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Similarity and Distance

• For many different problems we need to quantify how close two objects
are.

• Examples:
• For an item bought by a customer, find other similar items

• Group together the customers of a site so that similar customers are shown the 
same ad.

• Group together web documents so that you can separate the ones that talk about 
politics and the ones that talk about sports.

• Find all the near-duplicate mirrored web documents.

• Find credit card transactions that are very different from previous transactions.

• To solve these problems, we need a definition of similarity, or distance.
• The definition depends on the type of data that we have



Similarity

• Numerical measure of how alike two data objects are.

• A function that maps pairs of objects to real values

• Higher when objects are more alike.

• Often falls in the range [0,1], sometimes in [-1,1]

• Desirable properties for similarity

1. 𝑠(𝑝, 𝑞) = 1 (or maximum similarity) only if 𝑝 = 𝑞.  (Identity)

2. 𝑠(𝑝, 𝑞) = 𝑠(𝑞, 𝑝) for all 𝑝 and 𝑞. (Symmetry)



Similarity between sets

• Consider the following documents

• Which ones are more similar?

• How would you quantify their similarity?

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe



Similarity: Intersection

• Number of words in common

• Sim(D,D) = 3, Sim(D,D) = Sim(D,D)  =2

• What about this document?

• Sim(D,D) = Sim(D,D) = 3

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe

Akis releases new book 

with apple pie recipes
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Jaccard Similarity

• The Jaccard similarity (Jaccard coefficient) of two sets 𝑆1, 𝑆2 is the size of 
their intersection divided by the size of their union.

𝐽𝑆𝑖𝑚 𝑆1, 𝑆2 =
𝑆1𝑆2

𝑆1𝑆2

• Extreme behavior:
• 𝐽𝑆𝑖𝑚(𝑋, 𝑌)  =  1, iff 𝑋 =  𝑌
• 𝐽𝑆𝑖𝑚(𝑋, 𝑌)  =  0 iff 𝑋, 𝑌 have no elements in common

• 𝐽𝑆𝑖𝑚 is symmetric

3 in intersection.

8 in union.

Jaccard similarity = 3/8

Probabilistic 

interpretation:

The Jaccard similarity 

of two sets is the 

probability that a 

randomly selected 

element from the union 

is in the intersection



Jaccard Similarity between sets

• The distance for the documents

• JSim(D,D) = 3/5 

• JSim(D,D) = JSim(D,D)  = 2/6

• JSim(D,D) = JSim(D,D)  = 3/9

apple 

releases 

new ipod

apple 

releases 

new ipad

new 

apple pie 

recipe

Akis releases 

new book with 

apple pie 

recipes



Similarity between vectors

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

Documents (and sets in general) can also be represented as vectors

How do we measure the similarity of two vectors?

• We could view them as sets of words. Jaccard Similarity will show that 

D4 is different form the rest

• But all pairs of the other three documents are equally similar

We want to capture how well the two vectors are aligned



Example

Documents D1, D2 are in the “same direction”

Document D3 is on the same plane as D1, D2

Document D4 is orthogonal to the rest

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

apple

microsoft

{Obama, election}



Example

Documents D1, D2 are in the “same direction”

Document D3 is on the same plane as D1, D2

Document D4 is orthogonal to the rest

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

apple

microsoft

{Obama, election}



Cosine Similarity

• 𝑆𝑖𝑚(𝑋, 𝑌)  =  cos(𝑋, 𝑌)

• The cosine of the angle between X and Y

• If the vectors are aligned (correlated) angle is zero degrees and 
cos(𝑋, 𝑌) = 1

• If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cos(𝑋, 𝑌)  =  0

• Cosine is commonly used for comparing documents, where we assume 
that the vectors are normalized by the document length, or words are 
weighted by tf-idf.

• It is the most commonly used similarity metric for vectors



Cosine Similarity – Math 

• If 𝑥 and 𝑦 are two vectors, then

cos 𝑥, 𝑦 =
𝑥 ⋅ 𝑦

𝑥 𝑦

where 𝑥 ⋅ 𝑦 = σ𝑖=1
𝑛 𝑥𝑖𝑦𝑖 is the dot product of 𝑥 and 𝑦

Example:

𝑥 = 3 2 0 5 0 0 2 0 0 
𝑦 = 1 0 0 0 0 0 1 0 2

𝑥 ⋅ 𝑦 = 3 ⋅ 1 + 2 ⋅ 0 + 0 ⋅ 0 + 5 ⋅ 0 + 0 ⋅ 0 + 0 ⋅ 0 + 2 ⋅ 1 + 0 ⋅ 0 + 0 ⋅ 0 = 12

𝑥 = 32 + 22 + 02 + 52 + 02 + 02 + 22 + 02 + 02 = 42 = 6.481

𝑦 = 12 + 02 + 02 + 02 + 02 + 02 + 12 + 02 + 22 = 6 = 2.245
cos 𝑥, 𝑦 = 0.315 

Note: We only need to 

consider the non-zero 

entries of the vectors

What if we have 0/1 vectors?



Example

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 30 60 0 0

D3 60 30 0 0

D4 0 0 10 20

apple

microsoft

{Obama, election}

Cos(D1,D2) = 1

Cos (D3,D1) = Cos(D3,D2) = 4/5

Cos(D4,D1) = Cos(D4,D2) = Cos(D4,D3) = 0



Correlation Coefficient

• The correlation coefficient measures correlation between two random 
variables.

• If we have observations (vectors) 𝑋 = (𝑥1, … , 𝑥𝑛) and 𝑌 = (𝑦1, … , 𝑦𝑛) is 
defined as

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
σ𝑖(𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)

σ𝑖 𝑥𝑖 − 𝜇𝑋
2 σ𝑖 𝑦𝑖 − 𝜇𝑌

2

• This is essentially the cosine similarity between the centered vectors 
(where from each entry we remove the mean value of the vector.

• The correlation coefficient takes values in [-1,1] 
• -1 negative correlation, +1 positive correlation, 0 no correlation. 

• We can use correlation coefficient as a similarity measure. Negative 
values indicate opposite vectors.



Correlation Coefficient

document Apple Microsoft Obama Election

D1 -5 +5 0 0

D2 -15 +15 0 0

D3 +15 -15 0 0

D4 0 0 -5 +5

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
σ𝑖(𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)

σ𝑖 𝑥𝑖 − 𝜇𝑋
2 σ𝑖 𝑦𝑖 − 𝜇𝑌

2

Normalized vectors

CorrCoeff(D1,D2) = 1

CorrCoeff(D1,D3) = CorrCoeff(D2,D3) = -1

CorrCoeff(D1,D4) = CorrCoeff(D2,D4) = CorrCoeff(D3,D4) = 0



Distance

• Numerical measure of how different two data objects are

• A function that maps pairs of objects to real values

• Lower when objects are more alike

• Higher when two objects are different

• Minimum distance is 0, when comparing an object with itself.

• Upper limit varies



Distance Metric

• A distance function d  is a distance metric if it is a function from 

pairs of objects to real numbers such that:

1. 𝑑 𝑥, 𝑦 ≥ 0. (non-negativity)

2. 𝑑(𝑥, 𝑦)  =  0 iff 𝑥 =  𝑦. (identity)

3. 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥). (symmetry)

4. 𝑑 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑧)  +  𝑑(𝑧, 𝑦) (triangle inequality ).



Triangle Inequality

• Triangle inequality guarantees that the distance function is well-

behaved.

• The direct connection is the shortest distance

• It is useful also for proving useful properties about the data.



Example

• We have a set of objects 𝑋 = {𝑥1, … , 𝑥𝑛} of a universe 𝑈 (e.g., 𝑈 =  ℝ𝑑), 

and a distance function 𝑑 that is a metric.

• We want to find the object 𝑧 ∈ 𝑈 that minimizes the sum of distances 
σ𝑥∈𝑋 𝑑 𝑥, 𝑧  from the objects in 𝑋. 

• For some distance metrics this is easy, for some it is an NP-hard problem.

• It is easy to find the object 𝑥∗ ∈ 𝑋 that minimizes the sum of distances 

from all the objects in 𝑋 (simply examine each point)

• But how good is this? We can prove that 



𝑥∈𝑋

𝑑(𝑥, 𝑥∗) ≤ 2 

𝑥∈𝑋

𝑑 𝑥, 𝑧

• We are a factor 2 away from the best solution.



Distances for real vectors

• Vectors 𝑥 = 𝑥1, … , 𝑥𝑑  and 𝑦 = (𝑦1, … , 𝑦𝑑)

• 𝑳𝒑-norms or Minkowski distance:

𝐿𝑝 𝑥, 𝑦 = 𝑥1 − 𝑦1
𝑝 + ⋯ + 𝑥𝑑  − 𝑦𝑑

𝑝 ൗ1
𝑝

• 𝑳𝟐-norm: Euclidean distance:

𝐿2 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 +  ⋯ + 𝑥𝑑 − 𝑦𝑑

2

• 𝑳𝟏-norm: Manhattan distance:

𝐿1 𝑥, 𝑦 = 𝑥1 − 𝑦1 +  ⋯ + |𝑥𝑑 − 𝑦𝑑|

• 𝑳∞-norm: 

𝐿∞ 𝑥, 𝑦 = max 𝑥1 − 𝑦1 , … , |𝑥𝑑 − 𝑦𝑑|
• The limit of 𝑳𝒑 as p goes to infinity.

Lp norms are known to be distance metrics
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Example of Distances

x = (5,5)

y = (9,8)
𝐿2-norm:

𝑑𝑖𝑠𝑡(𝑥, 𝑦)  = 42 + 32 =  5

𝐿1-norm:

𝑑𝑖𝑠𝑡(𝑥, 𝑦)  = 4 + 3 =  74

35

𝐿∞-norm:

𝑑𝑖𝑠𝑡(𝑥, 𝑦)  = max 3,4 =  4



Example

𝑥 =  (𝑥1, … , 𝑥𝑛)

r

Green: All points y at distance 𝐿1(𝑥, 𝑦)  =  𝑟 from point 𝑥

Blue: All points y at distance 𝐿2(𝑥, 𝑦)  =  𝑟 from point 𝑥

Red: All points y at distance 𝐿∞(𝑥, 𝑦)  =  𝑟 from point 𝑥



𝐿𝑝 distances for sets 

• We can apply all the 𝐿𝑝 distances to the cases of sets of attributes, 

with or without counts, if we represent the sets as vectors

• E.g., a transaction is a 0/1 vector

• E.g., a document is a vector of counts.



Similarities into distances

• Jaccard distance: 

𝐽𝐷𝑖𝑠𝑡(𝑋, 𝑌)  =  1 –  𝐽𝑆𝑖𝑚(𝑋, 𝑌)

• Jaccard Distance is a metric

• Cosine distance:

𝐶𝐷𝑖𝑠𝑡(𝑋, 𝑌)  =  1 − cos(𝑋, 𝑌)

• Cosine distance is a metric
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Hamming Distance

• Hamming distance  is the number of positions in which bit-vectors differ.
• Example: 

• p1 = 10101

• p2 = 10011.

•  𝑑(𝑝1, 𝑝2)  =  2 because the bit-vectors differ in the 3rd and 4th positions.

• The L1 norm for the binary vectors

• Hamming distance between two vectors of categorical attributes is the 
number of positions in which they differ.
• Example: 

• x = (married, low income, cheat) 

• y = (single,    low income, not cheat)

• 𝑑(𝑥, 𝑦)  =  2
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Why Hamming Distance Is a Distance Metric

• d(x,x) = 0 since no positions differ.

• d(x,y) = d(y,x) by symmetry of “different from.”

• d(x,y) > 0 since strings cannot differ in a negative number of 

positions.

• Triangle inequality: changing x  to z and then to y  is one way to 

change x  to y.

• For binary vectors if follows from the fact that L1 norm is a metric



Distance between strings

• How do we define similarity between strings?

• Important for recognizing and correcting typing errors and 

analyzing DNA sequences.

weird wierd

intelligent unintelligent

Athena Athina
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Edit Distance for strings

• The edit distance  of two strings is the number of inserts and 

deletes of characters needed to turn one into the other. 

• Example: x = abcde ; y = bcduve.

• Turn x  into y  by deleting a, then inserting u  and v  after d.

• Edit distance = 3.

•  Minimum number of operations can be computed using 

dynamic programming

• Common distance measure for comparing DNA sequences
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Why Edit Distance Is a Distance Metric

• d(x,x) = 0 because 0 edits suffice.

• d(x,y) = d(y,x) because insert/delete are inverses of each other.

• d(x,y) > 0: no notion of negative edits.

• Triangle inequality: changing x  to z and then to y  is one way to 

change x  to y. The minimum is no more than that
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Variant Edit Distances

• Allow insert, delete, and mutate.

• Change one character into another.

• Minimum number of inserts, deletes, and mutates also forms a 

distance measure.

• Same for any set of operations on strings.

• Example: substring reversal or block transposition is used for DNA 

sequences

• Example: character transposition is used for spelling



Distance between sets of points

How do we measure the distance between the two sets?



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
𝑥∈𝑅𝑒𝑑 

𝑑(𝑥, 𝐵𝑙𝑢𝑒)



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
𝑥∈𝑅𝑒𝑑 

𝑑(𝑥, 𝐵𝑙𝑢𝑒)

• Compute the 𝑑 𝐵𝑙𝑢𝑒, 𝑅𝑒𝑑



Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Maximum distance over all pairs

Average distance over all pairs

Distance between averages

Hausdorff distance: 

• For each red point 𝑥 compute the distance to the closest Blue point: 𝑑 𝑥, 𝐵𝑙𝑢𝑒 = min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)

• Find the maximum: this is the distance from Red to Blue: 𝑑 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max
𝑥∈𝑅𝑒𝑑 

𝑑(𝑥, 𝐵𝑙𝑢𝑒)

• Compute the 𝑑 𝐵𝑙𝑢𝑒, 𝑅𝑒𝑑
• Take the maximum of the two

𝑑𝐻 𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒 = max max
𝑥∈𝑅𝑒𝑑 

min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦) , max
𝑥∈𝑅𝑒𝑑 

min
𝑦∈𝐵𝑙𝑢𝑒

𝑑(𝑥, 𝑦)



Distances between distributions

• Sometimes data can be represented as a distribution (e.g., a 

document is a distribution over the words)

• How do we measure distance between distributions?

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3



Variational distance

• Variational distance: The 𝐿1 distance between the distribution vectors

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Apple Microsoft Obama Election

D1 D2 D3

Dist(D1,D2) = 0.05+0.1+0.05 = 0.2

Dist(D2,D3) = 0.35+0.35+0.5+ 0.2  = 1.4

Dist(D1,D3) = 0.3+0.45+0.5+ 0.25  = 1.5



Information theoretic distances

• KL-divergence (Kullback-Leibler) for distributions P,Q

𝐷𝐾𝐿 𝑃ԡ𝑄 = 

𝑥

𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)

• KL-divergence is asymmetric. We can make it symmetric by taking the 
average of both sides

1

2
𝐷𝐾𝐿 𝑃ԡ𝑄  + 𝐷𝐾𝐿 𝑄ԡ𝑃

• JS-divergence (Jensen-Shannon) 

                       𝐽𝑆 𝑃, 𝑄 =
1

2
𝐷𝐾𝐿 𝑃ԡ𝑀  + 

1

2
𝐷𝐾𝐿 𝑄ԡ𝑀

𝑀 =
1

2
(𝑃 + 𝑄)

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D3 0.05 0.05 0.6 0.3

Average distribution



Ranking distances

• The input in this case is two rankings/orderings of the same 𝑛 
items. For example:

𝑅1 = 𝑥, 𝑦, 𝑧, 𝑤
𝑅2 = 𝑦, 𝑤, 𝑧, 𝑥

• How do we define distance in this case?

• Kendal’s tau: Number of pairs of items that are in different order:
𝑥, 𝑦 , 𝑥, 𝑧 , 𝑥, 𝑤 , (𝑧, 𝑤) = 4

• Defines a metric. 

• Maximum: 
𝑛 𝑛−1

2
 when rankings are reversed.

• Spearman rank distance: 𝐿1distance between the ranks

• 𝑆𝑅 𝑅1, 𝑅2 = 1 − 4 + 2 − 1 + 3 − 3 + 4 − 2 = 6

x y z w

𝑅1 1 2 3 4

𝑅2 4 1 3 2



Why is similarity important? 

• We saw many definitions of similarity and distance

• How do we make use of similarity in practice?

• What issues do we have to deal with?



APPLICATIONS OF SIMILARITY:

RECOMMENDATION SYSTEMS



An important problem

• Recommendation systems
• When a user buys an item (initially books) we want to recommend other 

items that the user may like

• When a user rates a movie, we want to recommend movies that the user 
may like

• When a user likes a song, we want to recommend other songs that they 
may like

• A big success story for data mining

• Exploits the long tail
• How Into Thin Air made Touching the Void popular



The Long Tail

Source: Chris Anderson (2004)

http://www.wired.com/wired/archive/12.10/tail.html


Utility (Preference) Matrix 

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

How can we fill the empty entries of the matrix?

Rows: Users

Columns: Movies (in general Items)

Values: The rating of the user for the movie



Recommendation Systems

• Content-based:

• Represent the items into a feature space and 

• Recommend items to customer C similar to previous items rated highly by C

• Examples

• Movie recommendations: 

• recommend movies with same actor(s), director, genre, …

• Documents: websites, blogs, news: 

• recommend other documents with “similar” content



Content-based prediction

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Someone who likes one of the Harry Potter (or Star Wars) 

movies is likely to like the rest

• Same actors, similar story, same genre



Intuition

likes

Item profiles

Red

Circles

Triangles

User profile

match

recommend
build



Approach

• Map items into a feature space:
• For movies:

• Actors, directors, genre, rating, year,…

• Challenge: make all features compatible.

• For documents?

• Current approaches use different types of embeddings.

• To compare items with users we need to map users to the same feature 
space. How?
• Take all the movies that the user has seen and take the average vector

• Other aggregation functions are also possible.

• Recommend to user C the most similar item i computing similarity in the 
common feature space
• Distributional distance measures also work well. 



Limitations of content-based approach

• Finding the appropriate features

• e.g., images, movies, music

• Embeddings and deep learning can help

• Overspecialization

• Never recommends items outside user’s content profile

• People might have multiple interests

• Recommendations for new users: cold-start problem

• How to build a profile?



Collaborative filtering

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Two users are similar if they rate the same items in a similar way

Recommend to user C, the items liked by many of the most 

similar users.



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Which pair of users do you consider as the most similar?

What is the right definition of similarity?



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 1 1 1

B 1 1 1

C 1 1 1

D 1 1

Jaccard Similarity: users are sets of movies

Disregards the ratings.

𝐽𝑠𝑖𝑚(𝐴, 𝐵)  =  1/5 
𝐽𝑠𝑖𝑚(𝐴, 𝐶)  =  1/2
𝐽𝑠𝑖𝑚(𝐵, 𝐷)  =  1/4 



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Cosine Similarity:

Assumes zero entries are negatives, non-zeros are positive:

𝐶𝑜𝑠(𝐴, 𝐵)  =  0.38
𝐶𝑜𝑠(𝐴, 𝐶)  =  0.32



User Similarity

Harry 

Potter 1

Harry 

Potter 2

Harry 

Potter 3

Twilight Star 

Wars 1

Star 

Wars 2

Star 

Wars 3

A 2/3 5/3 -7/3

B 1/3 1/3 -2/3

C -5/3 1/3 4/3

D 0 0

Normalized Cosine Similarity: 

• Subtract the mean rating per user (without the zeros) 

and then compute Cosine (correlation coefficient)

𝐶𝑜𝑟𝑟(𝐴, 𝐵)  =  0.0920
𝐶𝑜𝑟𝑟(𝐴, 𝐶)  =  −0.559



User-based Collaborative Filtering

• To estimate the rating for a user-item pair (𝑢, 𝑖):

• Find the set 𝑇𝑜𝑝𝐾𝑖(𝑢) of the 𝐾 most similar users to 𝑢 who have 

rated item 𝑖. 

• Estimate 𝑢’s ratings for item 𝑖, by aggregating the ratings of 

users in 𝑇𝑜𝑝𝐾 :

ෞ𝑟𝑢𝑖 =
1

𝑍


𝑣∈𝑇𝑜𝑝𝐾𝑖(𝑢)

sim 𝑢, 𝑣 𝑟𝑣𝑖  

𝑍 = 

𝑣∈𝑇𝑜𝑝𝐾𝑖(𝑢)

sim(𝑢, 𝑣)



User-based Collaborative Filtering

• To account for the fact that different users have different 

rating styles, we usually model deviations:

ෞ𝑟𝑢𝑖 = 𝑟𝑢 +
1
𝑍



𝑣∈𝑇𝑜𝑝𝐾𝑖(𝑢)

sim 𝑢, 𝑣 ( 𝑟𝑣𝑖−ഥ𝑟𝑣)

Deviation from the 

mean for 𝑣

Mean rating of 𝑢

Weighted mean deviation of the similar users

Note: Similarity can be computed with or without centering (subtracting the mean)



Item-based Collaborative Filtering

• There is a duality in the use of the preference matrix. In the 

same way we define user similarity (rows), we can also 

define item similarity (columns)

• Intuition: Two items are similar if they are rated in the same way by 

many users. 

• Better defined similarity since it captures the notion of genre of an 

item: Items rated by the same users define a genre

• Better since items usually (but not always) have a single genre, while 

users may have multiple interests.



Item-based Collaborative Filtering

• To estimate the rating for a user-item pair (𝑢,𝑖):

• Find the set 𝑇𝑜𝑝𝐾𝑢(𝑖) of most similar items to item 𝑖 that have been 

rated by user 𝑢.

• Aggregate their ratings to predict the rating for item 𝑖. 

ෞ𝑟𝑢𝑖 =
1

𝑍


𝑗∈𝑇𝑜𝑝𝐾𝑢(𝑖)

sim(𝑖, 𝑗)𝑟𝑢𝑗  

𝑍 = 

𝑗∈𝑇𝑜𝑝𝐾𝑢(𝑖)

sim(𝑖, 𝑗)



Item-based Collaborative Filtering

• Again, we want to model deviations in rating behavior.

• Approach 1: Do exactly the same as for users.

• Normalize the columns and compute Pearson correlation.

ෞ𝑟𝑢𝑖 = ഥ𝑟𝑖 +
1

𝑍


𝑗∈𝑇𝑜𝑝𝐾𝑢(𝑖)

sim 𝑖, 𝑗 (𝑟𝑢𝑗− ഥ𝑟𝑗) 

Assumes that different items are rated differently

• Approach 2: Normalize again the rows of the matrix

ෞ𝑟𝑢𝑖 = ഥ𝑟𝑢 +
1

𝑍


𝑗∈𝑇𝑜𝑝𝐾𝑢(𝑖)

sim 𝑖, 𝑗 (𝑟𝑢𝑗− ҧ𝑟𝑢)

• Note that we add to the mean rating of the user 



Implementation details

• When removing the mean rating make sure to take into account only the 
rated (non-zero) entries

• What if we cannot find 𝑘 similar users/items?
• Use as many as you can find

• For efficiency, when looking for the 𝑘 most similar users (items) we can 
take the 𝑘 most similar users (items) regardless if they have rated the 
item 𝑖
• We assume missing ratings are zero.

• More efficient but not a good idea.

• Pearson correlation can be negative, which complicates the formula and 
the normalization
• We usually assume that the 𝑘 most similar entries do not have negative similarities

• If we have negative similarities, we should take absolute values when computing 
normalizing factor 𝑍



Pros and cons of collaborative filtering

• Works for any kind of items

• No feature selection needed

• Cold-start problem: New user, or new item 

• Sparsity of rating matrix

• Cluster-based smoothing?



Evaluation

• Split the data into train and test set (e.g., 80%,20%)
• The train set will be used to estimate the similarities or the user and item 

profiles

• The test will be used to evaluate the accuracy of the predictions

• Data usually means the ratings 𝑟 𝑢, 𝑖
• We randomly hide 20% (or more, or less) of the ratings and we try to predict 

them

• We could do the split in different ways
• E.g. randomly select a subset of users to predict for (and delete more ratings)

• Split based on time of the ratings: Keep all the ratings up to a certain time, and 
predict the ones in a later time



Evaluation

• Metrics: how do we evaluate the prediction?

• Evaluate our ability to predict the numeric rating of the item

• The output of the algorithm is a numeric value for each item

• Root Mean Square Error (RMSE) : 

𝑅𝑀𝑆𝐸 =
1

𝑛


𝑖,𝑗

ෞ𝑟𝑖𝑗 − 𝑟𝑖𝑗
2



Evaluation

• Evaluate our ability to predict binary (action/no action) event: 

• The output of the algorithm is also a yes/no value

• Precision/Recall :

• Precision = fraction of predicted positive actions that were correct

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

• Recall = fraction of positive actions that were predicted correctly

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑡𝑒𝑚𝑠



Evaluation

• Evaluate our ability to rank the items correctly: 

• The output of the algorithm is a ranking of the items, we want the most relevant items to be ranked higher

• Precision/Recall @ k [binary data]:

• Look at the top-k recommendations and compute the precision and recall

• Example:

• Suppose I have 8 items: A,B,C,D,E,F,G,H the first four are relevant the last four are irrelevant

• Consider Rankings R1 and R2

• Precison@3 =2/3, Recall@3 = 2/4

• However ranking R1 is clearly better than R2

• Average Precision @ k (AP@k)

1

𝑘


𝑖=1

𝑘

𝛿 𝑖 is relevant 𝑃𝑟𝑒𝑐@𝑖

• R1: AP@3 = 1/3 (1+1) = 2/3 

• R2: AP@3 = 1/3 (1/2+2/3) = 5/18

rank R1 R2

1 A F

2 C A

3 F D

4 B G

5 E C

6 G B

7 D E

8 H H



Evaluation – NDCG@K
• Binary Data

𝑁𝐷𝐶𝐺@𝐾 =
1

𝑍


𝑖=1

𝑘 𝛿 item 𝑖 is relevant

log(𝑖 + 1)
, Z =  

𝑖=1

𝑘 1

log(𝑖 + 1)

• Example:

• For both rankings 𝑍 =
1

log 2 
+

1

log 3 
+

1

log 4 

• R1: NDCG@3 = 
1

Z

1

log 2
 +

1

log 3 

• R2: NDCG@3 = 
1

Z

1

log 3
 +

1

log 4 

• Rated Data

𝑁𝐷𝐶𝐺@𝐾 =
1

𝑍


𝑖=1

𝑘 exp 𝑟𝑖 − 1

log(𝑖 + 1)

Z =  
𝑖=1

𝑘 exp 𝑟𝑖
∗ − 1

log(𝑖 + 1)
,
𝑟𝑖 = 𝑡𝑟𝑢𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑖𝑡ℎ𝑖𝑡𝑒𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑘𝑖𝑛𝑔

𝑟𝑖
∗ = 𝑡𝑟𝑢𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑖𝑡ℎ𝑏𝑒𝑠𝑡 𝑖𝑡𝑒𝑚 

• Example:
• Assume the ratings of the items shown

• For both rankings 𝑍 =
exp 5 −1

log 2 
+

exp 4 −1

log 3 
+

exp 3 −1

log 4 

• R1: NDCG@3 = 
1

Z

exp 5 −1

log 2
 +

exp 3 −1

log 3 

• R2: NDCG@3 = 
1

Z

exp 5 −1

log 3
 +

exp 2 −1

log 4 

rank R1 R2 Best rating

1 A F A 5

2 C A B 4

3 F D C 3

4 B G D 2

5 E C E 1

6 G B F 0

7 D E G 0

8 H H H 0



Evaluation: AUC – Area Under the ROC Curve

• The ROC curve considers every position of the 
ranking and plots the relevant percentage (true 
positive rate) against the non-relevant percentage 
(false positive rate)

• It then takes the area under the plotted curve

• It computes the fraction of (relevant, non-relevant) 
pairs where the relevant item is ranked higher than 
the non-relevant item.

• Example:
• Suppose I have 8 items: A,B,C,D,E,F,G,H the first four are 

relevant the last four are irrelevant
• 16 pairs of (relevant, non-relevant) pairs

• The recommender orders them in the following order: 
A,B,E,F,C,G,D,H

TPR FPR

1 A
1

4
0

2 B
2

4
0

3 E
2

4

1

4

4 F
2

4

2

4

5 C
3

4

2

4

6 G
3

4

3

4

7 D
4

4

3

4

8 H
4

4

4

4

2

4

3

4

4

4

1

4

1

4

2

4

3

4

4

4

TRP = True Positive Rate

The fraction of the relevant items 

found so far

FRP = False Positive Rate

The fraction of the non-relevant 

items found so far
AUC = 

1

16
2 × 2 + 3 × 1 + 4 × 1



The Netflix Challenge

• 1M prize to improve the prediction accuracy by 10%
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