DATA MINING
DIMENSIONALITY REDUCTION

SVD - PCA
Model-based recommendation systems

(Thanks to Jure Leskovec, Evimaria Terzi)



The curse of dimensionality

Real data usually have thousands, or millions of dimensions
- E.g., web documents, where the dimensionality is the vocabulary of words
- Facebook graph, where the dimensionality is the number of users

Huge number of dimensions causes problems

- Data becomes very sparse, some algorithms become meaningless (e.g.,
density-based clustering)

- The complexity of several algorithms depends on the dimensionality, and
they become infeasible (e.g., nearest neighbor search).



Dimensionality Reduction

- Usually, the data can be described with fewer dimensions, without
losing much of the information in the data.

- The data reside in a space of lower dimensionality
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In this data matrix the dimension is essentially 3

- There are three types of products and three types of users
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Example
- Cloud of points 3D space: N e STRASE 1
- Think of point positions Ne& pondipop i Gong® o0
as a matrix: L2 1A
2 -3 1|B
Trowperpoint: | 3 5 0|C

-We can rewrite coordinates more efficiently!

- Old basis vectors: [100][01 0] [00 1]

- New basis vectors: [1 2 1] [-2 -3 1]

- Then A has new coordinates: [1 0]. B: [0 1], C: [1 -1]
- Notice: We reduced the number of coordinates!



Dimensionality Reduction

Find the “true dimension” of the data

- In reality, things are never as clear and simple as in this example, but we
can still reduce the dimension.

Essentially, we assume that some of the data is useful signal, and
some data is noise, and that we can approximate the useful part
with a lower dimensionality space.

- Dimensionality reduction does not just reduce the amount of data, it often
brings out the useful part of the data
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Dimensionality Reduction

Rather than representing every point with 2 coordinates we
represent each point with 1 coordinate (corresponding to
the position of the point on the red line).

By doing this we incur a bit of error as the points do not
exactly lie on the line

We assume that the line has the useful information, while the
errors are noise

{d=1

- Goal of dimensionality reduction is to discover the axis of data!
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Why Reduce Dimensions?

- Discover hidden correlations/topics
- E.g., In documents, words that occur commonly together

- Remove redundant and noisy features
- E.g., iIn documents, not all words are useful

- Interpretation and visualization
- Easier storage and processing of the data




Data in the form of a matrix

We are given n objects and d attributes describing the objects.
Each object has d numeric values describing it.

We will represent the data as a n X d real matrix A.
- We can now use tools from linear algebra to process the data matrix

Our goal is to produce a new n X k matrix B such that
- It preserves as much of the information in the original matrix A as possible
- It reveals something about the structure of the data in A



Example: Document matrices

d terms
(e.g., theorem, proof, etc.)

(

A

n documents

= frequency of the |-th
\ term in the I-th document

Find subsets of terms that bring documents
together



Example: Recommendation systems

d movies

n customers A

Aj; = rating of |-th
product by the i-th
\ customer /

Find subsets of movies that capture the
behavior or the customers



Linear algebra

- We assume that vectors are column vectors.
- We use v! for the transpose of vector v (row vector)

- Dot product: u"v (I1xn,nx1 - 1x1)
- The dot product is the projection of vector v on u (and of u on v)

4
[1,2,3] [1‘ =12
2

- uTv = ||v||||ul]l cos(u, v)

- If ||lu]|] = 1 (unit vector) then uTv is the projection length of v on u
- If ||ul| = llvll = 1then uTv is the cosine similarity of v and u

4
- [-1, 2, 3] [_1] = 0 : orthogonal vectors
2

- Orthonormal vectors: two unit vectors that are orthogonal

v



Matrices

- An nxm matrix A is a collection of n row vectors and m column vectors

| —_
as A
| _

a;

A

- Matrix-vector multiplication

- Right multiplication Au:
- projection of u onto the row vectors of 4,
- projection of row vectors of A onto u.

. Left-multiplication u” A:

- projection of u onto the column vectors of A4,

« projection of column vectors of A onto u
- Example:

-

a1 az

a3

alu
azu

= [uTay, ua,, ulas]



Change of basis

- By default, a vector is expressed in the axis-aligned basis.
- For example, for vector [-1,2] we have:

[ ]= 2ol +2[i]

- With a projection we can change the basis over which the vector is
expressed.

V2 A2 3/2

2 2 [—1] 2
V2o 2]l 2 V2
L 2 2. L2

The rows of the matrix are the new basis vectors



-
Row and Column space

Row space of A: The set of vectors that can be written as a linear
combination of the rows of A

- All vectors of the form v = u’ 4

- the coordinates of u are the co ffICIen'[S/(L the line

aiqg ... Aq;

azq Ay
Uy o Uy o Uy

aTll anl

Column space of A: The set of vectors that can be written as a linear
combination of the columns of A

- All vectors of the form v = Au.

- the coordinates of u are the coefficients of the linear combination



e
Rank

Rank of A: the number of linearly independent row (or column)
vectors

- These vectors define a basis for the row (or column) space of A
All vectors in the row (column) space are linear combinations of the basis vectors

Example

1 2 1
Matrix A =|—-2 -3 1| hasrankr =2
3 5 0

- Why? The first two rows are linearly independent, so the rank is at least 2, but
all three rows are linearly dependent (the first is equal to the sum of the
second and third) so the rank must be less than 3.



Rank-1 matrices

- In a rank-1 matrix, all columns (or rows) are multiples of the same
column (or row) vector

1 2 -1
A= 12 4 =2
3 6 —3.
- All rows are multiples of v =[1,2, —1]
-

- All columns are multiples of ¢ = |2
|3




Rank-1 matrices

- Arank-1 matrix is the result of the outer product of two vectors
- Outer product: uv! (nx1,1xm - nxm)

_'Ll;l_ —,Llll,']1 see ulvj cee ulvm_
cuvT = [|v V) V| = wvy 0 WY oy,
U, u,v; 7 UnVi t u, vy,

- The resulting nxm matrix has rank 1: all rows (or columns) are
linearly dependent
1 2 -1 1
2 4 =2|,c= ]2

A =cr?
3 6 -3 3

A= 1TT=[1;21_1]




Eigenvectors

- (Right) Eigenvector of matrix A: a vector v such that Av = Av
- A: eigenvalue of eigenvector v
- A symmetric matrix A of rank r, has r orthonormal eigenvectors w4, u,, ..., u,- with eigenvalues
A, Ay, e, Ase.
- Eigenvectors define an orthonormal basis for the column and row spaces of A

- We can write:

U=|us u; Uy
. |
A=UANUT 0
A= luul + Luul + -+ A uul ' 0
A= ?
0 2,
- Any vector Ax (resp xT A) can be written as a linear combination of the vectors ul,uz, ey Uy

(resp. ul,ul, .., ul)
« Ax = Luqulx + Luulx + -+ Lu,ulx = Alalul + Lauy + -+ AL u, ap = u X
e xTA = xThuul + x"huul + -+ xThuwul =2ul + ,ul + -+ 4. 8,uf, B = xTy,



SINGULAR VALUE
DECOMPOSITION (SVD)




e
Singular Value Decomposition (SVD)

A=U 3 VT = [uguy - u)| %2 V2

] =[nxr] [rx0] D | P

r: rank of matrix A

- 04,2 0, = - = 0,. SIngular values of matrix A

° Uq, Uy, ..., U, left singular vectors of A
- V1, V9, ..., Uyl fight singular vectors of A

A = oqu vl + opuyvl + -+ opu, vl



Singular Value Decomposition

- The left singular vectors U are an orthonormal basis for the column space

of A.
- The right singular vectors V are an orthonormal basis for the row space of

A.
- If A has rank r, then A can be written as the sum of r rank-1 matrices

- There are r “linear components/trends” (axes) in A.
- Linear component: vector v along which the row vectors of A tend to be aligned

- Strength of the i-th linear trend: ||Av;|| = |o;|

- Property of SVD:
v; = arg max |Av||
v:||v||=1




.
Symmetric matrices
- Special case: A Is symmelric positive definite matrix

A= Auud + Luul + -+ Lu,ul

Ay =1, =+ =1, = 0: Elgenvalues of A are also the singular
values

“ U4, Us, ..., U,.. Elgenvectors of A are also the left and right singular
vectors



Singular Values and Eigenvalues

Singular Value Decomposition
A=UzV?!

The left singular vectors of A are also the eigenvectors of the
(symmetric) matrix AA"

AAT = UzcUT
The right singular vectors of A are also the eigenvectors of the
(symmetric) matrix A’ A

ATA =vz2y?
The singular values of matrix A are also the square roots of
eigenvalues of AA" and A" A

2;(ATA) = 2;(AAT) = of



-
SVD properties

Singular Value Decomposition has three useful properties that we
will study now:

- It provides the important (principal) directions (dimensions) in the data —
Principal Component Analysis

- It provides the best low rank approximation for our matrix

- It minimizes the reconstruction error (squared distance between real data
points and their estimates)



PRINCIPAL COMPONENT ANALYSIS
(PCA)




Principal Component Analysis

- Goal: reduce the dimensionality while preserving the “information
in the data”.

- In the new space we want to:
- Maximize the amount of information

- Minimize redundancy — remove the redundant dimensions
- Minimize the noise In the data.



e
Variability

- Information in the data: variability in the data
- We measure variability using the covariance matrix.
- Sample variance for variable X:

1 1
0% = _Z(xi —ux)(x; — px) = — (0 — ux) " (x — py)
NZL N
l
- Sample covariance of variables X and Y

1 1
0)%1/ = NE(XL' — Ux) (Vi — Uy) = N(x — ﬂX)T(y — Uy)

- High variance g means high information in dimension (attribute) X

2
Gsignal

- We want to maximize the signal-to-noise ratio =

Onoise

- High co-variance o, means high correlation between attributes X,Y, and thus high
redundancy.

- |deally, we want o2, = 0 for all pairs X,Y



Example

In the data below the data are essentially one-dimensional, but
what is the axis we should use?

- The direction in which the variance is maximized.

The variance along the

direction orthogonal to the
main direction is small and .
captures the noise in the
data 1

~100 -0.75 —0.50 —0.25 000 025 050 075 100



-
Example

- Which direction is best to project?




-
Example

- Which direction is best to project?

A




-
Example

- Which di[ection IS best to project?




e
Example

- Which direction is best to project?

\




e
Example

- Which direction is best to project?

A

- Note that in the case of blue and green directions we have points that are
falling on each other.

- The red maximizes the variance, which gives more information



Covariance matrix

We are given the data matrix A, with n rows and m columns, where

the rows correspond to data samples over a set of features defined
by the columns.

Remove the mean of each column from the column vectors to get
the centered matrix A

The matrix C = A" A is proportional to the covariance matrix of the
column vectors of A.

We want to change the basis of the data so that the matrix
becomes diagonal

- All the values are In the diagonal and the off-diagonal entries are zero
- Covariances now become zero, so there is no redundancy



-
PCA: Principal Component Analysis

We will project the rows of matrix 4 onto a new set of attributes
(dimensions) such that:

- Each attribute captures the most remaining variance in the data, while
orthogonal to the other attributes
The first attribute should capture the most variance in the data

- The attributes have zero covariance to each other (they are orthogonal)

For matrixA (and A), the variance of the rows of A (and A) when
projected to vector v is proportional to % = ||Av||?

- The first right singular vector of A maximizes ¢?!



e
PCA and SVD

PCA is a special case of SVD on the centered matrix.

After projecting the centered matrix A to the singular vectors in V

we have that the covariance matrix of the new dataset AV is:
(AT (AV) =2

We have achieved to make the matrix diagonal!

Dimensionality reduction: Don’t keep all the singular vectors in V
just the k first ones.



e
PCA

Input: 2-d dimensional points

5 Output:

2nd (right)

1st (right) sinqular vector:
4L Vvector . direction of maximal variance,

2nd (right) singular vector:
direction of maximal variance,

3+ . after removing the projection of
the data along the first singular
1st (right) vector.
singular vector
2 I I I

4.0 4.5 5.0 5.5 6.0



Singular values
5
cnd (any o4: measures data variance
4l | along the first singular vector.
o,: measures how much of the
data variance is explained by
3r 1 the second singular vector.
1st (right)
singular vector
2 I I I

4.0 4.5 5.0 5.5 6.0



-
Singular values tell us something about the variance

The variance in the direction of the k-th principal component is given by the
corresponding singular value ¢, *

Singular values can be used to estimate how many components to keep

Rule of thumb: keep enough to explain 85% of the variation:




Example
drugs
11 A1n
A= . students
An1 [ Ann
legal illegal

a;;- usage of student i of drug |

A=UzVT
Drug 1

- First right singular vector v,
- More or less same weight to all drugs
- Discriminates heavy from light users

- Second right singular vector S
- Positive values for legal drugs, negative for illegal Drug 2




LOW-RANK APPROXIMATION




SVD and Rank-k approximations
A = U 2 VT

features

significant

|
significant
noise

objects

We keep the k most important singular vectors

The matrix U, XV, is a rank-k approximation of A

The idea is that this is the part that has the useful information and noise is removed
This is also the best rank-k approximation (closest to the original A)



Rank-k approximations (A,)
/ Vo)

S &Uk ).( ) )( ' )

nxd n x k k x k kxd

Ay

U, :orthogonal matrix containing the top k left singular vectors of A.
V,: orthogonal matrix containing the top k right singular vectors of A.
2. diagonal matrix containing the top k singular values of A

A, 1s a rank-k approximation of A
IS the approximation of




SVD as an optimization

- The rank-k approximation matrix A, produced by the top-k singular
vectors of A minimizes the Frobenious norm of the difference with
the matrix A

— : _ 2
Ag=arg  min |4 - Bl

|A — Bz = Z(Aij — Bij)2
L]

Explanation: The (i,j) cell in A, is close on average with the (i, ) cell of A




What does this mean?

We can project the row (and column) vectors of the matrix A into a
k-dimensional space and preserve most of the information

(Ideally) The A, approximation of matrix A, contains all the useful
iInformation, and what is discarded is noise

(Ideally) The k dimensions reveal latent features/aspects/topics of
the term (document) space.



LATENT FACTOR MODELS AND
RECOMMENDATION SYSTEMS




Latent factor model

Rows (columns) are linear combinations of & latent factors

- For example, there are only k = 2 types of movies (action/romance), and 2 types of
users depending on what movies they watch (action users, romance users)

In this case the data matrix has rank k, and SVD will retrieve the k

factors
- The latent factors correspond to the k singular vectors

Real data is never so clean. We assume that some noise is added to
this (ideal) rank-k matrix resulting in higher rank

SVD retrieves the latent factors (hopefully) in the k principal singular
vectors



An ideal example

- User-Movie matrix
- Blue and Red rows (colums) are linearly dependent

A =

- There are two prototype users (vectors of movies): blue and red

- To describe the data is enough to describe the two prototypes, and the projection weights for
each row

- A'ls a rank-2 matrix
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SVD — Example: Users-to-Movies

-A=UZV'-example: Users to Movies

SciFi

\

T

Romanc
\’

o ol & w ~ IMatrix

o

Lo

OO O Ul wk Alen

O O O U1l » W B Serenity

N Ol DN O O © o Casablanca

I O hoooop\melie

“Concepts”
AKA Latent dimensions
AKA Latent factors
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

§ SciFi-concept
" 2 % o Romance-concept
E528 ¢
=z 68 < -
T 1110 0] [014 0.00
s |23 3 001 1042 0.00 _
44400 fo.56 0.00 124 0
" I5 5500|7070 0.00 Xl;'% X
T 0 0 04 4| [0.000.60 -
comancel @ 005 3] 10.00 0.75
, [000 22

0.00 0.30 _ 0.58 0.58 0.58 0.00 0.00
- 0.00 0.00 0.00 0.71 0.71
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

§ SciFi-concept
= 23 o Romance-concept
‘;5 E’ % § = U is “user-to-concept”
T 1 it (f 8 (<)L @ 0.00- fri]rgti:s(rity (or importance)
sr |33 30 0 1042 0.00
CIrl —
, |44 4007] fos56 0.00 194 0
555007070 000 X|g g5]| X
(00044 000 -
RomanceO 0055 0.00
, 00022

0.00 0.30 _ 0.58 0.58 0.58 0.00 0.00
- 0.00 0.00 0.00 0.71 0.71
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

S SciFi-concept
" 2 c;; o Romance-concept
= © is “movie to concep
T '% i’: (f 8 8; '614 000- similarity (or importance)
|3 330 0| |042 000 -
4440 01 1056 0.00 124 0
" 15550 0|F070 000 | X[y o5| X
T 000 4 4| 10.000.60 -
romancel® O 0 2 9] [0.00 0.75
, 00022

000 0.30 ] [0.58 0.58 ©.58) 0.00 0.00
B I;.oo 0.00 0.00 0.71]
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SVD — Example: Users-to-Movies
A=UZV'-example: Users to Movies

S SciFi-concept
9 2 fgﬁ o Romance-concept
ER R
=z 38 < - > is the “concept strength”
T 11100 0.14 0.00 matrix
e |33 3 001 fo0.42 0.00
14440 0( [os6 0.00 B
" |5 550 0[=070 0.00 X905 X
[ [0 004471000 060 T
comancal@ 0 0 9 5 [0.00 0.75
| 00022

0.00 0.30 _ 0.58 0.58 0.58 0.00 0.00
- 0.00 0.00 0.00 0.71 0.71
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

© N ®
0 S i
X % cig % = e 1stsingular
— C < A t
-LEG %) % 8 ;E; 3 _ Vector
T 1110 0] [o14 0.00
. 3330 0] Jo42 0.00 Moviel
14 4 40 0| |oss 0.00 7
" |5 550 0[=070 0.00 x[@9°0 | «
0 95
T 0 004 4 0.00 0.60 — (Zisthe“s;pread
variance)” matrix
comancal@ 0 0 9 5 [0.00 0.75
| 9 0 0 2 2_ 10.00 0.30 _ 0.58 0.58 0.58 0.00 0.00-|
0.00 0.00 0.00 0.71 0.71J



-
SVD — Example: Users-to-Movies

The axes on which we project the users (rows) are defined by the
movies-to-concepts matrix V

Similarly for movies the axes are defined by matrix U

©

f58 e
=268 < _ -
T 11100] _ _ 0.14 0.00
1333001 o058 0.00 0.42 0.00
SciFi ]
¢ 4 4 400 0.58 0.00 [  [0.56 0.00 124 0
555 0 0fXfg58 0.00| = 070 000 [X]5 g5
T 0004 4 0.00 0.71 0.00 0.60 =
comancef0 00 5 5 10.00 0.71 _ 0.00 0.75
, 00022 10.00 0.30 _




A more realistic example

- User-Movie matrix

- There are two prototypes of users and movies, but they are noisy
- Missing ratings
- Ratings “out of character”

- This is the usual case for real data (lots of missing entries)
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SVD — Example: Users-to-Movies

-A=UZV'-example: Users to Movies

<
p -*?c;s.“_)
552858
=360 <
Tllloo (
SCiFi33300
44 400
V' 15 550 0| m
T02044
Roman‘QOO55 .
¢h)1022_ U

“Concepts”
AKA Latent dimensions
AKA Latent factors
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

g
P 2 ‘g Q
552858
=2z 68 < -
T 1110 o| [013-002 -0.01
. |3 33 0 0| [041-0.07 -0.03 _
4 4 4 0 0| |0.55 -0.09 -0.04 1240 O
Y 15 5 5 0 0|7o6s -011 -005| X [0 950 | x
T 0 20 4 4| |0.15 0.59 0.65 o 0 13
a0 0 0 5 5| [0.07 073 -0.67
, 0102 2] [007 029 032

0.56 059 0.56 0.09 0.09
-0.12 0.02 -0.12 0.69 0.69
0.40 -0.80 0.40 0.09 0.09.
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

@
. > c_% o SciFi-concept
E 5 'c';c; E Romance-concept
=z 8 8 < _ The first two vectors are
T 1 1100 0.13 -0.02 -0.01 more or less unchanged
- 33300 0.41 -0.07 -0.03 —_
4 4 4 0 0| [0.55 -0.09 -0.04 1240 0
" Is 5 50 0|7[068-011 005 x [0 950 | x
T 020 4 4| |015 059 0.65 0 0 13
zom |0 O 0 5 5 0.07 0.73 -0.67
, L0102 2] [007 0.29 0.32_

0.56 059 0.56 0.09 0.09
-0.12 0.02 -0.12 0.69 0.69

10.40 -0.80 0.40 0.09 0.09
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SVD — Example: Users-to-Movies

A=UZV'-example: Users to Movies

5
. 28 4
E c S ® T The third vector has a very
_‘25 %:’ g Cc)"s’ ;E; A low singular value
T 1110 ol [0.13-0.02 -0.01
< |3 330 0] [041 -0.07 -0.03
4 4 4 0 0| o055 -0.09 -0.04 1240 O
' 15 5 5 0 o|=o6s -0.11 -005] x |0 950 | x
T 020 4 4| |015 059 0.65 0 0
~m |0 0 0 5 5| |0.07 0.73 -0.67
, (0102 2] [007 029 032

0.56 0.59 0.56 0.09 0.09
0.12 0.02 -0.12 0.69 0.69
0.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation

‘movies’, ‘users’ and ‘concepts’:

- U: user-to-concept similarity matrix
- V. movie-to-concept similarity matrix

- 2. Its diagonal elements:
‘strength’ of each concept



Rank-k approximation

- In this User-Movie matrix

A: (o) o) ° °

- We have more than two singular vectors, but the strongest ones are still
about the two types.

- The third models the noise In the data

- By keeping the two strongest singular vectors we obtain most of the
Information in the data.

- This is the rank-2 approximation of the matrix A



SVD for matrix reconstruction

We will now see how we can use the fact that SVD gives the best
rank-k approximation for a data matrix A.

The idea is that we assume that the “true” matrix is rank-k, and
rank Is increased due to noise

We use SVD to find the best rank-k approximation for A, and thus
the best approximation of the “true” matrix
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Example

More detalls
How exactly is dim. reduction done?
A. Compute SVD

1110 o] [013 -0.02 -0.01

3330 0| |0.41 -0.07 -0.03 — —

4 4 4 0 0| 055 -0.09 -0.04 1240 0

5550 0/—]068 -0.11 -0.05| X [0 950 X

0 20 4 4| |0.15 059 0.65 0 0 13

0005 5| |007 073 -0.67| _ -
0102 2] |007 020 032 0.56 0.59 0.56 0.09 0.09

-0.12 0.02 -0.12 0.69 0.69
10.40 -0.80 0.40 0.09 0.09
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Example

More detalls
How exactly is dim. reduction done?
A:. Set smallest singular values to zero

111 0 o] [0.13 -0.02 -0.01

3 330 0| |041 -0.07 -0.03 - —

4 4 4 0 0| 055 -0.09 -0.04 1240 0

5550 0f~068 -0.11 -005/ X |0 950 X

020 4 4| |0.15 059 0.65 0 0 7(3_

0005 5| 007 073 -067] _ -
0102 2] |007 020 032 0.56 0.59 0.56 0.09 0.09

-0.12 0.02 -0.12 0.69 0.69
10.40 -0.80 0.40 0.09 0.09]
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Example

More detalls
How exactly is dim. reduction done?
A:. Set smallest singular values to zero

111 0 0] [0.13 -0.02 -9.0L

3 330 0] |041-0.07 -Q _ —

4 4 4 0 0| [0.55 -0.09 -0\p4 124 0 0

555 0 0f~]o.68 -0.11 -0pb5| X |0 9350 X
0204 4| |015 050 ofs| [0 0 M3

0005 5] |007 073 -06 _ -
010 2 2| loo7 029 0.56 0.59 0.56 0.09 0.09

-0.12 0.02 -0.12 0.69 0.69
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Example

More detalls
. How exactly is dim. reduction done?
A: Keep the new representation of the users-movies

1110 0f [013-002

3330 0| |041-007 _ _

4 4 4 0 0| |055 -0.09 12.4 0

555 0 0[~]0.68 -0.11 x |0 953 X

0 204 4| |015 059 B -

0005 5| |007 073 _ )
010 2 2] |007 029 0.56 0.59 0.56 0.09 0.09

= -0.12 0.02 -0.12 0.69 0.69
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Example

More details
Q: How exactly is dim. reduction done?
A: Compute new matrix that approximates the original (w/o

hoise) 110 0.92 0.95 0.92 0.01 001
2.91 3.01 2.91 -0.01 -0.01
3.90 4.04 3.90 0.01 0.01
4.82 500 4.82 0.03 0.03
0.70 053 0.70 4.11 4.11
0.69 1.34 -0.69 4.78 4.78
032 023 032 2.01 2.01

Frobenius norm: IA- B|| — \/ > (A___B__)Z
"M"F - \/Zij Mijz is smaII

I O O O O O
Q

cocoouvu s~ wrl
—, ON Ul D W
CoOOo Ul A WE
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Model-based Recommendation Systems

Data: An n X m matrix D of users rating movies
- Sparse and often noisy

Assumption: There are k basic user profiles, and each user is a linear
combination of these profiles
- E.g., action, comedy, drama, romance

Implication: There exists an ideal matrix M with the true preferences of
all the users for all movies that is a rank-k matrix

The matrix D that we observe is a noisy, and incomplete version of the
matrix M

Given matrix D we want to construct a matrix D that is as close as
possible to the “true” matrix

Model-based collaborative filtering



Model-based Recommendation Systems

Use as D the rank-k approximation matrix D, of matrix D.

The matrix D, is a full matrix (not sparse). Use the entries of D, to predict
unseen ratings

Algorithm:;

- Compute the rank-k approximation D, of matrix D
- For a user u and movie m, predict the value D, [m, u].

We know that matrix D, Is the rank-k matrix that is closest to the
observed data D

Under some assumptions for the missing and noisy entries, it can also be
shown that it is the closest matrix to the ideal matrix M
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Example

Missing ratings and noise

1110 0| [014 -0.06 -0.04

0330 0| [030 -0.11 -0.61 _ —

4 4 0 0 0| (043 -0.16 0.76 1240 0

5550 0|=[074 -031 -018 X [0 950 X

0 20 4 4| [0.15 053 0.02 0 0 13

0005 5| [007 070 -0.03] -
010 2 2| [007 027 001 0.51 0.66 0.44 0.23 0.23

-0.24 -0.13 -0.21 0.66 0.66
0.59 0.08 -0.80 0.01 0.01_
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Example

Missing ratings and noise

1110 0| [0.14 -0.06 \0.0

0 330 0| [030 -0.11 .41 — —

4 4 0 0 0| |0.43 -0.16 Q.6 124 0 0

5550 0|=0.74 -031 018 X [V 950 X

0 204 4] 1015 053 (.02 0 0 33

0 005 5[ [007 070 -P. _ _
010 2 2] |007 027 J0o.0 0.51 0.66 0.44 0.23 0.23

- -0.24 -0.13 -0.21 0.66 0.66




Example

Reconstruction of missing ratings

0.96 1.14 0.82 -0.01 -0.01]
1.94 2.32 1.66 0.07 0.07
2.77 3.32 2.37 0.08 0.08
4.84 5.74 4.14 -0.08 0.08
0.40 1.42 0.33 4.06 4.06
-0.42 0.63 -0.38 4.92 4.92
0.20 0.71 0.16 2.03 2.03

This is the rank-2 approximation of the input matrix



Example

Reconstruction of missing ratings

m

0.96 1.14 0.82 -0.01 -0.01]

1.94 2.32 1.66 W
2.77-3.32(2.37)70.08 0.08
4.84 5.74 4.14 -0.08 0.08

0.40 1.42 0.33 4.06 4.06
-0.42 0.63 -0.38 4.92 4.92

This is our prediction for the cell (u, m):

r(u,m) = 2 Ulu, ko V]k, m]
k=1,2
This is essentially the dot product of the u-
row of matrix U, with the m-row of matrix V/,
where the entries are weighted by the X
values

0.20 0.71 0.16 2.03 2.03

This is the rank-2 approximation of the input matrix




In SVD, for the user-item matrix D:
Latent Factor Models b =uzv
Q =V32
users lfac_t.g)rslz p = U3
1 z 4 5 4 5 2 : 3 =5 |6 5 USers
2[4 e - Al s 213 |5 1.1 | -2 | 3 5 2 |-5 | .8 -4 | 3 1.4 |24 | -9 g
.9 ol s 2 . ~ BN 51 3 -.8 7 .5 1.4 3 -1 1.4 2.9 -7 1.2 -1 1.3 2
"= 3l s N - o1 P 2.1 -4 .6 1.7 2.4 9 -.3 4 .8 7 -.6 A (7))
1 3 3 2 4 -l% -1 e 3 Q PT
SVD also considers entries that are missing!
Use specialized methods to find P, Q
T 2 A _ T
° man(l x)ER(rXL q; - pX) er _ ql ) px

- Note:
We don’t require cols of P, Q to be orthogonal/unit length

P, Q map users/movies to a latent space



Latent factors

We can define latent factor models that apply the same idea In
different ways

- Probabilistic/Generative models.

These models are also described as Matrix Factorization
technigues

The latent factor methods work well in practice, and they are
employed by most sophisticated recommendation systems

Today there is also a lot of deep learning involved



OTHER PROPERTIES OF SVD




-
Another property of PCA/SVD

- The chosen vectors are such that minimize the sum of square differences
between the data vectors and the low-dimensional projections

5
4 _
3_ —
1st (right)
singular vector
2 | | |

4.0 4.5 5.0 5.5 6.0



Another Application

- Latent Semantic Indexing (LSI):

- Apply PCA on the document-term matrix, and index the k-dimensional
vectors

- When a query comes, project it onto the k-dimensional space and compute
cosine similarity in this space

- Principal components capture main topics, and enrich the document
representation



SVD is “the Rolls-Royce and the Swiss
Army Knife of Numerical Linear

Algebra.””
*Dianne O’Leary, MMDS "06



Other dimensionality reduction techniques

Multidimensional Scaling
- You are given pairwise distances between objects

- Find a low-dimensional representation of the objects (2D for visualization)
such that you approximate the distances as well as possible

(Deep) Neural Network Embeddings:

- Use a very simplistic, high-dimensional representation of the data (e.g., one-
hot encoding)

- Consider a prediction problem (e.g., predict the context words) and pass the
data through a multi-layer neural network.

- Use the input of the last layer as the representation



Computation of eigenvectors

Consider a symmetric square matrix M

Power-method:

- Start with the vector v of all 1’s

- Compute v = Mv

- Normalize by the length of v

- Repeat until the vector does not change

This will give us the first eigenvector.
The first eigenvalue is 1 = v Mv

For the second one, compute the first eigenvector of the matrix V" =
M — Avv!



Computing singular vectors

- Compute the eigenvectors and eigenvalues of the matrices MM’
and M M



	Slide 1: DATA MINING Dimensionality Reduction
	Slide 2: The curse of dimensionality
	Slide 3: Dimensionality Reduction
	Slide 4: Example
	Slide 5: Example
	Slide 6: Dimensionality Reduction
	Slide 7: Dimensionality Reduction
	Slide 8: Why Reduce Dimensions?
	Slide 9: Data in the form of a matrix
	Slide 10: Example: Document matrices
	Slide 11: Example: Recommendation systems
	Slide 12: Linear algebra
	Slide 13: Matrices
	Slide 14: Change of basis
	Slide 15: Row and Column space
	Slide 16: Rank
	Slide 17: Rank-1 matrices
	Slide 18: Rank-1 matrices
	Slide 19: Eigenvectors
	Slide 20: SINGULAR VALUE DECOMPOSITION (SVD)
	Slide 21: Singular Value Decomposition (SVD)
	Slide 22: Singular Value Decomposition
	Slide 23: Symmetric matrices
	Slide 24: Singular Values and Eigenvalues
	Slide 25: SVD properties
	Slide 26: PRINCIPAL COMPONENT ANALYSIS (PCA)
	Slide 27: Principal Component Analysis
	Slide 28: Variability
	Slide 29: Example
	Slide 30: Example
	Slide 31: Example
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Covariance matrix
	Slide 36: PCA: Principal Component Analysis
	Slide 37: PCA and SVD
	Slide 38: PCA
	Slide 39: Singular values
	Slide 40: Singular values tell us something about the variance
	Slide 41: Example
	Slide 42: LOW-RANK APPROXIMATION
	Slide 43: SVD and Rank-k  approximations 
	Slide 44: Rank-k approximations (Ak)
	Slide 45: SVD as an optimization
	Slide 46: What does this mean?
	Slide 47: LATENT FACTOR MODELS AND RECOMMENDATION SYSTEMS
	Slide 48: Latent factor model 
	Slide 49: An ideal example
	Slide 50: SVD – Example: Users-to-Movies
	Slide 51: SVD – Example: Users-to-Movies
	Slide 52: SVD – Example: Users-to-Movies
	Slide 53: SVD – Example: Users-to-Movies
	Slide 54: SVD – Example: Users-to-Movies
	Slide 55: SVD – Example: Users-to-Movies
	Slide 56: SVD – Example: Users-to-Movies
	Slide 57: A more realistic example
	Slide 58: SVD – Example: Users-to-Movies
	Slide 59: SVD – Example: Users-to-Movies
	Slide 60: SVD – Example: Users-to-Movies
	Slide 61: SVD – Example: Users-to-Movies
	Slide 62: SVD - Interpretation
	Slide 63: Rank-k approximation
	Slide 64: SVD for matrix reconstruction
	Slide 65: Example
	Slide 66: Example
	Slide 67: Example
	Slide 68: Example
	Slide 69: Example
	Slide 70: Model-based Recommendation Systems
	Slide 71: Model-based Recommendation Systems
	Slide 72: Example
	Slide 73: Example
	Slide 74: Example
	Slide 75: Example
	Slide 76: Latent Factor Models
	Slide 77: Latent factors
	Slide 78: OTHER PROPERTIES OF SVD
	Slide 79: Another property of PCA/SVD
	Slide 80: Another Application
	Slide 81
	Slide 82: Other dimensionality reduction techniques
	Slide 83: Computation of eigenvectors
	Slide 84: Computing singular vectors

