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Power Consumption

We distinguish three power consumption sources in digital
integrated circuits:

e Static power consumption: due to leakage currents in the circuit, it
remains even when the circuit is inactive (idle state).

e Dynamic power consumption: due to charging and discharging of
circuit’s internal node parasitic capacitances.

e Short-circuit power consumption: due to short-circuit currents
between the power supplies during signal transitions at the inputs of
the logic gates.
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Static Power Consumption
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Static Power Consumption
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Reverse Bias pn-Junction Leakage Current
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Weak Inversion Leakage Current (I)
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Weak Inversion Leakage Current (ll)
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For Vps > 4 V; this factor is equal to one!

|
0 (where V; is the thermal voltage (26mV))

where  n= 1+cﬂ and Cg,, is the bulk depletion layer capacitance at threshold.

(3

Note that V, also strongly depends on the temperature (in the range of 0.7 — 1.0 mV/K). The V,
gkg decreases by 70 — 100mV when the temperature increases from 25°C to 125°C.
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GIDL Leakage Current
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Gate-Induced Drain Leakage — GIDL
GIDL leakage current is due to the high electric filed, induced by the gate potential, in the
gate-drain overlap region.
In low-leakage transistors (high V, and thick gate oxide) the GIDL current dominates the | .
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Gate Oxide Tunneling Leakage Current
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Static Power Consumption Reduction

@
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Power Gating

In power gating we use of a switch device (sleep transistor) between
the circuit block and the power supply (Vpp, Gnd), aiming to reduce
the static power during the idle system states (sleep states).
Trade-offs arise between: o]

e The maximum delay degradation.

e The requested leakage reduction ratio (LRR).

* The minimum effective power down time (T,;.).

thock inlariace

e The cost.

Design constraints:
e The area overhead, which affects cost and yield.
e The maximum acceptable delay overhead.
e The standby-power specifications that must consider the standby-time of
the system.
e The switch (sleep) transistor type and the available options for the

: standard cells.
)
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Properties of Power Gating

= High leakage reduction ratio.

= Small impact on performance in active mode.

= Small area overhead due to the: switches, control logic, drivers ...
= Independent power gating for different circuit blocks - cores.

= Fast sleep-in and sleep-out periods with small energy overhead.
= Multiple sleep states.

Side Effects:

e The influence of surrounding active blocks by the fast activation of a
large block from its sleep mode. Aiming to alleviate this, usually a
latency is introduced which increases T,

¢ The need to retain the internal states during the sleep mode.
¢ Block interfaces are required between active and inactive blocks.

e |dle time statistics must be exploited to predict block activation and

proper control logic must be implemented for the activation task. This

@c will increase power and consequently T
%

min*
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Power Gating with a Reverse V¢ Switch
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Positi V %—‘ Virtual Vy, * In sleep mode a gate voltage Vg higher than
ositive Loglc Vpp is used for | 4 reduction.
ees ces ‘dsr log
Sleep
= Gnd

* In active mode a gate voltage Vg
lower than 0 is used (boosted gate)
aiming to maintain performance.

Super cut-off
e
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Power Gating with Multiple V,, CMOS
2] Voo Vs Ving | Ve

Wt 2 v, v,
Sleep pMOS—l_- ot =HCoy L SM-1ve " |1-e 7
Sleep I eff
) ) A transistor with higher threshold voltage (e.g. a
High-V,, Virtual Vy, ¢ . :
- double gate oxide transistor) is used between the
Logic ,—I logic circuit and the power supply. In the idle mode

of operation this transistor is switched to the cut-
off region (sleep mode) by exploiting a dedicated
signal (Sleep).

Thus, leakage currents due to weak inversion and
Low-Vy, gate oxide tunneling can be exponentially

L ) decreased.
= Vo = Voo £V 2, + V] — 28]

Multiple threshold voltage CMOS
t
(MTCMOS) technology y=—2 lquSiN
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Threshold Voltage Increase vs Area Overhead

A high-V, transistor is desirable due to the exponential impact of V, on

Voo Hiohy. subthreshold currents. However, the on-resistance of the transistor will
gn-
Sleep' be larger.
Transistor The latter can be compensated by a larger transistor width W, which in
turn will increase area overhead and also will increase linearly the
Circuit subthreshold current. The selection of W with respect to V, is crucial!
Block
| For a desired on-current I it stands that:
— w V2
- ID = ucox I_|:(VDD - Vt )VDSmax D52mm<:|

where |Vgs|=Vpp and |Vpg|=Vpsmax Which is the max V¢
that guarantees the required switching speed of the logic.

-1
IoL V2
W(V,) = - (VDD -Vi )VDSmax ——Dsmax
HCoy 2

subthreshold current [norm]
area consumption [norm)

Inserting this W in the | 4 equation the side graph is
drawn. The area overhead grows rapidly while the

03 04 05 06 07 subthreshold current decreases monotonously!
threshold voltage [norm]

- V, is normalized to V;,
T
*5 Low Power Design Techniques | 18




Interfaces in Power Gating
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Power Supply Disturbance in Power Gating
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Multi-Threshold Voltage V,, Logic Design
t
— Maximum Signal Delay —
Critical Signal Path
ptepsignal path =] _
The shaded logic blocks have been designed using transistors with higher than the
technology nominal threshold voltage in order to reduce the sub-threshold leakage
current (weak-inversion leakage current).
Considering that higher threshold voltage can be achieved using thicker gate oxides
(insulators), the gate oxide tunneling leakage current can be also reduced.
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Active Body Bias Techniques

B Tunable Threshold Voltage — V,,
= Reverse Body Bias — RBB:

e the absolute threshold

voltage increases. v, Voosuwc PMOSRBB Vi, >0
(5] > B

e the subthreshold leakage pMOS FBB V. <0
current decreses. P
¢ the performance decreases.
D Q
VGS_Vl
ot loe ™
Ip = (Vgs = V;)*
3 nMOS FBB Vg, >0
= Forward Body Bias — FBB: Gnd=V..— Vv Ves+————
* the absolute threshold 58 SSBULK nMOS RBB Vg, <0

voltage decreases.
e the subthreshold leakage
current increases. Vth = VthO * V(\/|(_2)¢F + VSB| _\/|2¢F|)

gf the performance increases.

(%
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Forward Body Bias

= In Forward Body Bias (FBB) the width of the bulk depletion layer and the

drain/source depletion regions is reduced. Thus:

e the absolute threshold voltage
decreases. Voo v

e the subthreshold leakage pMOS FBB Vg, <0
current increases.

e the sturation current increases.

¢ the drain/source junction D Q
capacitances increase.

¢ short channel effects (e.g.
DIBL) are decreased.

* the sensitivity to parameter . v nMOS FBB Vi, >0
variations is decreased. Gnd=Vy~ Vseuix ss7]

DDBULK Vv
DD |

= Transistors with high-V,, can be used for leakage current reduction in stand-by
mode while in active high-performance mode FBB reduces V,, and enables
fast operation.

g = The increased performance can be used to lower V,, and reduce dynamic

(s
% power. Low Power Design Techniques | 24




Reverse Body Bias

= In Reverse Body Bias (RBB) the width of the bulk depletion layer and the
drain/source depletion regions is increased. Thus:
e the absolute threshold voltage
increases. Voo (}IDDBULK Vpp —
e the subthreshold leakage
current decreases.
e the sturation current
decreases. D Q
¢ the drain/source junction
capacitances decreases.
e the sensitivity to parameter
variations is increased. P
Gnd=V™ Vssauik

PMOSRBB Vg, >0

VSS T
nMOS RBB  V,, <0

= Transistors with nominal V,;, can be used for high-performance operation while in
stand-by mode RBB increases V,, and reduces static power.
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Variable Threshold Voltage V,;,

Reverse Body Bias — RBB
4.2V @ standby

Substrate (body) voltage adaptation has been owell ! _
proposed, in order to increase the transistor pp_14V @ active
threshold voltage in the idle state. In this state, v
the substrate of the pMOS transistors is biased to PP Logic
higher than V,, voltage levels while the substrate 02V A g
of nMOS transistors is biased to negative voltage p CO‘,I,TM
levels. Circuit
Thus, the weak inversion current is exponentially ] O o by
decreased, according to the pertinent expression, Gnd
since the absolute threshold voltage V,, is
increased.
Moreover, the DIBL current is also decreased. p-well V., 05V @ active
Vo = Voo £V 200, + Vg 28] 33V @standby
Variable threshold voltage — VTCMOS with
t Reverse Body (substrate) Bias — RBB
— _0Xx ’
: v - on quSIN Kuroda et.al., IEEE J. Solid-State Circuits, 31(11), 1996
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Advantages — Disadvantages

Multi-threshold voltages Variable threshold voltages
MTCMOS VTCMOS

Y ity
e
anr
Technique L.:l
I P art g
= Wy
+ Applicability + No stacked MOS (speed)
+ Typical wells + Ippqtesting
+ V,, variation adaptation
. - Stacked MOS transistors
Characteristics - Silicon area cost

- Ippq testing
- Dedicated Flip-Flop design
- No V,,, variation adaptation

- Triple-well technologies are required

- pn-junction leakage current is increased
-Body bias generator is required

- Reduced applicability with technology scaling

180nm — [ Vgs[=500mV = peiwon l,, 4-5x
130nm — [ Vs[=500mV = peiwon ly; 3-3.5x
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The Transistor Stacks Technique

Case of two nMOS transistors connected in series to form a stack.

In general: Vih = Viho ~MVps —8Vgs

where m the DIBL coefficient and gV a linear approximation of the
body effect.

For M, it stands that V=0 while no body effect exists (Vg5 =0).

Moreover, Vpg=V;.and V,,,<Vpp. Thus, the DIBL current is reduced

It stands that: | g, =l

Low Power Design Techniques |

X int int
and the | g is: v, D e
= =gnd— i =loe ™ [1-e VT
For M, it stands that Vg ,=-V,,, while reverse body bias exists (Vgq,=-V,,). Moreover,
Vpsu=Vpp—Vine>0. Thus, the |  is:
~Vine =Vio *+1(Vop ~Vigy )+8Vine (Voo ~Vint)
lotru =o€ ™ l1-e "
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