
DATA MINING

CLASSIFICATION
Nearest Neighbor Classifier

Support Vector Machines (SVM)

Logistic Regression

Neural Networks

Word Embeddings

Supervised Learning Pipeline

NEAREST NEIGHBOR

CLASSIFICATION

Instance-Based Classifiers

Atr1 ……... AtrN Class

A

B

B

C

A

C

B

Set of Stored Cases

Atr1 ……... AtrN

Unseen Case

• Store the training records

• Use training records to

 predict the class label of

 unseen cases

Instance Based Classifiers

• Examples:

• Rote-learner

• Memorizes entire training data and performs classification only if attributes of record

match one of the training examples exactly

• Nearest neighbor classifier

• Uses k “closest” points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

• Basic idea:

• “If it walks like a duck, quacks like a duck, then it’s probably a duck”

Training

Records

Test

Record

Compute

Distance

Choose k of the

“nearest” records

Nearest-Neighbor Classifiers

Requires three things

– The set of stored records

– Distance Metric to compute

distance between records

– The value of k, the number of

nearest neighbors to retrieve

To classify an unknown record:

1. Compute distance to other

training records

2. Identify k nearest neighbors

3. Use class labels of nearest

neighbors to determine the

class label of unknown

record (e.g., by taking

majority vote)

Unknown record

Nearest Neighbor Classification

• Compute distance between two points:

• Typically, Euclidean distance is used

𝑑 𝑝, 𝑞 = ෍

𝑖

𝑝𝑖 − 𝑞𝑖
2

• Determine the class from nearest neighbor list

• Take the majority vote of class labels among the k-nearest

neighbors

• Weigh the vote according to distance

• weight factor, w = 1/d2

Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points

that have the k smallest distance to x

1 nearest-neighbor
Voronoi Diagram defines the classification boundary

The area takes the

class of the green

point

1-NN Voronoi diagram

Nearest Neighbor Classification…

• Choosing the value of k:

• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points from other classes

X

The value of k determines the complexity of

the model

Lower k produces more complex models

resulting in overfitting

Example

Nearest neighbor Classification…

• k-NN classifiers are lazy learners

• It does not build models explicitly

• Unlike eager learners such as decision trees

• Classifying unknown records is relatively expensive

• Naïve algorithm: O(n)

• Need for structures to retrieve nearest neighbors fast.

• The Nearest Neighbor Search problem.

• Also, Approximate Nearest Neighbor Search

• Issues with distance in very high-dimensional spaces

• Curse of dimensionality

SUPPORT VECTOR MACHINES

Linear classifiers

• SVMs are part of a family of classifiers that assumes that the

classes are linearly separable

• That is, there is a hyperplane that separates (approximately, or

exactly) the instances of the two classes.

• The goal is to find this hyperplane

Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data

Support Vector Machines

• One Possible Solution

B1

Support Vector Machines

• Another possible solution

B
2

Support Vector Machines

• Other possible solutions

B
2

Support Vector Machines

• Which one is better? B1 or B2?

• How do you define better?

B
1

B
2

Support Vector Machines

• Find hyperplane maximizes the margin : B1 is better than B2

B
1

B
2

b
11

b
12

b
21

b
22

margin

Support Vector Machines
B

1

b
11

b
12

0=+• bxw


1−=+• bxw
 1+=+• bxw







−+•−

+•
=

1bxw if1

1bxw if1
)(



xf

||||

2
Margin

w
=

Support Vector Machines

• We want to maximize: 𝑀𝑎𝑟𝑔𝑖𝑛 =
2

𝑤

• Which is equivalent to minimizing:𝐿 𝑤 =
𝑤 2

2

• But subjected to the following constraints:

𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 if 𝑦𝑖 = 1
𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 if 𝑦𝑖 = −1

• This is a constrained optimization problem
• Numerical approaches to solve it (e.g., quadratic programming)

Concisely:

𝑦𝑖 𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1

Support Vector Machines

• What if the problem is not linearly separable?

Support Vector Machines

• What if the problem is not linearly separable?

𝜉𝑖

𝑤

𝑤 ⋅ Ԧ𝑥 + 𝑏 = −1 + 𝜉𝑖

Support Vector Machines

• What if the problem is not linearly separable?

• Introduce slack variables

• Minimize:

𝐿 𝑤 =
𝑤 2

2
+ 𝐶 ෍

𝑖=1

𝑁

𝜉𝑖

𝑘

• Subject to:

𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 if 𝑦𝑖 = 1
𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 + 𝜉𝑖 if 𝑦𝑖 = −1

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Nonlinear Support Vector Machines

• Trick: Transform data into higher dimensional space

Decision boundary:

𝑤 ⋅ Φ Ԧ𝑥 + 𝑏 = 0

Learning Nonlinear SVM

• Optimization problem:

• Which leads to the same set of equations (but involve (𝑥) instead

of 𝑥)

Learning NonLinear SVM

• Issues:

• What type of mapping function  should be used?

• How do we do the computation in high dimensional space?

• Most computations involve dot product  𝑥𝑖 ⋅ (𝑥𝑗)

• Curse of dimensionality?

Learning Nonlinear SVM

• Kernel Trick:

•  𝑥𝑖 ⋅ (𝑥𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗)

• 𝐾(𝑥𝑖, 𝑥𝑗) is a kernel function (expressed in terms of the coordinates in the

original space)

• Examples:

Example of Nonlinear SVM

SVM with polynomial

degree 2 kernel

𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗 + 1
2

Learning Nonlinear SVM

• Advantages of using kernel:

• Don’t have to know the mapping function 

• Computing dot product  𝑥𝑖 ⋅ (𝑥𝑗) in the original space avoids curse of

dimensionality

• Not all functions can be kernels

• Must make sure there is a corresponding  in some high-dimensional space

• Mercer’s theorem (see textbook)

LOGISTIC REGRESSION

Classification via regression

• Instead of predicting the class of a record we want to predict the

probability of the class given the record

• Transform the classification problem into a regression problem.

• But how do you define the probability that you want to predict?

Linear regression

• A simple approach: use linear regression to learn a linear function that
predicts 0/1 values
• Not good: It may produce negative probabilities, or probabilities that are greater

than 1.

• Also the probabilities it produces are not what we want. We want probability close
to zero for small values, and close to 1 for large, and a transition from 0 to 1 around
the value 20

The logistic function

𝛽 controls the slope

𝑎 controls the position of the turning point

𝑓 𝑥 =
1

1 + 𝑒−𝑎−𝛽𝑥

Logistic Regression
𝑓 𝑥 =

1

1 + 𝑒−𝑥

𝑃 𝐶+ 𝑥 =
1

1 + 𝑒−𝛽𝑥−𝑎

𝑃 𝐶− 𝑥 =
𝑒−𝛽𝑥−𝑎

1 + 𝑒−𝛽𝑥−𝑎

log
𝑃 𝐶+ 𝑥

𝑃 𝐶− 𝑥
= 𝛽𝑥 + 𝑎

Logistic Regression: Find the values

𝛽, 𝛼 that maximize the probability of

the observed data

Class Probabilities

Linear regression on the log-odds ratio

Logistic Regression in one dimension

Logistic Regression in one dimension

Class probabilities for multiple dimensions

• Assume a linear classification boundary

𝑤 ⋅ 𝑥 = 0

𝑤 ⋅ 𝑥 > 0

𝑤 ⋅ 𝑥 < 0

For the positive class the bigger the value

of 𝑤 ⋅ 𝑥, the further the point is from the

classification boundary, the higher our

certainty for the membership to the positive

class

• Define 𝑃(𝐶+|𝑥) as an increasing function

of 𝑤 ⋅ 𝑥

For the negative class the smaller the

value of 𝑤 ⋅ 𝑥, the further the point is from

the classification boundary, the higher our

certainty for the membership to the

negative class

• Define 𝑃(𝐶−|𝑥) as a decreasing function

of 𝑤 ⋅ 𝑥

Logistic Regression 𝑓 𝑡 =
1

1 + 𝑒−𝑡

𝑃 𝐶+ 𝑥 =
1

1 + 𝑒−𝑤⋅𝑥−𝑎

𝑃 𝐶− 𝑥 =
𝑒−𝑤⋅𝑥−𝑎

1 + 𝑒−𝑤⋅𝑥−𝑎

log
𝑃 𝐶+ 𝑥

𝑃 𝐶− 𝑥
= 𝑤 ⋅ 𝑥 + 𝑎

Logistic Regression: Find the

vector 𝑤, 𝑎 that maximizes the

probability of the observed data

Class probabilities

Linear regression on the log-odds ratio

Logistic regression in 2-d

Coefficients

𝛽1 = −1.9
𝛽2 = −0.4
𝛼 = 13.04

Estimating the coefficients

• Maximum Likelihood Estimation:

• We have pairs of the form (𝑥𝑖 , 𝑦𝑖)

• Log Likelihood function

𝐿 𝑤 = ෍

𝑖

𝑦𝑖 log 𝑃 𝑦𝑖 𝑥𝑖 , 𝑤 + 1 − 𝑦𝑖 log(1 − 𝑃 𝑦𝑖 𝑥𝑖 , 𝑤)

• Unfortunately, it does not have a closed form solution

• Use gradient descend to find local minimum

Logistic Regression

• Produces a probability estimate for the class membership which is

often very useful.

• The weights can be useful for understanding the feature

importance.

• Works for relatively large datasets

• Fast to apply.

NEURAL NETWORKS
(Thanks to Philipp Koehn for the material borrowed from his slides)

50

Linear Classification

• A simple model for classification is to take a linear combination of

the feature values and compute a score.

• Input: Feature vector 𝒙 = (𝑥1, … , 𝑥𝑛)

• Model: Weights 𝒘 = (𝑤1, … , 𝑤𝑛)

• Output: 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = σ𝑖 𝑤𝑖𝑥𝑖

• Make a decision depending on the output score.

• E.g.: Decide “Yes” if 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 > 0 and “No” if 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 < 0

• The perceptron classification algorithm

51

Linear Classification

• We can represent this as a network

52

Input nodes

correspond to

features

𝑥1

𝑥3

𝑥4

𝑥5

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

Edges correspond to weights

𝑠𝑐𝑜𝑟𝑒(𝒘, 𝒙)

“Output” node with

incoming edges computes

the score

Linear models

• Linear models partition the space according to a

hyperplane

• But they cannot model everything

53

Multiple layers

• We can add more layers:

• Each arrow has a weight

• Nodes compute scores from incoming edges and give input to outgoing edges

54

Did we gain anything?

Non-linearity

• Instead of computing a linear combination

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = ෍

𝑖

𝑤𝑖𝑥𝑖

• Apply a non-linear function on top:

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖

• Popular functions:

55

These functions play the role of a soft “switch” (threshold function)

Multiple layers

• Each layer applies a logistic function to the input linear combination:

• The result is a more complex function

56

Side note

• Logistic regression classifier:

• Single layer with a logistic function

57

Deep learning

• Networks with multiple layers

• Each layer can be thought of as a processing step

• Multiple layers allow for the computation of more complex functions

58

Deep Learning

Image Pixels Edges Car parts Car models

Example

• A network that implements XOR

60

Hidden node ℎ0 is OR

Bias term
Hidden node ℎ1 is AND

Output node ℎ1 − ℎ0

Error

• The computed value is 0.76 but the correct value is 1

• There is an error in the computation

• How do we set the weights so as to minimize this error?

61

Gradient Descent

• The error is a function of the weights:

𝐸 = 𝑓 𝒘 = 𝑓(𝑤1, 𝑤2, … , 𝑤𝑁)

• We want to find the weights that minimize the error

• Compute gradient: gives the direction to the minimum

𝝏𝒇 =
𝜕𝑓 𝑤1

𝜕𝑤1
, … ,

𝜕𝑓 𝑤𝑁

𝜕𝑤𝑁

• Adjust weights, moving at the direction of the gradient.

𝒘 = 𝒘 − 𝜼𝝏𝒇

62

Gradient Descent

63

Gradient Descent

64

Backpropagation

• How can we compute the gradients? Backpropagation!

• Main idea:

• Start from the final layer: compute the gradients for the weights of the final layer.

• Use these gradients to compute the gradients of previous layers using the chain

rule

• Propagate the error backwards

• Backpropagation essentially is an application of the chain rule for

differentiation.

• Chain rule:

𝜕𝑔 𝑓 𝑥

𝜕𝑥
=

𝜕𝑔 𝑓 𝑥

𝜕𝑓

𝜕𝑓 𝑥

𝜕𝑥

65

Forward and backward passes

• The training process works as follows:

• Start with some initial weights

• Forward pass: Compute the outputs of all internal nodes

• Backward pass: Perform backpropagation to estimate the gradients

• Change the weights to move towards the direction of the gradient

• Repeat

66

67

𝑥1

𝑥2 ℎ2 𝑦2

𝑦1ℎ1

𝑎11

𝑎22

𝑎21

𝑎12

𝑏11

𝑏22

𝑏21

𝑏12

Error: 𝐸 = 𝑦 − 𝑡 2 = 𝑦1 − 𝑡1
2 + 𝑦2 − 𝑡2

2

Notation:

Activation function: 𝑔

𝑠𝑦1
= 𝑏11ℎ1 + 𝑏12ℎ2 , 𝑦1 = 𝑔 𝑠𝑦1

𝑠𝑦2
= 𝑏21ℎ1 + 𝑏22ℎ2 , 𝑦2 = 𝑔(𝑠𝑦2

)

𝑠ℎ1
= 𝑎11𝑥1 + 𝑎12𝑥2 , ℎ1 = 𝑔(𝑠ℎ1

)

𝑠ℎ2
= 𝑎21𝑥1 + 𝑎22𝑥2 , ℎ2 = 𝑔(𝑠ℎ2

)

𝜕𝐸

𝜕𝑏11
=

𝜕𝐸

𝜕𝑦1

𝜕𝑦1

𝜕𝑠𝑦1

𝜕𝑠𝑦1

𝜕𝑏11
= 𝛿𝑦1

ℎ1

𝜕𝐸

𝜕𝑎11
=

𝜕𝐸

𝜕𝑠ℎ1

𝜕𝑠ℎ1

𝜕𝑎11
= 𝛿ℎ1

𝑥1

𝛿𝑦1
=

𝜕𝐸

𝜕𝑦1

𝜕𝑦1

𝜕𝑠𝑦1

 = 2 𝑦1 − 𝑡1 𝑔′(𝑠𝑦1
) =

𝜕𝐸

𝜕𝑠𝑦1

𝜕𝐸

𝜕𝑏21
= 𝛿𝑦2

ℎ1 𝛿𝑦2
=

𝜕𝐸

𝜕𝑠𝑦2
= 2 𝑦2 − 𝑡2 𝑔′(𝑠𝑦2

)

𝜕𝐸

𝜕𝑏12
= 𝛿𝑦1

ℎ2

𝜕𝐸

𝜕𝑏22
= 𝛿𝑦2

ℎ2

𝛿ℎ1
=

𝜕𝐸

𝜕𝑠ℎ1

=
𝜕𝐸

𝜕ℎ1

𝜕ℎ1

𝜕𝑠ℎ1

=
𝜕𝐸

𝜕𝑠𝑦1

𝜕𝑠𝑦1

𝜕ℎ1
+

𝜕𝐸

𝜕𝑠𝑦2

𝜕𝑠𝑦2

𝜕ℎ1
𝑔′ 𝑠ℎ1

= 𝛿𝑦1
𝑏11 + 𝛿𝑦2

𝑏21 𝑔′(𝑠ℎ1
)

𝛿ℎ2
= 𝛿𝑦1

𝑏12 + 𝛿𝑦2
𝑏22 𝑔′(𝑠ℎ2

)

𝜕𝐸

𝜕𝑎22
=

𝜕𝐸

𝜕𝑠ℎ2

𝜕𝑠ℎ2

𝜕𝑎22
= 𝛿ℎ2

𝑥2
𝜕𝐸

𝜕𝑎21
= 𝛿ℎ1

𝑥2
𝜕𝐸

𝜕𝑎12
= 𝛿ℎ2

𝑥1

We have already

computed ℎ1, ℎ2

All terms in orange

are computed in

the forward pass

Backpropagation

68

𝑥𝑗

ℎ𝑖

𝑎𝑖𝑗

𝑦1 𝑦𝑘 𝑦𝑛

𝑏𝑘𝑖𝑏1𝑖 𝑏𝑛𝑖

𝑠𝑦1

𝑠𝑦𝑘 𝑠𝑦𝑛

𝛿𝑦1
=

𝜕𝐸

𝜕𝑠𝑦1

𝛿𝑦𝑘
=

𝜕𝐸

𝜕𝑠𝑦𝑘

𝛿𝑦𝑛
=

𝜕𝐸

𝜕𝑠𝑦𝑛
𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘
𝑏𝑘𝑖 𝑔′ 𝑠ℎ𝑖

𝑥𝑗

𝑠ℎ𝑖

For the sigmoid activation function:

𝑔 𝑡 =
1

1 + 𝑒−𝑡

The derivative is:

𝑔′ 𝑡 = 𝑔(𝑡)(1 − 𝑔 𝑡)

This makes it easy to compute it. We have:

𝑔′ 𝑠ℎ𝑖
= ℎ𝑖(1 − ℎ𝑖)

Therefore

𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘
𝑏𝑘𝑖 ℎ𝑖(1 − ℎ𝑖)𝑥𝑗

We want to compute
𝜕𝐸

𝜕𝑎𝑖𝑗

We have already computed the 𝛿𝑦𝑘
’s at

the previous step of the back propagation

We have already computed the ℎ𝑖 and 𝑥𝑗’s

at the forward pass

Stochastic gradient descent

• Ideally the loss should be the average loss over all training data.

• We would need to compute the loss for all training data every time

we update the gradients.

• However, this is expensive.

• Stochastic gradient descent: Consider one input point at the time.

Each point is considered only once.

• Intermediate solution: Use mini-batches of data points.

69

WORD EMBEDDINGS
Thanks to Chris Manning for the slides

70

Basic Idea

71

• You can get a lot of value by representing a word by means

of its neighbors

• “You shall know a word by the company it keeps”
• (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

 saying that Europe needs unified banking regulation to replace the hodgepodge

 These words will represent banking 

Basic idea

Define a model that aims to predict between a center word 𝑤𝑐 and

context words in some window of length 𝑚 in terms of word vectors

… turning into banking crises as …

Center word
context words context words

window of size 2 each side

𝑤𝑐 𝑤𝑐−1 𝑤𝑐−2 𝑤𝑐+2 𝑤𝑐+1

Word2Vec

73

Predict between every word and its context words

Two algorithms

1. Skip-grams (SG)

Predict context words given the center word

𝑃 𝑤𝑐−1 𝑤𝑐 , 𝑃 𝑤𝑐−2 𝑤𝑐 , 𝑃 𝑤𝑐+1 𝑤𝑐 , 𝑃 𝑤𝑐+2 𝑤𝑐

2. Continuous Bag of Words (CBOW)

Predict center word from a bag-of-words context

𝑃 𝑤𝑐 𝑤𝑐−2 , 𝑤𝑐−1, 𝑤𝑐+1, 𝑤𝑐+2

Position independent (do not account for distance from center)

CBOW

74

Use a window of context words to predict the center word

Learn two matrices (𝑁 size of embedding, |𝑉| number of words)

|𝑉|

Embedding of the 𝑖-th word when

center word

𝑖

𝑁

𝑊
𝑊′

𝑁

|𝑉|

𝑖

Embedding of

the i-th word

when context

word

|𝑉| 𝑥 𝑁 context embeddings

when input

𝑁 𝑥 |𝑉| center

embeddings

when output

CBOW

75

Given window size m, 𝑥(𝑐) one hot vector for context words, y one hot vector for the

center word

1. Input: the one hot vectors for the 2m context words

𝑥(𝑐−𝑚), …, 𝑥(𝑐−1), 𝑥(𝑐+1), …, 𝑥(𝑐+𝑚)

2. Compute the embeddings of the context words

 𝑣𝑐−𝑚 = 𝑊𝑥(𝑐−𝑚), …, 𝑣𝑐−1 = 𝑊𝑥(𝑐−1), 𝑣𝑐+1 = 𝑊𝑥(𝑐+1), …, 𝑣𝑐+𝑚= 𝑊𝑥(𝑐+𝑚)

3. Average these vectors: ො𝑣 =
𝑣𝑐−𝑚+𝑣𝑐−𝑚+1+⋯𝑣𝑐+𝑚

2𝑚
, ො𝑣 ∈ 𝑅𝑁

4. Generate a score vector: 𝑧 = 𝑊′ ො𝑣

5. Turn the score vector to probabilities: ො𝑦 = softmax(z) We want this to be close

to 1 for the center word

Softmax

𝑝𝑖 =
𝑒𝑣𝑖

σ𝑗 𝑒𝑣𝑗

• E.g. “The cat sat on floor”

• Window size = 2

76

the

cat

on

floor

sat

77

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector one-hot

vector

Index of cat in vocabulary

78

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector one-hot

vector

Index of cat in vocabulary

𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

V-dim

We must learn W and W’

𝑊′𝑁×𝑉

79

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0
1
0
0
0
0
0
0
…
0

𝑊𝑉×𝑁
𝑇 × 𝑥𝑐𝑎𝑡 = 𝑣𝑐𝑎𝑡

2.4

2.6

…

…

1.8

=

80

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

𝑊𝑉×𝑁
𝑇 × 𝑥𝑜𝑛 = 𝑣𝑜𝑛

1.8

2.9

…

…

1.9

=

81

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

1

2
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛 = ො𝑣

1.8

2.9

…

…

1.9

=

2.4

2.6

…

…

1.8

+
1

2
 ()

2.1

4.05

…

…

1.85

82

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector

V-dim

V-dim

N-dim
V-dim

𝑊𝑉×𝑁
′ × ො𝑣 = 𝑧

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00ො𝑦sat
ො𝑣

We want ො𝑦 close to ො𝑦𝑠𝑎𝑡

83

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer
Output layer

𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

V-dim

𝑊′𝑁×𝑉

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

𝑊𝑉×𝑁
Τ

The word embeddings

We can consider either 𝑊 (context) or 𝑊′ (center)

as the word’s representation.

Or even take the average.

Skipgram

84

Given the center word, predict (or, generate) the context words

𝑊: 𝑁 × |𝑉|, input matrix, word representation as center word

𝑊′: 𝑉 × 𝑁, output matrix, word representation as context word

𝑦(𝑗) one hot vector for context words

1. Get one hot vector of the center word 𝑥𝑐

2. Get the embedding of the center word: 𝑣𝑐 = 𝑊 𝑥c

3. Get the embedding of all context words: 𝑧 = 𝑊′ 𝑣𝑐

5. Turn the score vector into probabilities: ො𝑦 = softmax(z)

We want this to be close to 1 for the context words

Skipgram

85

• For each word t = 1 … T, predict surrounding words in a window

of “radius” m of every word.

• Objective function: Maximize the probability of any context word

given the current center word:

where θ represents all variables we will optimize

𝐽′ 𝜃 = ෑ

𝑡=1

𝑇

ෑ
−𝑚≤𝑗≤𝑚

𝑗≠0

𝑝 𝑤𝑡+𝑗 𝑤𝑡; 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑝 𝑤𝑡+𝑗 𝑤𝑡; 𝜃

likelihood

Negative

Log Likelihood

86

7.3

9.2

2.2

0.5

2.1

0.9

5.2

2.1

…

1.2

cat

on

0
0
0
0
0
0
0
1
…
0

Output layer

Hidden layer

sat

Input layer

one-hot

vector of

context

words 𝑐

one-hot

vector of

word 𝑤

𝑊𝑁×𝑉

V-dim

N-dim

V-dim

𝑊′𝑉×𝑁

0.12.41.61.80.5 0.9 … … … 3.2

0.52.61.42.91.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.4 2.0 … … … 1.2

0.12.41.61.80.50.9 … … … 3.2

0.52.61.42.91.53.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.42.0 … … … 1.2

0.12.41.61.80.50.9 … … … 3.2

0.52.61.42.91.53.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.42.0 … … … 1.2

0
0
0
1
0
0
0
0
…
0

0
1
0
0
0
0
0
0
…
0

The product 𝑊′𝑣𝑤 gives the dot product 𝑣𝑐
′𝑣𝑤

between the input presentation of 𝑤 and output

representation of 𝑐, for all 𝑐

𝑊′𝑉×𝑁

The rows of 𝑊′ contain the output

representation 𝑣𝑐
′of all words

The columns of 𝑊 contain the

input representation of all words

7.3

9.2

2.2

0.5

2.1

0.9

5.2

2.1

…

1.2

The product 𝑊𝑤 = 𝑣𝑤

gives the 𝑁-dimensional

input representation of 𝑤

0.2

0.7

0.01

0.01

0.01

0.00

0.02

0.01

…

0.00

softmax

softmax

0.2

0.7

0.01

0.01

0.01

0.00

0.02

0.01

…

0.00

We want

these to

be close

87

• The basic skipgram utilizes the softmax

function:

𝑝 𝑐 𝑤 =
exp 𝑣𝑐

′𝑇
𝑣𝑤

σ𝑖=1
𝑇 exp(𝑣𝑖

′𝑇
𝑣𝑤)

• Where:

– T – # of words in the corpus.

– 𝑣𝑤 - input vector of w.

– 𝑣′𝑤 - output vector of w. Word Input Output

King [0.2,0.9,0.1] [0.5,0.4,0.5]

Queen [0.2,0.8,0.2] [0.4,0.5,0.5]

Apple [0.9,0.5,0.8] [0.3,0.9,0.1]

Orang

e
[0.9,0.4,0.9] [0.1,0.7,0.2]

88

An example

89

These representations are very good at encoding similarity

and dimensions of similarity!

• Analogies testing dimensions of similarity can be solved

quite well just by doing vector subtraction in the

embedding space

Syntactically

– xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

– Similarly for verb and adjective morphological forms

Semantically (Semeval 2012 task 2)

– xshirt − xclothing ≈ xchair − xfurniture

– xking − xman ≈ xqueen − xwoman

90

king

man

woman

Test for linear relationships, examined by Mikolov et al.

man

woman

[0.20 0.20]

[0.60 0.30]

king [0.30 0.70]

[0.70 0.80]

−

+

+

man:woman :: king:?

a:b :: c:?

queen

SUPERVISED LEARNING

Learning

• Supervised Learning: learn a model from the data using labeled data.

• Classification and Regression are the prototypical examples of supervised learning

tasks. Other are possible (e.g., ranking)

• Unsupervised Learning: learn a model – extract structure from

unlabeled data.

• Clustering and Association Rules are prototypical examples of unsupervised

learning tasks.

• Semi-supervised Learning: learn a model for the data using both labeled

and unlabeled data.

• Self-supervised Learning: Use supervised learning techniques for

predicting target variables that are extracted in an unsupervised way

Supervised Learning Steps

• Model the problem
• What is you are trying to predict? What kind of optimization function do you need?

Do you need classes or probabilities?

• Extract Features
• How do you find the right features that help to discriminate between the classes?

• Obtain labeled data
• Obtain a collection of labeled data. Make sure it is large enough, accurate and

representative. Ensure that classes are well represented.

• Decide on the technique
• What is the right technique for your problem?

• Apply in practice
• Can the model be trained for very large data? How do you test how you do in

practice? How do you improve?

Modeling the problem

• Sometimes it is not obvious. Consider the following problems

• Detecting if an email is spam

• Categorizing the queries in a search engine

• Ranking the results of a web search

• Predicting the reply to a question.

• Predicting the path of a moving object

Feature extraction

• Feature extraction, or feature engineering is the most tedious but also the most
important step
• How do you separate the players of the Greek national team from those of the Swedish national

team?

• One line of thought: throw features to the classifier and the classifier will figure out
which ones are important
• More features, means that you need more training data

• Another line of thought: Feature Selection: Select carefully the features using various
functions and techniques
• Computationally intensive

• Deep Neural Networks
• Use raw data for classification in a supervised or self-supervised way

• Produce a representation of the data using intermediate weights of the DNNs

• Use these representations as features

Training data

• An overlooked problem: How do you get labeled data for training your
model?
• E.g., how do you get training data for ranking web search results?

• Chicken and egg problem

• Usually requires a lot of manual effort and domain expertise and
carefully planned labeling
• Results are not always of high quality (lack of expertise)

• And they are not sufficient (low coverage of the space)

• Recent trends:
• Find a source that generates the labeled data for you, or use the data themselves

for the prediction task (self-supervised learning)

• Crowd-sourcing techniques

• Use self-supervised methods

Dealing with small amounts of labeled data

• Semi-supervised learning techniques have been developed for this
purpose.

• Self-training: Train a classifier on the data, and then feed back the high-
confidence output of the classifier as input

• Co-training: train two “independent” classifiers and feed the output of
one classifier as input to the other.

• Regularization: Treat learning as an optimization problem where you
define relationships between the objects you want to classify, and you
exploit these relationships
• Example: Image restoration

Technique

• The choice of technique depends on the problem requirements (do

we need a probability estimate?) and the problem specifics (does

independence assumption hold? do we think classes are linearly

separable?)

• For many cases finding the right technique may be trial and error

• For many cases the exact technique does not matter.

Big Data Trumps Better Algorithms

• The web has made this

possible.

• Especially for text-related tasks

• Search engine uses the collective

human intelligence

Google lecture: Theorizing from

the Data

• If you have enough data then the algorithms are not so important

http://www.youtube.com/watch?v=nU8DcBF-qo4
http://www.youtube.com/watch?v=nU8DcBF-qo4

Apply-Test

• How do you scale to very large datasets?

• Distributed computing – map-reduce implementations of machine learning

algorithms (Mahaut, over Hadoop, Spark)

• How do you test something that is running online?

• You cannot get labeled data in this case

• A/B testing

• How do you deal with changes in data?

• Active learning

	Slide 1: DATA MINING Classification
	Slide 2: NEAREST NEIGHBOR CLASSIFICATION
	Slide 3: Instance-Based Classifiers
	Slide 4: Instance Based Classifiers
	Slide 5: Nearest Neighbor Classifiers
	Slide 6: Nearest-Neighbor Classifiers
	Slide 7: Nearest Neighbor Classification
	Slide 8: Definition of Nearest Neighbor
	Slide 9: 1 nearest-neighbor
	Slide 10: 1-NN Voronoi diagram
	Slide 11: Nearest Neighbor Classification…
	Slide 12: Example
	Slide 16: Nearest neighbor Classification…
	Slide 17: SUPPORT VECTOR MACHINES
	Slide 18: Linear classifiers
	Slide 19: Support Vector Machines
	Slide 20: Support Vector Machines
	Slide 21: Support Vector Machines
	Slide 22: Support Vector Machines
	Slide 23: Support Vector Machines
	Slide 24: Support Vector Machines
	Slide 25: Support Vector Machines
	Slide 26: Support Vector Machines
	Slide 27: Support Vector Machines
	Slide 28: Support Vector Machines
	Slide 29: Support Vector Machines
	Slide 30: Nonlinear Support Vector Machines
	Slide 31: Nonlinear Support Vector Machines
	Slide 32: Learning Nonlinear SVM
	Slide 33: Learning NonLinear SVM
	Slide 34: Learning Nonlinear SVM
	Slide 35: Example of Nonlinear SVM
	Slide 36: Learning Nonlinear SVM
	Slide 37: LOGISTIC REGRESSION
	Slide 38: Classification via regression
	Slide 40: Linear regression
	Slide 41: The logistic function
	Slide 42: Logistic Regression
	Slide 43: Logistic Regression in one dimension
	Slide 44: Logistic Regression in one dimension
	Slide 45: Class probabilities for multiple dimensions
	Slide 46: Logistic Regression
	Slide 47: Logistic regression in 2-d
	Slide 48: Estimating the coefficients
	Slide 49: Logistic Regression
	Slide 50: Neural Networks
	Slide 51: Linear Classification
	Slide 52: Linear Classification
	Slide 53: Linear models
	Slide 54: Multiple layers
	Slide 55: Non-linearity
	Slide 56: Multiple layers
	Slide 57: Side note
	Slide 58: Deep learning
	Slide 59: Deep Learning
	Slide 60: Example
	Slide 61: Error
	Slide 62: Gradient Descent
	Slide 63: Gradient Descent
	Slide 64: Gradient Descent
	Slide 65: Backpropagation
	Slide 66: Forward and backward passes
	Slide 67
	Slide 68: Backpropagation
	Slide 69: Stochastic gradient descent
	Slide 70: Word EMBeddings
	Slide 71: Basic Idea
	Slide 72: Basic idea
	Slide 73: Word2Vec
	Slide 74: CBOW
	Slide 75: CBOW
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Skipgram
	Slide 85: Skipgram
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Supervised Learning
	Slide 92: Learning
	Slide 93: Supervised Learning Steps
	Slide 94: Modeling the problem
	Slide 95: Feature extraction
	Slide 96: Training data
	Slide 97: Dealing with small amounts of labeled data
	Slide 98: Technique
	Slide 99: Big Data Trumps Better Algorithms
	Slide 100: Apply-Test

