DATA MINING THE DATA MINING PIPELINE

What is data?

The data mining pipeline: collection, preprocessing, mining, and post-processing

Sampling, feature extraction and normalization

What is data mining again?

 "Data Mining is the study of collecting, processing, analyzing, and gaining useful insights from data" – Charu Aggarwal

Essentially, anything that has to do with data is data mining

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: name, date of birth, height, occupation.
 - Attribute is also known as variable, field, characteristic, or feature
- For each object the attributes take some values.
- The collection of attribute-value pairs describes a specific object
 - Object is also known as record, point, case, sample, entity, or instance

Size (n): Number of objects Dimensionality (d): Number of attributes Density/Sparsity: Number of populated object-attribute pairs

Relational data

- The term comes from DataBases, where we assume data is stored in a relational table with a fixed schema (fixed set of attributes)
 - In Databases, it is usually assumed that the table is dense (few null values)
- There are a lot of data in this form
 - E.g., census data
- There are also a lot of data which do not fit well in this form
 - Sparse data: Many missing values
 - Not easy to define a fixed schema

		Example of a relational table				
		At	tributes	= Table	columns	5
	((Tid	Refund	Marital Status	Taxable Income	Cheat
		1	Yes	Single	125K	No
		2	No	Married	100K	No
		3	No	Single	70K	No
Objects =)	4	Yes	Married	120K	No
Table rows \prec)	5	No	Divorced	95K	NULL
		6	No	Married	60K	No
		7	Yes	Divorced	220K	No
		8	No	NULL	85K	Yes
	$\left(\right)$	9	No	Married	75K	No
		10	No	Sinale	90K	Yes

Types of Attributes

- There are different types of attributes
 - Numeric
 - Examples: dates, temperature, time, length, value, count.
 - Discrete (counts) vs Continuous (temperature)
 - Special case: Binary/Boolean attributes (yes/no, exists/not exists)
 - Categorical
 - Examples: eye color, zip codes, strings, rankings (e.g, good, fair, bad), height in {tall, medium, short}
 - Nominal (no order or comparison) vs Ordinal (order but not comparable)

Numeric Relational Data

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points/vectors in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an n-by-d data matrix, where there are n rows, one for each object, and d columns, one for each attribute

	Temperature	Humidity	Pressure
O1	30	0.8	90
02	32	0.5	80
O 3	24	0.3	95

30	0.8	90
32	0.5	80
24	0.3	95

Numeric data

- Thinking of numeric data as points or vectors is very convenient
- For small dimensions we can plot the data
- We can use geometric analogues to define concepts like distance or similarity
- We can use linear algebra to process the data matrix
- We will often talk about points or vectors

Vector Databases

- This is a special case of numerical data, where each object is a multidimensional numerical vector.
- Different from before, the vectors do not store the attribute values for the object, but rather the embedding of the object as it is produced by some Machine Learning algorithm.
- Embedding vectors are fully dense and have no clear interpretation.
- They have been shown to be remarkably successful in capture semantic relationships between objects.

Categorical Relational Data

 Data that consists of a collection of records, each of which consists of a fixed set of categorical attributes

ID Number	Zip Code	Marital Status	Income Bracket
1129842	45221	Single	High
2342345	45223	Married	Low
1234542	45221	Divorced	High
1243535	45224	Single	Medium

 Data that consists of a collection of records, each of which consists of a fixed set of both numeric and categorical attributes

ID Number	Zip Code	Age	Marital Status	Income	Income Bracket
1129842	45221	55	Single	250000	High
2342345	45223	25	Married	30000	Low
1234542	45221	45	Divorced	200000	High
1243535	45224	43	Single	150000	Medium

 Data that consists of a collection of records, each of which consists of a fixed set of both numeric and categorical attributes

ID Number	Zip Code	Age	Marital Status	Income	Income Bracket	Refund
1129842	45221	55	Single	250000	High	No
2342345	45223	25	Married	30000	Low	Yes
1234542	45221	45	Divorced	200000	High	No
1243535	45224	43	Single	150000	Medium	No

 Data that consists of a collection of records, each of which consists of a fixed set of both numeric and categorical attributes

Takes numerical	ID Number	Zip Code	Age	Marital Status	Income	Income Bracket	Refund
values but it	1129842	45221	55	Single	250000	High	0
categorical	2342345	45223	25	Married	30000	Low	1
	1234542	45221	45	Divorced	200000	High	0
	1243535	45224	43	Single	150000	Medium	0

Boolean attributes can be thought as both numeric and categorical When appearing together with other attributes they make more sense as categorical They are often represented as numeric though

 Sometimes it is convenient to represent categorical attributes as boolean.

• Add a Boolean attribute for each possible value of the attribute

ID	Zip 45221	Zip 45223	Zip 45224	Age	Single	Married	Divorced	Income	Refund
1129842	1	0	0	55	0	0	0	250000	0
2342345	0	1	0	25	0	1	0	30000	1
1234542	1	0	0	45	0	0	1	200000	0
1243535	0	0	1	43	0	0	0	150000	0

We can now view the whole vector as numeric

 Sometimes it is convenient to represent numerical attributes as categorical.

Group the values of the numerical attributes into bins

ID Number	Zip Code	Age	Marital Status	Income	Income Bracket	Refund
1129842	45221	50s	Single	High	High	0
2342345	45223	20s	Married	Low	Low	1
1234542	45221	40s	Divorced	High	High	0
1243535	45224	40s	Single	Medium	Medium	0

Binning

- Idea: split the range of the domain of the numerical attribute into bins (intervals).
- Every bucket defines a categorical value

- How do we decide the number of bins?
 - Depends on the granularity of the data that we want
 - Sometimes domain knowledge is also used

Bucketization

- How do we decide the size of the bucket?
 - Depends on the data and our application
- Equi-width bins: All bins have the same size
 - Example: split time into decades
 - Problem: some bins may be very sparse or empty
- Equi-size (depth) bins: Select the bins so that they all contain the same number of elements
 - This splits data into quantiles: top-10%, second 10% etc
 - Some bins may be very small
- Equi-log bins:log end log start is constant
 - The size of the previous bin is a fraction of the current one
 - Better for skewed distributions

• Optimized bins: Use a 1-dimensional clustering algorithm to create the bins

Example

Blue: Equi-width [20,40,60,80]

Red: Equi-depth (2 points per bin)

Green: Equi-log
$$\left(\frac{end}{start} = 2\right)$$

Physical data storage

- Stored in a Relational Database
 - Assumes a strict schema and relatively dense data (few missing/Null values)
- Tab or Comma separated files (TSV/CSV), Excel sheets, relational tables
 - Assumes a strict schema and relatively dense data (few missing/Null values)
- Flat file with triplets (record id, attribute, attribute value)
 - A very flexible data format, allows multiple values for the same attribute (e.g., phone number)

JSON, XML format

- Standards for data description that are more flexible than relational tables
- There exist parsers for reading such data.

Examples

Comma Separated File

id,Name,Surname,Age,Zip
1,John,Smith,25,10021
2,Mary,Jones,50,96107
3,Joe ,Doe,80,80235

 Can be processed with simple parsers, or loaded to excel or a database

1, Name, John 1, Surname, Smith 1, Age, 25 1, Zip, 10021 2, Name, Mary 2, Surname, Jones 2, Age, 50 2, Zip, 96107 3, Name, Joe 3, Surname, Doe 3, Age, 80 3, Zip, 80235

Triple-store

• Easy to deal with missing values

Examples

JSON EXAMPLE – Record of a person

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
},
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
  },
    "type": "office",
    "number": "646 555-4567"
],
"children": [],
"spouse": null
```

XML EXAMPLE – Record of a person

<person> <firstName>John</firstName> <lastName>Smith</lastName> <aqe>25</aqe> <address> <streetAddress>21 2nd Street</streetAddress> <city>New York</city> <state>NY</state> <postalCode>10021</postalCode> </address> <phoneNumbers> <phoneNumber> <type>home</type> <number>212 555-1234</number> </phoneNumber> <phoneNumber> <type>fax</type> <number>646 555-4567</number> </phoneNumber> </phoneNumbers> <gender> <type>male</type> </gender> </person>

JSON Databases

- There are specialized Databases for semi-structured data such as JSON data
- Commonly used DBs:
 - MongoDB
 - CouchDB
 - MySQL
- The query language is very similar to SQL used for relational data.

Beyond relational data: Set data

- Each record is a set of items from a space of possible items
- Example: Transaction data
 - Also called market-basket data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Set data

- Each record is a set of items from a space of possible items
- Example: Document data
 - Also called bag-of-words representation

Doc Id	Words
1	the, dog, followed, the, cat
2	the, cat, chased, the, cat
3	the, man, walked, the, dog

Vector representation of market-basket data

- Market-basket data can be represented, or thought of, as numeric vector data
 - The vector is defined over the set of all possible items
 - The values are binary (the item appears or not in the set)

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

TID	Bread	Coke	Milk	Beer	Diaper
1	1	1	1	0	0
2	1	0	0	1	0
3	0	1	1	1	1
4	1	0	1	1	1
5	0	1	1	0	1

Sparsity: Most entries are zero. Most baskets contain few items

Vector representation of document data

- Document data can be represented, or thought of, as numeric vector data
 - The vector is defined over the set of all possible words
 - The values are the counts (number of times a word appears in the document)

Doc Id	Words
1	the, dog, follows, the, cat
2	the, cat, chases, the, cat
3	the, man, walks, the, dog

Sparsity: Most entries are zero. Most documents contain few of the words

Physical data storage

Usually set data is stored in flat files

• One line per set

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 38 39 47 48 38 39 48 49 50 51 52 53 54 55 56 57 58 32 41 59 60 61 62 3 39 48

- I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.
- I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.

Dependent data

- In tables we usually consider each object independent of each other.
- In some cases, there are explicit dependencies between the data
 - Ordered/Temporal data: We know the time order of the data
 - Spatial data: Data that is placed on specific locations
 - Spatiotemporal data: data with location and time
 - Networked/Graph data: data with pairwise relationships between entities

Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCGCGCCC CGCAGGGCCCGCCCGCCGCCGTC GAGAAGGGCCCGCCTGGCGGGGCG GGGGGAGGCGGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Data is a long ordered string

Ordered Data

• Time series

• Sequence of ordered (over "time") numeric values.

Ordered Data

 Sequence data: Similar to the time series but in this case, we have categorical values rather than numerical ones.

Example: Event logs

fcrawler.looksmart.com - - [26/Apr/2000:00:12 -0400] "GET /contacts.html HTTP/1.0" 200 4595 "-" "FAST-WebCraw fcrawler.looksmart.com - - [26/Apr/2000:00:17:19 -0400] "GET /news/news.html HTTP/1.0" 200 16716 "-" "FAST-WebCr ppp931.on.bellglobal.com - - [26/Apr/2000:00:16:12 -0400] "GET /download/windows/asctab31.zip HTTP/1.0" 200 1540 123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/wpaper.gif HTTP/1.0" 200 6248 "http://www.jafsoft.com 123.123.123.123 - - [26/Apr/2000:00:23:47 -0400] "GET /asctortf/ HTTP/1.0" 200 8130 "http://search.netscape.com// 123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/5star2000.gif HTTP/1.0" 200 4005 "http://www.jafsoft 123.123.123.123 - - [26/Apr/2000:00:23:50 -0400] "GET /pics/5star.gif HTTP/1.0" 200 1031 "http://www.jafsoft.com 123.123.123.123 - - [26/Apr/2000:00:23:51 -0400] "GET /pics/a2hlogo.jpg HTTP/1.0" 200 4282 "http://www.jafsoft.com

Spatial data

• Attribute values that can be arranged with geographic co-ordinates

- Measurements of temperature/pressure in different locations.
- Sales numbers in different stores
- The majority party in the country states (categorical)
- Such data can be nicely visualized.

Spatiotemporal data

- Data that have both spatial and temporal aspects
 - Measurements in different locations over time
 - Pressure, Temperature, Humidity
 - Measurements that move in space over time
 - Traffic, Trajectories of moving objects

Graph Data

- Graph data: a collection of entities and their pairwise relationships.
- Examples:
 - Web pages and hyperlinks
 - Facebook users and friendships
 - The connections between brain neurons
 - Genes that regulate each oterh

In this case the data consists of pairs:

Who links to whom

We may have undirected links

Graph Data

- Graph data: a collection of entities and their pairwise relationships.
- Examples:
 - Web pages and hyperlinks
 - Facebook users and friendships
 - The connections between brain neurons
 - Genes that regulate each oterh

In this case the data consists of pairs:

Who links to whom

Or directed links

Representation

Adjacency matrix

• Very sparse, very wasteful, but useful conceptually

Representation

- Adjacency list
 - Not so easy to maintain

Representation

List of pairs

• The simplest and most efficient representation

Types of data: summary

- Numeric data: Each object is a point in a multidimensional space
- Categorical data: Each object is a vector of categorical values
- Set data: Each object is a set of values (with or without counts)
 - Sets can also be represented as binary vectors, or vectors of counts
- Dependent data:
 - Ordered sequences: Each object is an ordered sequence of values.
 - Spatial data: objects are fixed on specific geographic locations
 - Graph data: A collection of pairwise relationships
- The data matrix:
 - In almost all types of data we can find a way to transform the data into a matrix, where the rows correspond to different records, and the columns to numeric attributes

DATA MINING PIPELINE

The data mining pipeline

When talking about Data Mining we usually think of the Data Analysis part, but the Data Mining pipeline has several steps

In this course we will focus mostly on Data Analysis: methods and algorithms for extracting useful knowledge from the data.

DATA COLLECTION

The data mining pipeline

- Collecting the data is the start of the Data Mining pipeline
- It can be a hard problem; we will not focus on it in this course.

The different ways of obtaining data

Generate your own data

- Data may be generated through logging of a process, or some other activity (e.g., scientific measurements)
- Important to collect the right amount of information.

Use existing collections

- Today there are a lot of data collections available online
- Open data, corporate data releases, Wikis, scientific data sharing
- Existing data collections are subject to some choices made by the creator of the collection

Obtaining data online

- Public APIs: A lot of online platforms (e.g., Twitter) provide APIs for accessing their data (under several restrictions). You obtain structured data fast
- Crawling & Scraping: Use a program that traverses web pages and downloads them (crawling), and then extracts the useful content from them (scraping)
 - You should follow the politeness etiquette when crawling.
 - Messy and not so robust, as page layouts change often

Data labels

- For many supervised learning tasks (classification), you need labeled data, which will be used for training and testing
- Examples:
 - For a collection of tweets, label them as offensive or not
 - For a collection of sentences label them as having a positive, negative, or neutral sentiment towards a specific item
 - For a collection of search results, label them as relevant or not relevant to the query
- These labels constitute the "ground truth" that we are trying to predict.
- Obtaining such labels is a difficult task that usually requires manual work.
 - Companies employ workers for this task

Data collection example

- Suppose that you want to collect data from Twitter about the elections in USA
 - How do you go about it?
- Twitter Streaming/Search API:
 - Get a sample of all tweets that are posted on Twitter
 - <u>Example</u> of JSON object
- REST API:
 - Get information about specific users.
- There are several decisions that we need to make before we start collecting the data.
 - Time and Storage resources

PREPROCESSING

Sampling – reservoir sampling Feature extraction – TF-IDF Data Normalization

The data mining pipeline

- Preprocessing: Real data is large, noisy, incomplete and inconsistent.
 We need to preprocess it before we use it
- The preprocessing step determines the input to the data mining algorithm
 - It is often the most important step for the analysis
 - A dirty work, but someone has to do it.

Preprocessing steps

- Reducing the data: Sampling, Dimensionality Reduction
- Data cleaning: deal with missing or inconsistent information
- Feature extraction and selection: create a useful representation of the data by extracting useful features

SAMPLING – DIMENSIONALITY REDUCTION

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
 - Example: What is the average height of a person in Greece?
 - We cannot measure the height of everybody
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.
 - Example: We have 1M documents. What fraction of pairs has at least 100 words in common?
 - Computing number of common words for all pairs requires 10¹² comparisons
 - Example: What fraction of tweets in a year contain the word "Greece"?
 - 500M tweets per day, if 100 characters on average, 86.5TB to store all tweets

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data
 - Otherwise, we say that the sample introduces some bias
 - What happens if we take a sample from the university campus to compute the average height of a person at loannina?

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once. This makes analytical computation of probabilities easier
 - E.g., we have 100 people, 51 are women P(W) = 0.51, 49 men P(M) = 0.49. If I pick two
 persons what is the probability P(W,W) that both are women?
 - Sampling with replacement: $P(W,W) = 0.51^2$
 - Sampling without replacement: P(W,W) = 51/100 * 50/99

Types of Sampling

- Stratified sampling
 - Split the data into several groups; then draw random samples from each group.
 - Ensures that all groups are represented.
 - Example 1. I want to understand the differences between legitimate and fraudulent credit card transactions. 0.1% of transactions are fraudulent. What happens if I select 1000 transactions at random?
 - I get 1 fraudulent transaction (in expectation). Not enough to draw any conclusions. Solution: sample 1000 legitimate and 1000 fraudulent transactions

Probability Reminder: If an event has probability p of happening and I do N trials, the expected number of times the event occurs is pN

- Example 2. I want to answer the question: Do web pages that are linked have on average more words in common than those that are not? I have 1M pages, and 1M links, what happens if I select 10K pairs of pages at random?
 - Most likely I will not get any links.
 - Solution: sample 10K random pairs, and 10K links

Biased sampling

- Sometimes we want to bias our sample towards some subset of the data
 - Stratified sampling is one example
- Example: When sampling temporal data, we want to increase the probability of sampling recent data
 - Introduce recency bias
- Make the sampling probability to be a function of time, or the age of an item
 - Typical: Probability decreases exponentially with time
 - For item x_t after time t select with probability $p(x_t) \propto e^{-t}$

Sample Size

8000 points

2000 Points

500 Points

Sample Size

 What sample size is necessary to get at least one object from each of 10 groups.

A data mining challenge

 You have N items and you want to sample one item uniformly at random. How do you do that?

 The items are coming in a stream: you do not know the size of the stream in advance, and there is not enough memory to store the stream in memory. You can only keep a constant amount of items in memory

• How do you sample?

 Hint: if the stream ends after reading k items the last item in the stream should have probability 1/k to be selected.

Reservoir Sampling:

Standard interview question for many companies

Reservoir sampling

- Algorithm (in plain English):
 - Obtain the items from the stream one at the time
 - Select the 1st item and store it
 - When seeing the k-th item select it with probability 1/k and replace the existing selection.
- The algorithm stores only one item, and one integer number (the number of items seen so far)

Reservoir sampling proof

 Claim: Every item has probability 1/N to be selected after N items have been read.

Proof

- What is the probability of the *k*-th item to be selected when seen for the first time? $P(k \text{ item selected when first seen}) = \frac{1}{k}$ (*P*(*k selected*))
- What is the probability of the selected item to survive round m:

 $P(\text{selected item survives round } m) = \left(1 - \frac{1}{m}\right) = \frac{m-1}{m}$ (P(survive m))

• The probability that the k-th item is selected after N items are seen

P(*k* item selected after *N* roudns)

= P(k selected)P(k survives **until** round N)

= $P(k \text{ selected})P(k \text{ survives } k + 1)P(k \text{ survives } k + 2) \cdots P(k \text{ survives } N)$

$$= \frac{1}{k} \frac{k}{k+1} \frac{k+1}{k+2} \cdots \frac{N-1}{N}$$
$$= \frac{1}{N}$$

The proof holds for any $k, 1 \le k \le N$

Proof by Induction

- We want to show that the probability the k-th item is selected after $n \ge k$ items have been seen is $\frac{1}{n}$
- Induction on the number of rounds n
 - Base of the induction: For n = k, the probability that the k-th item is selected is the probability that it is selected when first seen: $\frac{1}{k}$
 - Inductive Hypothesis: Assume that the hypothesis is true for $n = m, m \ge k$:
 - The probability that the k-th item is selected at round m is $\frac{1}{m}$
 - Inductive Step: The probability that the k-th item is still selected at round n = m + 1 items is

 $P(k \text{ selected at round } m)P(k \text{ survives } m) = \frac{1}{m} \left(1 - \frac{1}{m+1}\right) = \frac{1}{m+1}$

The proof holds for any $k, 1 \le k \le N$

Dimensionality Reduction

- Sampling reduces the number or records. We can also reduce the dimension of the data, the number of attributes
- Real data is high-dimensional: typically it has several hundreds, thousands, or even million of attributes.
 - Documents represented as vectors of word counts (millions)
 - Facebook users represented as vectors of friends (billions)
 - Customers represented as vectors of products (hundreds of thousands)
- Data is extremely sparse and noisy
- Dimensionality reduction aims to:
 - Reduce the amount of data
 - Extract the useful information.

Example

Consider the following 6-dimensional dataset

$$D = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 2 & 4 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 & 4 & 6 \\ 1 & 2 & 3 & 1 & 2 & 3 \\ 2 & 4 & 6 & 2 & 4 & 6 \end{bmatrix}$$

• What do you observe? Can we reduce the dimension of the data?

Example

$$D = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 2 & 4 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 & 4 & 6 \\ 1 & 2 & 3 & 1 & 2 & 3 \\ 2 & 4 & 6 & 2 & 4 & 6 \end{bmatrix}$$

Each row is a multiple of two vectors

- x = [1, 2, 3, 0, 0, 0]
- y = [0, 0, 0, 1, 2, 3]
- We can rewrite *D* as

$$D = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \\ 0 & 2 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 3 \end{bmatrix}$$

DATA CLEANING

Data Quality

• Examples of data quality problems:

- Noise and outliers
- Missing values
- Duplicate data

A mistake or a millionaire?

Missing values

Inconsistent duplicate entries

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	10000K	Yes	
6	No	NULL	60K	No	
7	Yes	Divorced	220K	NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
9	No	Single	90K	No	

- How do we deal with data that are noisy?
- The benefit of having a lot of data is that we can throw out data that we suspect are problematic or that we do not consider to be useful
- For example:
 - Throw out all records with missing values, or duplicate values.
 - Throw out extreme, or atypical cases
 - In database data, throw out records with outlier values
 - In social network data, keep only users with enough friends but not too many
 - In tweet text data throw out tweets with less than 3 words
 - In transaction data, throw out products (attributes) that are bought by everyone and products that are bought by very few
- We should always be careful not to throw out useful information.

- Deal with compatibility issues
 - Units may be different in different parts of the data (centimeters vs meters, or meters vs feet)
 - Time measurements should be brought into the same time zone.
 - Normalize names:
 - Panayiotis Tsaparas, P. Tsaparas, and P. N. Tsaparas are all the same person
 - Financial units should be normalized
 - Different currencies
 - Prices over time

- Deal with missing values:
 - Ignore the data
 - Replace with random value
 - Not a good idea, but you can understand how the missing value affects the output
 - Replace with the mean
 - Relatively common practice.
 - Should be careful for cases where this does not make sense (e.g., year of birth/death)
 - Replace with nearest neighbor value
 - Replace with cluster mean
 - Infer the value

Deal with missing values: Examples

2	1	8	3
-2	0	-4	-3
2.5	1	7	?

What value would you fill?

Use nearest neighbor and fill in 3

2	1	8	4
3	1.5	6	6
4	2	5	8
2	1	4	4
2.5	1	7	?

What value would you fill?

The last column is twice the first one: fill in 5

2	1	8	3
3	1.5	6	2
-2	0	-4	-3
-1	1	-3	-1
2.5	1	7	?

What value would you fill?

Use cluster mean and fill in 2.5

What value would you fill for timestamp 3?

Linear interpolation

- Deal with outliers:
 - Remove them
 - Try to correct them using common sense
 - Transform the data
 - In some data (e.g., wealth, social media followers) extreme values are expected and interesting
 - In such skewed distributions we typically use the logarithm of the values, or apply binning

• When using the data, we should be careful of cases where our results are too good to be true, or too bad to be true
Data Cleaning

• When using the data, we should be careful of cases where our results are too good to be true, or too bad to be true

Tid	Refund	Marital Status	Taxable Income	Fined
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	100K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Tid	Cheat
1	No
2	No
3	No
4	No
5	Yes
6	No
7	No
8	Yes
9	No
10	No

We trained a classifier to predict if a taxpayer will cheat and we got perfect results. Is our classifier great or is there some problem with the data?

The attribute Fined is the same as the class label we want to predict

Data Cleaning

• When using the data, we should be careful of cases where our results are too good to be true, or too bad to be true

Tid	Refund	Marital Status	Taxable Income
1	Yes	Single	125K
2	No	Married	100K
3	No	Single	70K
4	Yes	Married	120K
5	No	Divorced	100K
6	No	NULL	60K
7	Yes	Divorced	220K
8	No	Single	85K
9	No	Married	90K
10	No	Single	90K

Tid	Cheat
0	No
1	No
2	No
3	No
4	Yes
5	No
6	No
7	Yes
8	No
9	No

We trained a classifier to predict if a taxpayer will cheat and we got bad results. Is our classifier that bad?

The ids for the class labels are not aligned with the ids of the data

FEATURE EXTRACTION

A case study with text data TF-IDF word weighting

Data preprocessing: feature extraction

- The data we obtain are not necessarily as a relational table
- Data may be in a very raw format
 - Examples: text, speech, mouse movements, etc
- We need to extract the features/attributes from the data and build the data matrix
- Feature extraction:
 - Selecting the characteristics by which we want to represent our data
 - It requires some domain knowledge about the data
 - It depends on the application
- Deep learning: helps with this step.

Text data

- Data will often not be in a nice relational table
- For example: Text data
 - We need to do additional effort to extract the useful information from the text data
- We will now see some basic text processing ideas.

A data preprocessing example

 Suppose we want to mine the comments/reviews of people on <u>Yelp</u> or <u>Foursquare</u>.

Mining Task

Collect all reviews for the top-10 most reviewed restaurants in NY in Yelp

```
{"votes": {"funny": 0, "useful": 2, "cool": 1},
"user_id": "Xqd0DzHaiyRqVH3WRG7hzg",
"review_id": "15SdjuK7DmYqUAj6rjGowg",
"stars": 5, "date": "2007-05-17",
"text": "I heard so many good things about this place so I was pretty juiced to try
it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta
say, Shake Shake wins hands down. Surprisingly, the line was short and we waited
about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white
shake. So yummerz. I love the location too! It's in the middle of the city and
the view is breathtaking. Definitely one of my favorite places to eat in NYC.",
"type": "review",
"business_id": "vcNAWiLM4dR7D2nwwJ7nCA"}
```

Feature extraction: Find few terms that best describe the restaurants.

Example data

I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.

I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.

Would I pay \$15+ for a burger here? No. But for the price point they are asking for, this is a definite bang for your buck (though for some, the opportunity cost of waiting in line might outweigh the cost savings) Thankfully, I came in before the lunch swarm descended and I ordered a shake shack (the special burger with the patty + fried cheese & amp; portabella topping) and a coffee milk shake. The beef patty was very juicy and snugly packed within a soft potato roll. On the downside, I could do without the fried portabella-thingy, as the crispy taste conflicted with the juicy, tender burger. How does shake shack compare with in-and-out or 5-guys? I say a very close tie, and I think it comes down to personal affliations. On the shake side, true to its name, the shake was well churned and very thick and luscious. The coffee flavor added a tangy taste and complemented the vanilla shake well. Situated in an open space in NYC, the open air sitting allows you to munch on your burger while watching people zoom by around the city. It's an oddly calming experience, or perhaps it was the food

Decisions, decisions...

- When mining real data you often need to make some decisions
 - What data should we collect? How much? For how long?
 - Should we throw out some data that does not seem to be useful?

- Too frequent data (stop words), too infrequent (errors?), erroneous data, missing data, outliers
- How should we weight the different pieces of data?
- Most decisions are application dependent. Some information may be lost but we can usually live with it (most of the times)
- We should make our decisions clear since they affect our findings.
- Dealing with real data is hard...

Text normalization

- Each review is a long string. We need to transform it into words
- Basic preprocessing:
 - "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
 - Break into words
- There are existing libraries that do these steps.
- Some times we can break into n-grams, or combinations of words.

First cut

Keep the most popular words

the 27514	the 16710	the 16010	the 14241
and 14508	and 9139	and 9504	and 8237
i 13088	a 8583	i 7966	a 8182
a 12152	i 8415	to 6524	i 7001
to 10672	to 7003	a 6370	to 6727
of 8702	in 5363	it 5169	of 4874
ramen 8518	it 4606	of 5159	vou 4515
was 8274	of 4365	is 4519	it 4308
is 6835	is 4340	sauce 4020	is 4016
it 6802	burger 432	in 3951	was 3791
in 6402	was 4070	this 3519	pastrami 3748
for 6145	for 3441	was 3453	in 3508
but 5254	but 3284	for 3327	for 3424
that 4540	shack 3278	you 3220	sandwich 2928
you 4366	shake 3172	that 2769	that 2728
with 4181	that 3005	but 2590	but 2715
pork 4115	you 2985	food 2497	on 2247
my 3841	- my 2514	on 2350	this 2099
this 3487	line 2389	my 2311	my 2064
wait 3184	this 2242	cart 2236	with 2040
not 3016	fries 2240	chicken 2220	not 1655
we 2984	on 2204	with 2195	your 1622
at 2980	are 2142	rice 2049	so 1610
on 2922	with 2095	so 1825	have 1585

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

	+bo 16710		the 14241	
the 27514		the 16010	and 8237	
and 14508	and 9139	and 9504		
i 13088	a 8583	i 7966	a 8182	
-12152	i 8415	1 7500	i 7001	
	+0 7003	to 6524	to 6727	
to 10672		a 6370	of 1871	
of 8702	in 5363	it 5169		
ramen 8518	it 4606	of 5159	you 4515	
Was 8271	of 4365		it 4308	
	is 4340	15 4519	is 4016	
15 6835	humgon 122	sauce 4020	was 3791	
it 6802	burger 452	in 3951	nab 0751	
in 6402	was 4070	this 3519	pastrami 3748	
for 6145	for 3441	was 3453	in 3508	
$h_{11} + 5254$	but 3284	was 3400	for 3424	
	shack 3278	lor 3327	sandwich 2928	
that 4540	shake 2170	you 3220	that 2728	
you 4366	snake 3172	that 2769	but 0715	
with 4181	that 3005	but 2590	but 2715	
pork 4115	you 2985	food 2407	on 2247	
	my 2514	1000 2.4 97		
IIIY 3641	$\frac{1}{1} = 2389$	ost frequent	worde are et	n wc
this 3487		lost nequent		op we
wait 3184	this 2242	cart 2236		
not 3016	fries 2240	chicken 2220	1101 1655	
we 2984	on 2204	with 2195	your 1622	
at 2980	are 2142		so 1610	
at 2900	with 2095	rice 2049	have 1585	
on 2922		so 1825		

Second cut

Remove stop words

Stop-word lists can be found online.

a, about, above, after, again, against, all, am, an, and, any, are, aren't, as, at, be, because , been, before, being, below, between, both, but, by, can't, cannot, could, couldn't, did, di dn't, do, does, doesn't, doing, don't, down, during, each, few, for, from, further, had, hadn 't, has, hasn't, have, haven't, having, he, he'd, he'll, he's, her, here, here's, hers, herse lf, him, himself, his, how, how's, i, i'd, i'll, i'm, i've, if, in, into, is, isn't, it, it's, it s,itself,let's,me,more,most,mustn't,my,myself,no,nor,not,of,off,on,once,only,or , other, ought, our, ours, ourselves, out, over, own, same, shan't, she, she'd, she'll, she's , should, shouldn't, so, some, such, than, that, that's, the, their, theirs, them, themselve s, then, there, there's, these, they, they'd, they'll, they're, they've, this, those, throu gh, to, too, under, until, up, very, was, wasn't, we, we'd, we'll, we're, we've, were, weren't ,what,what's,when,when's,where,where's,which,while,who,who's,whom,why,why's,wit h,won't,would,wouldn't,you,you'd,you'll,you're,you've,your,yours,yourself,yours elves,

Second cut

Remove stop words

• Stop-word lists can be found online.

ramen 8572	burger 4340	sauce 4023	pastrami 3782
pork 4152	shack 3291	food 2507	sandwich 2934
wait 3195	shake 3221	cart 2239	place 1480
good 2867	line 2397	chicken 2238	good 1341
place 2361	fries 2260	rice 2052	get 1251
noodles 2279	good 1920	hot 1835	katz's 1223
ippudo 2261	burgers 1643	white 1782	just 1214
buns 2251	wait 1508	line 1755	like 1207
broth 2041	just 1412	good 1629	meat 1168
like 1902	cheese 1307	lamb 1422	one 1071
just 1896	like 1204	halal 1343	deli 984
get 1641	food 1175	just 1338	best 965
time 1613	get 1162	get 1332	ao 961
one 1460	place 1159	one 1222	ticket 955
really 1437	one 1118	like 1096	food 896
go 1366	long 1013	place 1052	sandwiches 813
food 1296	go 995	qo 965	can 812
bowl 1272	time 951	can 878	beef 768
can 1256	park 887	night 832	order 720
great 1172	can 860	time 794	pickles 699
best 1167	best 849	long 792	time 662
		people 790	

Second cut

Remove stop words

• Stop-word lists can be found online.

ramen 8572	burger 4340	sauce 4023	pastrami 3782	
pork 4152	shack 3291	food 2507	sandwich 2934	
wait 3195	shake 3221	cart 2239	place 1480	
good 2867	line 2397	chicken 2238	good 1341	
place 2361	fries 2260	rice 2052	get 1251	
noodles 2279	good 1920	hot 1835	katz's 1223	
ippudo 2261	burgers 1643	white 1782	just 1214	
buns 2251	wait 1508	line 1755	like 1207	
broth 2041	just 1412	good 1629	meat 1168	
like 1902	cheese 1307	lamb 1422	one 1071	
just 1896	like 1204	halal 1343	deli 984	
get 1641	food 1175	just 1338	best 965	
time 1613	get 1162	get 1332	ao 961	
one 1460	place 1159	one 1222	ticket 955	
really 1437	one 1118	like 1096	food 896	
go 1366	long 1012			
food 1296	monly used w	orde in roviow	ve not so into	roctina
bowl 1272	morny used w		vs, not so inte	i esti ny
can 1256	park 887	night 832	order 720	
great 1172	can 860	time 794	pickles 699	
best 1167	best 849	long 792	time 662	
		people 790		

IDF

- Important words are the frequent words that are unique to the document (differentiating) compared to the rest of the collection
 - All reviews use the word "like". This is not interesting
 - · We want the words that characterize the specific restaurant
- Document Frequency DF(w): fraction of documents that contain word w.

$$DF(w) = \frac{D(w)}{D}$$

D(w): num of docs that contain word wD: total number of documents

• Inverse Document Frequency *IDF*(*w*):

$$IDF(w) = \log\left(\frac{1}{DF(w)}\right)$$

- Maximum when unique to one document : IDF(w) = log(D)
- Minimum when the word is common to all documents: IDF(w) = 0

TF-IDF

- The words that are best for describing a document are the ones that are important for the document, but also unique to the document.
- TF(w, d): term frequency of word w in document d
 - Number of times that the word appears in the document
 - Natural measure of importance of the word for the document
- *IDF*(*w*): inverse document frequency
 - Natural measure of the uniqueness of the word w

•
$$TF$$
- $IDF(w, d) = TF(w, d) \times IDF(w)$

Third cut

Ordered by TF-IDF

ramen 3057,4176194 fries 806,08537330 lamb 985,655290756243 pastrami 1931.94250908298 6 akamaru 2353,24196 custard 729,607519 halal 686,038812717726 katz's 1120.62356508209 4 noodles 1579,68242 shakes 628,4738038 53rd 375,685771863491 rye 1004.28925735888 2 broth 1414.7133955 shroom 515.7790608 gyro 305.809092298788 corned 906.113544700399 2 miso 1252.60629058 burger 457.2646379 pita 304.984759446376 pickles 640.487221580035 4 hirata 709.1962086 crinkle 398.347221 cart 235.902194557873 reuben 515.779060830666 1 hakata 591.7643688 burgers 366.624854 platter 139.45990308004 matzo 430.583412389887 1 shiromaru 587.1591 madison 350.939350 chicken/lamb 135.852520 sally 428.110484707471 2 noodle 581.8446147 shackburger 292.42 carts 120.274374158359 harry 226.323810772916 4 tonkotsu 529.59457 'shroom 287.823136 hilton 84.2987473324223 mustard 216.079238853014 6 ippudo 504.5275695 portobello 239.806 lamb/chicken 82.8930633 cutter 209.535243462458 1 buns 502.296134008 custards 211.83782 yogurt 70.0078652365545 carnegie 198.655512713779 3 ippudo's 453.60926 concrete 195.16992 52nd 67.5963923222322 katz 194.387844446609 7 modern 394.8391629 bun 186.9621782983 6th 60.7930175345658 knish 184.206807439524 1 9 egg 367.3680056967 milkshakes 174.996 4am 55.4517744447956 5 sandwiches 181.415707218 8 shoyu 352.29551922 concretes 165.7861 yellow 54.4470265206673 brisket 131.945865389878 4 chashu 347.6903490 portabello 163.483 tzatziki 52.95945713886 fries 131.613054313392 7 karaka 336.1774235 shack's 159.334353 lettuce 51.323016802268 salami 127.621117258549 3 kakuni 276.3102111 patty 152.22603588 sammy's 50.656872045869 knishes 124.339595021678 1 ramens 262,4947006 ss 149,66803104461 sw 50,5668577816893 3 delicatessen 117.488967607 2 bun 236.5122638036 patties 148.068287 platters 49.90659700031 deli's 117.431839742696 1 wasabi 232.3667512 cam 105.9496067806 falafel 49.479699521204 carver 115.129254649702 1 dama 221.048168927 milkshake 103.9720 sober 49.2211422635451 brown's 109.441778045519 2 brulee 201.1797390 lamps 99.011158998 moma 48.1589121730374 matzoh 108.22149937072 1

Third cut

- TF-IDF takes care of stop words as well
- We do not need to remove the stopwords since they will get IDF(w) = 0
- Important: IDF is collection-dependent!
 - For some other corpus the words get, like, eat, may be important

The preprocessing pipeline for our text mining task

Word and document representations

- Using TF-IDF values has a very long history in text mining
 - Assigns a numerical value to each word, and a vector to a document
- Recent trend: Use word embeddings
 - Map every word into a multidimensional vector
- Use the notion of context: the words that surround a word in a phrase
 - Similar words appear in similar contexts
 - Similar words should be mapped to close-by vectors
- Example: words "movie" and "film"

The actor for the movie film Joker is candidate for an Oscar

- Both words are likely to appear with similar words
 - director, actor, actress, scenario, script, Oscar, cinemas etc

word2vec

Two approaches

CBOW: Learn an embedding for words so that given the context you can predict the missing word

Skip-Gram: Learn an embedding for words such that given a word you can predict the context

Figure 3: The skip-gram model.

Figure 2: Continuous bag-of-word model

DATA NORMALIZATION

Normalization of numeric data

- In many cases it is important to normalize the data rather than use the raw values
- The kind of normalization that we use depends on what we want to achieve

- In this data, different attributes take very different range of values.
 For distance/similarity the small values will disappear
- We need to make them comparable

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

- Divide (the values of a column) by the maximum value for each attribute
 - Brings everything in the [0,1] range, maximum is 1

Temperature	Humidity	Pressure
0.9375	1	0.9473
1	0.625	0.8421
0.75	0.375	1

new value = old value / max value in the column

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

- Subtract the minimum value and divide by the difference of the maximum value and minimum value for each attribute
 - Brings everything in the [0,1] range, maximum is one, minimum is zero

Temperature	Humidity	Pressure
0.75	1	0.33
1	0.6	0
0	0	1

new value = (old value - min column value) / (max col. value - min col. value)

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

- Subtract the mean value for each column centering of features
 - All columns have mean zero

Temperature	Humidity	Pressure
1.33	0.27	1.67
3.33	-0.03	-8.33
-4.67	-0.23	6.67

	Temperature	Humidity	Pressure
	30	0.8	90
	32	0.5	80
	24	0.3	95
ean	28.67	0.53	88.33

new value = (old value – avg column value)

Subtract the mean value for each column – centering of features

- All columns have mean zero
- Divide with the length of the centered column vector
 - All columns are unit vectors

Temperature	Humidity	Pressure
0.23	0.75	0.15
0.57	-0.09	-0.77
-0.79	-0.66	0.62

	Temperature	Humidity	Pressure
	30	0.8	90
	32	0.5	80
	24	0.3	95
ean	28.67	0.53	88.33

	Temperature	Humidity	Pressure
	1.33	0.27	1.67
	3.33	-0.03	-8.33
	-4.67	-0.23	6.67
gth	5.89	0.36	10.80

There is a relationship between z-score and centered unit vectors, what is it?

Subtract the mean value for each column – centering of features

- All columns have mean zero
- Divide with the standard deviation of the column vector
 - Computes the z-score
 - Number of standard deviations away from the mean

Temperature	Humidity	Pressure
0.23	0.75	0.15
0.57	-0.09	-0.77
-0.79	-0.66	0.62
new value = $\frac{\text{old value} - \text{mean value}}{\frac{1}{2}}$		
standard deviation		

mean(x) =
$$\frac{1}{N} \sum_{j=1}^{N} x_j$$

std(x) = $\sqrt{\frac{\sum_{j=1}^{N} (x_j - \text{mean}(x))^2}{N}}$
Z-score: $z_i = \frac{x_i - \text{mean}(x)}{\text{std}(x)}$
 $\frac{\text{Temperature}}{30}$ $\frac{1}{0.8}$ $\frac{90}{32}$
 32 $\frac{0.5}{80}$
 24 $\frac{0.3}{95}$ $\frac{95}{80}$
24 $\frac{0.53}{88.33}$ $\frac{88.33}{88.33}$
std 3.40 $\frac{0.21}{6.24}$

• Are these documents similar?

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

- Are these documents similar?
- Divide by the sum of values for each document (row in the matrix)
 - Transform a vector into a distribution*

	Word 1	Word 2	Word 3
Doc 1	0.28	0.5	0.22
Doc 2	0.24	0.5	0.26

new value = old value / Σ old values in the row

*For example, the value of cell (Doc1, Word2) is the probability that a randomly chosen word of Doc1 is Word2

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

• Do these two users rate movies in a similar way?

	Movie 1	Movie 2	Movie 3
User 1	1	2	3
User 2	2	3	4

- Do these two users rate movies in a similar way?
- Subtract the mean value for each user (row) centering of data
 - Captures the deviation from the average behavior

	Movie 1	Movie 2	Movie 3
User 1	-1	0	+1
User 2	-1	0	+1

new value = (old value – mean row value) [/ (max row value – min row value)]

	Movie 1	Movie 2	Movie 3	Mean
User 1	1	2	3	2
User 2	2	3	4	3

• Z-score:

$$mean(x) = \frac{1}{N} \sum_{j=1}^{N} x_j$$

$$z_{i} = \frac{x_{i} - \operatorname{mean}(x)}{\operatorname{std}(x)} \qquad \qquad \operatorname{std}(x) = \sqrt{\frac{\sum_{j=1}^{N} (x_{j} - \operatorname{mean}(x))^{2}}{N}}$$

Average "distance" from the mean N may be N-1: population vs sample

Measures the number of standard deviations away from the mean

	Movie 1	Movie 2	Movie 3
User 1	1.01	-0.87	-0.22
User 2	-1.01	0.55	0.93

	Movie 1	Movie 2	Movie 3	Mean	STD
User 1	5	2	3	3.33	1.53
User 2	1	3	4	2.66	1.53

Softmax function

- What if we want to transform the scores into a probability distribution, but capture the single selection of the user?
 - We want most of the probability mass to a single (or a few) restaurants
- Use the softmax function

$$\frac{e^{x_i}}{\sum_i e^{x_i}}$$

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	0.72	0.10	0.18
User 2	0.07	0.31	0.62

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	5	2	3
User 2	1	3	4
Row Normalization

- What if we want to transform the score into a probability that the user will visit the restaurant again
 - Different from "probability that the user will select one among the three".
 - It is not a distribution over the restaurants, it is a distribution that over the events "will visit again"/ "will not visit again"
- One idea: Normalize by the max score:

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	1	0.4	0.6
User 2	0.25	0.75	1

Problem with that?

• We have probability 1, too strong

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	5	2	3
User 2	1	3	4

Logistic function

• Another idea: Use the logistic function:

- Maps reals to the [0,1] range
- Mimics the step function
- In the class of sigmoid functions

$\phi(x) =$	1	
$\varphi(x) =$	$1 + e^{-x}$	

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	0.99	0.88	0.95
User 2	0.73	0.95	0.98

Problem: Too big values for all restaurants

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	5	2	3
User 2	1	3	4

Logistic function

• Another idea: Use the logistic function:

- Maps reals to the [0,1] range
- Mimics the step function
- In the class of sigmoid functions

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	0.84	0.20	0.42
User 2	0.16	0.58	0.79

Subtract the mean Mean value gets 50-50 probability

	Restaurant 1	Restaurant 2	Restaurant 3
User 1	1.67	-1.33	-0.33
User 2	-1.67	0.33	1.33

Sigmoid function

- General sigmoid function:
 - We can control the zero point and the slope

Logarithm function

 Sometimes a data row/column may have a very wide range of values. Normalizing in this case will obliviate small values.

User id	Income
1	6000
2	6500
3	7000
4	4000
5	8000
6	9000
7	18000
8	36000
9	600000
10	1000000

Average = 170K

Logarithm function

 We can bring the values to the same scale by applying a logarithm to the column values.

User id	Income	Log Income
1	6000	3.778151
2	6500	3.812913
3	7000	3.845098
4	4000	3.60206
5	8000	3.90309
6	9000	3.954243
7	18000	4.255273
8	36000	4.556303
9	600000	5.778151
10	1000000	6

Figure 11.2. Lognormal distribution.

(Left) Lognormal distribution. The distribution appears Gaussian when plotted on a logarithmic axis (right) or when all values are transformed to their logarithm.

Practical advices for pre-processing

Never throw out raw data!

- It is usually painful to collect, so raw data is precious. Always keep a copy so you can go back and change the processing
- Keep the output of intermediate steps
 - Useful for making small changes at different points in the pipeline and not run everything from scratch
- Carefully document the pre-processing steps
 - The output you will get is for the specific pre-processing you have applied.
 - For example, if you remove outliers, you lose any information they may carry
 - If you throw out some parts of the data (e.g., reviews not in English) you now have a biased sample of your data, and this bias should be documented

POST-PROCESSING

The data mining pipeline

Post-Processing: Make the data actionable and useful to the user

- Statistical analysis of importance of results
- Visualization

Post-processing

- Visualization
 - The human eye is a powerful analytical tool
 - If we visualize the data properly, we can discover patterns and demonstrate trends
 - Visualization is the way to present the data so that patterns can be seen
 - E.g., histograms and plots are a form of visualization
 - There are multiple techniques (a field on its own)

Visualization on a map

John Snow, London 1854

Figure 1.1: Plotting cholera cases on a map of London

Charles Minard map

Another interesting visualization

<u>China growth over the years</u>

<u>XKCD: Earth Temperature Over Time</u>

Word Clouds

• A fancy way to visualize a document or collection of documents.

Heatmaps

- Plot a point-to-point similarity matrix using a heatmap:
 - Deep red = high values (hot)
 - Dark blue = low values (cold)

The clustering structure becomes clear in the heatmap

Heatmaps

- Heatmap (grey scale) of the data matrix
 - Document-word frequencies

Words

Before clustering

After clustering

Heatmaps

A very popular way to visualize data

Map created by 🚣 Mark Graves

http://projects.oregonlive.com/ucc-shooting/gun-deaths.php

Dimensionality Reduction

- The human eye is limited to processing visualizations in two (at most three) dimensions
- One of the great challenges in visualization is to visualize highdimensional data into a two-dimensional space
- We can use dimensionality reduction for this task
- Similar to this are distance preserving embeddings

Example

Three types of data points

Each row is a multiple of two vectors

•
$$x = [1, 2, 3, 0, 0, 0]$$

•
$$y = [0, 0, 0, 1, 2, 3]$$

• We can rewrite D as

$$D = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \\ 0 & 2 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 3 \end{bmatrix}$$

Non-linear dimensionality reduction

- The idea in the previous dimensionality reduction, and visualization was to change the axes through linear transformations
- There are also non-linear techniques for dimensionality reduction that lead to better visualization
- t-SNE is considered the state-of-the-art

Statistical Significance

- When we extract knowledge from a large dataset we need to make sure that what we found is not an artifact of randomness
 - E.g., we find that many people buy milk and toilet paper together.
 - But many (more) people buy milk and toilet paper independently
- Statistical tests compare the results of an experiment with those generated by a null hypothesis
 - E.g., a null hypothesis is that people select items independently.
- A result is interesting if it cannot be produced by randomness.
 - An important problem is to define the null hypothesis correctly: What is random?

Meaningfulness of Answers

- A big data-mining risk is that you will "discover" patterns that are meaningless.
- Statisticians call it Bonferroni's principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.
- The Rhine Paradox: a great example of how not to conduct scientific research.

Rhine Paradox – (1)

- Joseph Rhine was a parapsychologist in the 1950's who hypothesized that some people had Extra-Sensory Perception.
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards – red or blue.
- He discovered that almost 1 in 1000 had ESP they were able to get all 10 right!

Rhine Paradox – (2)

- He told these people they had ESP and called them in for another test of the same type.
- Alas, he discovered that almost all of them had lost their ESP.
 Why?
- What did he conclude?
 - Answer on next slide.

CS345A Data Mining on the Web: Anand Rajaraman, Jeff Ullman

Rhine Paradox – (3)

 He concluded that you shouldn't tell people they have ESP; it causes them to lose it.