed concurrently to the circuit normal

operation.

= Periodic Testing: testing is performed periodically when the circuit is in the

idle mode of operation.

e Off-Line Testing: testing is performed when the circuit is not used (e.g.

manufacturing testing).
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Requirements

We need design techniques and architectures that will guarantee the correct
operation under any circumstances. Techniques that will provide error resiliency
or error detection / correction capabilities.

We need self-checking and concurrent testing mechanisms. We need self-healing
architectures that will dynamically react to overcome technology and
environmental related variabilities and which will be capable to recover after an
error generation and will operate correctly even in the presence of failures.
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Towards this direction, error tolerance techniques have been proposed:
e error correction codes and self-checking circuits and checkers

e error mitigation techniques aiming to reduce error rates
e error detection and correction methodologies
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Radiation and Soft Errors (I)
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Problem with Soft Errors in VLSI circuits due to Single Event Transients (SETs) and Single
Event Upsets (SEUs) generated by:

e emitted a-particles by package impurities
@}N e cosmic ray particles (neutrons, protons and pions)
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Radiation and Soft Errors (ll)
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Timing Errors ()

Transient faults due to crosstalk, power supply disturbance or ground bounce
and environmental variations (e.g. temperature gradients) contribute to
timing error generation. Device aging (BTI, HCI effects) is also an important
source of timing errors.

Timing verification turns to be a hard task. Moreover, the increased path delay
deviations, due to process variations and the statistical behavior of nano-
devices, as well as the manufacturing defects that affect circuit speed may
result in timing errors that are not easily detectable (in terms of test cost) in
high frequency and high device count ICs. Considering also the huge number
of paths in modern circuit designs along with the complexity of testing, it is
easy to realize that a significant number of defective ICs may pass the
fabrication tests.

Modern systems running at multiple frequency and voltage levels may suffer
from timing errors due to environmental and process related (and also data
dependent) variabilities that can affect circuit performance.
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iming Errors (I1)
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The Scan Design Topology of Intel
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Intel’s Error Resilience Approach
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¢ Additional cost of: 1Flip-Flop, 2 XOR, 1 AND and 1 OR per Flip-Flop !

e The error detection latency is high !

Univ. of Stanford & Intel

|EEE Computer, 38 (2), 2005
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The BISER Architecture
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The GRAAL Architecture
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The Razor Topology
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The Razor Operation ()
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The Razor Operation (Il)
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The Time Dilation Topology
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|| Delay

¢ Additional cost of: 1 XOR, and 1 MUX per Flip-Flop.

Univ. of loannina & Athens

IEEE ICECS, 2006
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The Time Dilation Operation (l)
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The Time Dilation Operation (ll)
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Timing Diagrams
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The Time Dilation Architecture
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Pipeline Recovery

Failing stage Erroneous stage

Time in cycles

IF | 1D\ EX MEN’I/MEI'\"{I

RN

IF |UID 1| ~EX | EX | MEM

IF | 1D | ID| EX |MEM

Instructions
~
5
o

Re-execution with
correct values at
stage inputs

ki . .
# On-Line Testing 22




References

e “Making Typical Silicon Matter with Razor”, T. Austin, D. Blaauw, T. Mudge and K.
Flautner, IEEE Computers, vol. 37, no. 3, pp. 57-65, 2004.

e “Robust System Design with Built-In Soft-Error Resilience”, S. Mitra, N. Seifert, M.
Zhang, Q. Shi and K-S. Kim, IEEE Computers, vol. 38, no. 2, pp. 43-52, 2005.

e “Built-In Soft Error Resilience for Robust System Design,” S. Mitra et al,
International Conference on IC Design and Technology, pp. 263-268, 2007.

e “GRAAL: A New Fault Tolerant Design Paradigm for Mitigating the Flaws of Deep
Nanometric Technologies,” M. Nicolaidis, International Test Conference, p. 4.3,
2007.

e “Testing and Reliable Design of CMOS Circuits”, N. Jha and S. Kundu, Kluwer
Academic Publishers, 1990.

gkﬁ On-Line Testing

23

12



