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A General Built-In Self Test (BIST) Scheme

(e

Built-In Self Test

Primary Chip
Inputs Circuit Under Fg imary
Test :" tputs
(CuT)
y v
Pattern Control Signature
Generator Logic Analyzer
BIST-Circuitry ROM @ I
Test_Enable v Pass/Fail

In Built-In Self Test schemes the test vectors are generated inside the chip and they are
applied to the CUT under the control of the BIST controller. The CUT responses are
compacted by the signature analyzer and the final value (signature), after test completion,
is compared with the expected signature. In case of discrepancy the CUT is characterized
as defective. A proper signal (Pass/Fail) is activated to indicate a possible fault detection.

Linear Feedback Shift Registers - LFSRs

= An a LFSR acts as a pseudorandom pattern generator

Pseudorandom Pattern Generation
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The Linear Feedback Shift Register

= An LFSR is fully described by its characteristic polynomial.

= An LFSR with characteristic polynomial of N-degree is capable to generate a maximal
length cycle 2N-1 if its polynomial is a primitive polynomial.

= An N-degree polynomial is primitive if it cannot be factored and it is divisible only by
itself and 1, and it divides evenly the x+1 polynomial only when for the integer k
stands that k=2N-1 but not when k<2N-1.
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LFSR Properties

= The maximal length cycle of an LFSR with a primitive characteristic
polynomial is 2N-1.,

= In a maximal length cycle “1” appears N+1 times while “0” appears N times.

= The sequence obtained at any stage j of the LFSR is one clock cycle delayed
with respect to the sequence at stage j—1.

Since the generated patterns by an LFSR have a predetermined distribution
of grouping bits and the sequences from different stages are self-correlated
(pseudorandom patterns), some faults may be undetectable when this
sequence of patterns is applied.

These faults are called: random pattern resistant (RPR) faults.
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LFSR in a Typical Test Configuration
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Signature Analysis

The most common signature analysis technique is the sequential compaction
of the CUT responses and the comparison of the final result (signature) with
the expected one. The latter is derived by simulations on the CUT.
Usually, an LFSR is exploited for the response compaction. At the end of this
operation the LFSR’s contents is the signature of the circuit.

A faulty circuit is expected to provide a different signature than this of a fault
free circuit.

Since response compaction may result in information loss, it is possible a
faulty circuit to provide a signature identical to the expected one [the fault
escapes detection (test escape) and the CUT is characterized as fault free].

This type of information loss is called aliasing.

The probability of aliasing using an LFSR of N stages is: P,=2"N
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Output Response Compaction

a) Bellmac architecture
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b) Use of Multiple Input Shift Register - MISR
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Random Pattern Resistant Faults
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Random Pattern Resistant (RPR) Fault Alleviation Techniques

e Weighted pseudorandom pattern generation

e Aliasing reduction (e.g. multiple LFSR or MISR, collect multiple signatures)
® LFSR reseeding

e Multiple polynomial LFSR (reconfigurable LFSRs)

e Use of extra deterministic tests stored in a ROM (bit-fixing or bit-flipping)
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Reconfigurable LFSR (I)
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Reconfigurable LFSR (lI)
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Equivalent LFSR Designs
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Weighted LFSR
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Basic BIST Architectures (I)
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Partitioning — Autonomous BIST
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Circular BIST

Combinational Combinational — Self-Test
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Circular BIST Flip-Flop
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BILBO Register Structure
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BILBO Flip-Flop

BILBO Flip-Flop

BILBO — Normal Mode
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BILBO — MISR Operation Mode
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The STUMPS Architecture
Self-Test Using MISR and a Parallel Shift Register Sequence Generator
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Linear Phase Shifter
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LFSR Reseeding
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LFSR and Bit-Fixing

Embedding Deterministic Patterns
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LFSR and Bit-Flipping
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Design for Diagnosis

As Diagnosis we define those operations that are performed in order to
locate defects in an integrated circuit. This information is used to improve
the manufacturing process or the quality of the design and consequently to
increase the yield.

Design for testability techniques may increase the difficulty to diagnose
faults. A main problem comes from the scan chain output compaction

schemes.

Hardware assisted, software assisted (the inject and evaluate paradigm) and
signal-profiling based techniques are exploited for fault diagnosis.

In all diagnosis techniques, special diagnosis vectors (or the existing test
vectors) are used for defect location.
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Compressed Pattern Diagnosis
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