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Instance-Based Classifiers
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Instance Based Classifiers

• Examples:

• Rote-learner

•  Memorizes entire training data and performs classification only if attributes of record 

match one of the training examples exactly

• Nearest neighbor classifier

•  Uses k “closest” points (nearest neighbors) for performing classification



Nearest Neighbor Classifiers

• Basic idea:

• “If it walks like a duck, quacks like a duck, then it’s probably a duck”

Training 

Records

Test 

Record

Compute 

Distance

Choose k of the 

“nearest” records



Nearest-Neighbor Classifiers

Requires three things

– The set of stored records

– Distance Metric to compute 

distance between records

– The value of k, the number of 

nearest neighbors to retrieve

To classify an unknown record:

1. Compute distance to other 

training records

2. Identify k nearest neighbors 

3. Use class labels of nearest 

neighbors to determine the 

class label of unknown 

record (e.g., by taking 

majority vote)

Unknown record



Nearest Neighbor Classification

• Compute distance between two points:

• Typically, Euclidean distance is used

𝑑 𝑝, 𝑞 = ෍

𝑖

𝑝𝑖 − 𝑞𝑖
2

• Determine the class from nearest neighbor list

• Take the majority vote of class labels among the k-nearest 

neighbors

• Weigh the vote according to distance

•  weight factor, w = 1/d2



Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points 

that have the k smallest distance to x



1 nearest-neighbor
Voronoi Diagram defines the classification boundary

The area takes the 

class of the green 

point



1-NN Voronoi diagram



Nearest Neighbor Classification…

• Choosing the value of k:

• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points from other classes

X

The value of k determines the complexity of 

the model

Lower k produces more complex models 

resulting in overfitting



Example



Nearest neighbor Classification…

• k-NN classifiers are lazy learners 

• It does not build models explicitly

• Unlike eager learners such as decision trees 

• Classifying unknown records is relatively expensive

• Naïve algorithm: O(n)

• Need for structures to retrieve nearest neighbors fast.

• The Nearest Neighbor Search problem.

• Also, Approximate Nearest Neighbor Search 

• Issues with distance in very high-dimensional spaces

• Curse of dimensionality



SUPPORT VECTOR MACHINES



Linear classifiers

• SVMs are part of a family of classifiers that assumes that the 

classes are linearly separable

• That is, there is a hyperplane that separates (approximately, or 

exactly) the instances of the two classes.

• The goal is to find this hyperplane



Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data



Support Vector Machines

• One Possible Solution

B1



Support Vector Machines

• Another possible solution

B
2



Support Vector Machines

• Other possible solutions

B
2



Support Vector Machines

• Which one is better? B1 or B2?

• How do you define better?

B
1

B
2



Support Vector Machines

• Find hyperplane maximizes the margin : B1 is better than B2

B
1

B
2

b
11

b
12

b
21

b
22

margin



Support Vector Machines
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Support Vector Machines

• We want to maximize: 𝑀𝑎𝑟𝑔𝑖𝑛 =
2

𝑤

• Which is equivalent to minimizing:𝐿 𝑤 =
𝑤 2

2

• But subjected to the following constraints:

𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 if 𝑦𝑖 = 1
𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 if 𝑦𝑖 = −1

•  This is a constrained optimization problem
• Numerical approaches to solve it (e.g., quadratic programming)

Concisely:

𝑦𝑖 𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 



Support Vector Machines

• What if the problem is not linearly separable?



Support Vector Machines

• What if the problem is not linearly separable?

𝜉𝑖

𝑤

𝑤 ⋅ Ԧ𝑥 + 𝑏 = −1 + 𝜉𝑖



Support Vector Machines

• What if the problem is not linearly separable?

• Introduce slack variables

•  Minimize:

𝐿 𝑤 =
𝑤 2

2
+ 𝐶 ෍

𝑖=1

𝑁

𝜉𝑖

𝑘

• Subject to: 

𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖  if 𝑦𝑖 = 1
𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 + 𝜉𝑖  if 𝑦𝑖 = −1



Nonlinear Support Vector Machines

• What if decision boundary is not linear?



Nonlinear Support Vector Machines

• Trick: Transform data into higher dimensional space

Decision boundary:

𝑤 ⋅ Φ Ԧ𝑥 + 𝑏 = 0



Learning Nonlinear SVM

• Optimization problem:

• Which leads to the same set of equations (but involve (𝑥) instead 

of 𝑥)



Learning NonLinear SVM

• Issues:

• What type of mapping function  should be used?

• How do we do the computation in high dimensional space?

•  Most computations involve dot product  𝑥𝑖 ⋅  (𝑥𝑗) 

•  Curse of dimensionality?



Learning Nonlinear SVM

• Kernel Trick:

•  𝑥𝑖 ⋅  (𝑥𝑗)  =  𝐾(𝑥𝑖, 𝑥𝑗) 

• 𝐾(𝑥𝑖, 𝑥𝑗) is a kernel function (expressed in terms of the coordinates in the 

original space)

•  Examples:



Example of Nonlinear SVM

SVM with polynomial 

degree 2 kernel

𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗 + 1
2



Learning Nonlinear SVM

• Advantages of using kernel:

• Don’t have to know the mapping function 

• Computing dot product  𝑥𝑖 ⋅  (𝑥𝑗) in the original space avoids curse of 

dimensionality

• Not all functions can be kernels

• Must make sure there is a corresponding  in some high-dimensional space

• Mercer’s theorem (see textbook)



LOGISTIC REGRESSION



Classification via regression

• Instead of predicting the class of a record we want to predict the 

probability of the class given the record

• Transform the classification problem into a regression problem.

• But how do you define the probability that you want to predict?



Linear regression

• A simple approach: use linear regression to learn a linear function that 
predicts 0/1 values
• Not good: It may produce negative probabilities, or probabilities that are greater 

than 1.

• Also the probabilities it produces are not what we want. We want probability close 
to zero for small values, and close to 1 for large, and a transition from 0 to 1 around 
the value 20



The logistic function

𝛽 controls the slope

𝑎 controls the position of the turning point

𝑓 𝑥 =
1

1 + 𝑒−𝑎−𝛽𝑥



Logistic Regression
𝑓 𝑥 =

1

1 + 𝑒−𝑥

𝑃 𝐶+ 𝑥 =
1

1 + 𝑒−𝛽𝑥−𝑎

𝑃 𝐶− 𝑥 =
𝑒−𝛽𝑥−𝑎

1 + 𝑒−𝛽𝑥−𝑎

log
𝑃 𝐶+ 𝑥

𝑃 𝐶− 𝑥
= 𝛽𝑥 + 𝑎

Logistic Regression: Find the values 

𝛽, 𝛼 that maximize the probability of 

the observed data

Class Probabilities

Linear regression on the log-odds ratio



Logistic Regression in one dimension



Logistic Regression in one dimension



Class probabilities for multiple dimensions

• Assume a linear classification boundary

𝑤 ⋅ 𝑥 = 0

𝑤 ⋅ 𝑥 > 0

𝑤 ⋅ 𝑥 < 0

For the positive class the bigger the value 

of 𝑤 ⋅ 𝑥, the further the point is from the 

classification boundary, the higher our 

certainty for the membership to the positive 

class

• Define 𝑃(𝐶+|𝑥) as an increasing function 

of 𝑤 ⋅ 𝑥

For the negative class the smaller the 

value of 𝑤 ⋅ 𝑥, the further the point is from 

the classification boundary, the higher our 

certainty for the membership to the 

negative class

• Define 𝑃(𝐶−|𝑥) as a decreasing function 

of 𝑤 ⋅ 𝑥



Logistic Regression 𝑓 𝑡 =
1

1 + 𝑒−𝑡

𝑃 𝐶+ 𝑥 =
1

1 + 𝑒−𝑤⋅𝑥−𝑎

𝑃 𝐶− 𝑥 =
𝑒−𝑤⋅𝑥−𝑎

1 + 𝑒−𝑤⋅𝑥−𝑎

log
𝑃 𝐶+ 𝑥

𝑃 𝐶− 𝑥
= 𝑤 ⋅ 𝑥 + 𝑎

Logistic Regression: Find the 

vector 𝑤, 𝑎 that maximizes the 

probability of the observed data

Class probabilities

Linear regression on the log-odds ratio



Logistic regression in 2-d 

Coefficients

𝛽1 = −1.9
𝛽2 = −0.4 
𝛼 = 13.04



Estimating the coefficients

• Maximum Likelihood Estimation:

• We have pairs of the form (𝑥𝑖 , 𝑦𝑖)

• Log Likelihood function 

𝐿 𝑤 =  ෍

𝑖

𝑦𝑖 log 𝑃 𝑦𝑖 𝑥𝑖 , 𝑤 + 1 − 𝑦𝑖 log(1 − 𝑃 𝑦𝑖 𝑥𝑖 , 𝑤 )

• Unfortunately, it does not have a closed form solution

• Use gradient descend to find local minimum



Logistic Regression

• Produces a probability estimate for the class membership which is 

often very useful.

• The weights can be useful for understanding the feature 

importance.

• Works for relatively large datasets

• Fast to apply.



NEURAL NETWORKS
(Thanks to Philipp Koehn for the material borrowed from his slides)

50



Linear Classification

• A simple model for classification is to take a linear combination of 

the feature values and compute a score.

• Input: Feature vector 𝒙 = (𝑥1, … , 𝑥𝑛)

• Model: Weights 𝒘 = (𝑤1, … , 𝑤𝑛)

• Output: 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = σ𝑖 𝑤𝑖𝑥𝑖

• Make a decision depending on the output score.

• E.g.: Decide “Yes” if 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 > 0 and “No” if 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 < 0 

• The perceptron classification algorithm

51



Linear Classification

• We can represent this as a network

52

Input nodes 

correspond to 

features

𝑥1

𝑥3

𝑥4

𝑥5

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

Edges correspond to weights

𝑠𝑐𝑜𝑟𝑒(𝒘, 𝒙)

“Output” node with 

incoming edges computes 

the score 



Linear models

• Linear models partition the space according to a 

hyperplane

• But they cannot model everything

53



Multiple layers

• We can add more layers:

• Each arrow has a weight

• Nodes compute scores from incoming edges and give input to outgoing edges

54

Did we gain anything?



Non-linearity

• Instead of computing a linear combination

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = ෍

𝑖

𝑤𝑖𝑥𝑖

• Apply a non-linear function on top:

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖

• Popular functions:

55

These functions play the role of a soft “switch” (threshold function)



Multiple layers

• Each layer applies a logistic function to the input linear combination:

• The result is a more complex function

56



Side note

• Logistic regression classifier: 

• Single layer with a logistic function

57



Deep learning

• Networks with multiple layers

• Each layer can be thought of as a processing step

• Multiple layers allow for the computation of more complex functions

58



Deep Learning 

Image Pixels Edges Car parts Car models



Example

• A network that implements XOR

60

Hidden node ℎ0 is OR

Bias term
Hidden node ℎ1 is AND

Output node ℎ1 − ℎ0



Error

• The computed value is 0.76 but the correct value is 1

• There is an error in the computation

• How do we set the weights so as to minimize this error?

61



Gradient Descent

• The error is a function of the weights: 

𝐸 = 𝑓 𝒘 = 𝑓(𝑤1, 𝑤2, … , 𝑤𝑁)

• We want to find the weights that minimize the error

• Compute gradient: gives the direction to the minimum

𝝏𝒇 =
𝜕𝑓 𝑤1

𝜕𝑤1
, … ,

𝜕𝑓 𝑤𝑁

𝜕𝑤𝑁

• Adjust weights, moving at the direction of the gradient.  

𝒘 = 𝒘 − 𝜼𝝏𝒇

62



Gradient Descent

63



Gradient Descent

64



Backpropagation

• How can we compute the gradients? Backpropagation!

• Main idea:

• Start from the final layer: compute the gradients for the weights of the final layer.

• Use these gradients to compute the gradients of previous layers using the chain 

rule

• Propagate the error backwards

• Backpropagation essentially is an application of the chain rule for 

differentiation.

• Chain rule: 

𝜕𝑔 𝑓 𝑥

𝜕𝑥
=

𝜕𝑔 𝑓 𝑥

𝜕𝑓

𝜕𝑓 𝑥

𝜕𝑥

65



Forward and backward passes

• The training process works as follows:

• Start with some initial weights

• Forward pass: Compute the outputs of all internal nodes

• Backward pass: Perform backpropagation to estimate the gradients

• Change the weights to move towards the direction of the gradient

• Repeat

66
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𝑥1

𝑥2 ℎ2 𝑦2

𝑦1ℎ1

𝑎11

𝑎22

𝑎21

𝑎12

𝑏11

𝑏22

𝑏21

𝑏12

Error: 𝐸 = 𝑦 − 𝑡 2 = 𝑦1 − 𝑡1
2 + 𝑦2 − 𝑡2

2

Notation:

Activation function: 𝑔

𝑠𝑦1
= 𝑏11ℎ1 + 𝑏12ℎ2 , 𝑦1 = 𝑔 𝑠𝑦1

𝑠𝑦2
= 𝑏21ℎ1 + 𝑏22ℎ2 , 𝑦2 = 𝑔(𝑠𝑦2

)

𝑠ℎ1
= 𝑎11𝑥1 + 𝑎12𝑥2 , ℎ1 = 𝑔(𝑠ℎ1

)

𝑠ℎ2
= 𝑎21𝑥1 + 𝑎22𝑥2 , ℎ2 = 𝑔(𝑠ℎ2

)

𝜕𝐸

𝜕𝑏11
=

𝜕𝐸

𝜕𝑦1

𝜕𝑦1

𝜕𝑠𝑦1

𝜕𝑠𝑦1

𝜕𝑏11
= 𝛿𝑦1

ℎ1

𝜕𝐸

𝜕𝑎11
=

𝜕𝐸

𝜕𝑠ℎ1

𝜕𝑠ℎ1

𝜕𝑎11
= 𝛿ℎ1

𝑥1

𝛿𝑦1
= 

𝜕𝐸

𝜕𝑦1

𝜕𝑦1

𝜕𝑠𝑦1

 = 2 𝑦1 − 𝑡1 𝑔′(𝑠𝑦1
) =

𝜕𝐸

𝜕𝑠𝑦1

𝜕𝐸

𝜕𝑏21
= 𝛿𝑦2

ℎ1 𝛿𝑦2
= 

𝜕𝐸

𝜕𝑠𝑦2  
= 2 𝑦2 − 𝑡2 𝑔′(𝑠𝑦2

)

𝜕𝐸

𝜕𝑏12
= 𝛿𝑦1

ℎ2

𝜕𝐸

𝜕𝑏22
= 𝛿𝑦2

ℎ2

𝛿ℎ1
=

𝜕𝐸

𝜕𝑠ℎ1

=
𝜕𝐸

𝜕ℎ1

𝜕ℎ1

𝜕𝑠ℎ1

=
𝜕𝐸

𝜕𝑠𝑦1

𝜕𝑠𝑦1

𝜕ℎ1
+

𝜕𝐸

𝜕𝑠𝑦2

𝜕𝑠𝑦2

𝜕ℎ1
𝑔′ 𝑠ℎ1

= 𝛿𝑦1
𝑏11 + 𝛿𝑦2

𝑏21 𝑔′(𝑠ℎ1
)

𝛿ℎ2
= 𝛿𝑦1

𝑏12 + 𝛿𝑦2
𝑏22 𝑔′(𝑠ℎ2

)

𝜕𝐸

𝜕𝑎22
=

𝜕𝐸

𝜕𝑠ℎ2

𝜕𝑠ℎ2

𝜕𝑎22
= 𝛿ℎ2

𝑥2
𝜕𝐸

𝜕𝑎21
= 𝛿ℎ1

𝑥2
𝜕𝐸

𝜕𝑎12
= 𝛿ℎ2

𝑥1

We have already 

computed ℎ1, ℎ2

All terms in orange 

are computed in 

the forward pass



Backpropagation

68

𝑥𝑗

ℎ𝑖

𝑎𝑖𝑗

𝑦1 𝑦𝑘 𝑦𝑛

𝑏𝑘𝑖𝑏1𝑖 𝑏𝑛𝑖

𝑠𝑦1

𝑠𝑦𝑘 𝑠𝑦𝑛

𝛿𝑦1
=

𝜕𝐸

𝜕𝑠𝑦1

𝛿𝑦𝑘
=

𝜕𝐸

𝜕𝑠𝑦𝑘

𝛿𝑦𝑛
=

𝜕𝐸

𝜕𝑠𝑦𝑛
𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘
𝑏𝑘𝑖 𝑔′ 𝑠ℎ𝑖

𝑥𝑗

𝑠ℎ𝑖

For the sigmoid activation function: 

𝑔 𝑡 =
1

1 + 𝑒−𝑡

The derivative is:

𝑔′ 𝑡 = 𝑔(𝑡)(1 − 𝑔 𝑡 )

This makes it easy to compute it. We have:

𝑔′ 𝑠ℎ𝑖
= ℎ𝑖(1 − ℎ𝑖)

Therefore

𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘
𝑏𝑘𝑖 ℎ𝑖(1 − ℎ𝑖)𝑥𝑗

We want to compute
𝜕𝐸

𝜕𝑎𝑖𝑗

We have already computed the 𝛿𝑦𝑘
’s at 

the previous step of the back propagation 

We have already computed the ℎ𝑖 and 𝑥𝑗’s 

at the forward pass



Stochastic gradient descent

• Ideally the loss should be the average loss over all training data. 

• We would need to compute the loss for all training data every time 

we update the gradients.  

• However, this is expensive.

• Stochastic gradient descent: Consider one input point at the time. 

Each point is considered only once.

• Intermediate solution: Use mini-batches of data points.
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WORD EMBEDDINGS
Thanks to Chris Manning for the slides
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Basic Idea

71

• You can get a lot of value by representing a word by means 

of its neighbors

• “You shall know a word by the company it keeps”
• (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

         saying that Europe needs unified banking regulation to replace the hodgepodge

 These words will represent banking 



Basic idea

Define a model that aims to predict between a center word 𝑤𝑐 and 

context words in some window of length 𝑚 in terms of word vectors

 

… turning into banking crises as …

Center word
context words context words

window of size 2 each side

𝑤𝑐 𝑤𝑐−1 𝑤𝑐−2 𝑤𝑐+2 𝑤𝑐+1 



Word2Vec

73

Predict between every word and its context words

Two algorithms

1. Skip-grams (SG)

Predict context words given the center word

𝑃 𝑤𝑐−1 𝑤𝑐 , 𝑃 𝑤𝑐−2 𝑤𝑐 , 𝑃 𝑤𝑐+1 𝑤𝑐 , 𝑃 𝑤𝑐+2 𝑤𝑐

2. Continuous Bag of Words (CBOW)

Predict center word from a bag-of-words context

𝑃 𝑤𝑐 𝑤𝑐−2 , 𝑤𝑐−1, 𝑤𝑐+1, 𝑤𝑐+2

Position independent (do not account for distance from center)



CBOW

74

Use a window of context words to predict the center word

Learn two matrices (𝑁 size of embedding, |𝑉| number of words)

|𝑉|

Embedding of the 𝑖-th word when 

center word

𝑖

𝑁

𝑊
𝑊′

𝑁

|𝑉|

𝑖

Embedding of 

the i-th word 

when context 

word

|𝑉| 𝑥 𝑁 context embeddings

when input

𝑁 𝑥 |𝑉|  center 

embeddings

when output



CBOW

75

Given window size m, 𝑥(𝑐) one hot vector for context words, y one hot vector for the 

center word

1. Input: the one hot vectors for the 2m context words

𝑥(𝑐−𝑚),  …,  𝑥(𝑐−1), 𝑥(𝑐+1), …, 𝑥(𝑐+𝑚)

2. Compute the embeddings of the context words

 𝑣𝑐−𝑚 = 𝑊𝑥(𝑐−𝑚),  …, 𝑣𝑐−1 = 𝑊𝑥(𝑐−1), 𝑣𝑐+1 = 𝑊𝑥(𝑐+1), …, 𝑣𝑐+𝑚= 𝑊𝑥(𝑐+𝑚)

 

3. Average these vectors: ො𝑣 = 
𝑣𝑐−𝑚+𝑣𝑐−𝑚+1+⋯𝑣𝑐+𝑚

2𝑚
, ො𝑣 ∈ 𝑅𝑁

4. Generate a score vector: 𝑧 =  𝑊′ ො𝑣

5. Turn the score vector to probabilities: ො𝑦 = softmax(z) We want this to be close 

to 1 for the center word

Softmax

𝑝𝑖 =
𝑒𝑣𝑖

σ𝑗 𝑒𝑣𝑗



• E.g. “The cat sat on floor”

• Window size = 2

76

the

cat

on

floor

sat
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0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector one-hot

vector

Index of cat in vocabulary
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0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector one-hot

vector

Index of cat in vocabulary

𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

V-dim

We must learn W and W’ 

𝑊′𝑁×𝑉
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0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0
1
0
0
0
0
0
0
…
0

𝑊𝑉×𝑁
𝑇  × 𝑥𝑐𝑎𝑡 = 𝑣𝑐𝑎𝑡

2.4

2.6

…

…

1.8

=
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0
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…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

𝑊𝑉×𝑁
𝑇  × 𝑥𝑜𝑛 = 𝑣𝑜𝑛

1.8

2.9

…

…

1.9

=
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0
0
0
0
…
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0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

1

2
𝑣𝑐𝑎𝑡  + 𝑣𝑜𝑛  =  ො𝑣

1.8

2.9

…

…

1.9

=

2.4

2.6

…

…

1.8

+
1

2
 ( )

2.1

4.05

…

…

1.85



82

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
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…
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Input layer

Hidden layer

sat

Output layer

one-hot

vector

V-dim

V-dim

N-dim
V-dim

𝑊𝑉×𝑁
′ × ො𝑣 = 𝑧

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00ො𝑦sat 
ො𝑣

We want ො𝑦 close to ො𝑦𝑠𝑎𝑡
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0
1
0
0
0
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…
0

0
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0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer
Output layer

𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

V-dim

𝑊′𝑁×𝑉

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

𝑊𝑉×𝑁
Τ

The word embeddings

We can consider either 𝑊 (context) or 𝑊′ (center) 

as the word’s representation. 

Or even take the average.



Skipgram
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Given the center word,   predict (or, generate) the context words

𝑊:  𝑁 ×  |𝑉|, input matrix, word representation as center word

𝑊′: 𝑉 ×  𝑁, output matrix, word representation as context word

𝑦(𝑗) one hot vector for context words

1. Get one hot vector of the center word 𝑥𝑐

2. Get the embedding of the center word: 𝑣𝑐 = 𝑊 𝑥c

 

3. Get the embedding of all context words: 𝑧 =  𝑊′ 𝑣𝑐

5. Turn the score vector into probabilities: ො𝑦 = softmax(z)

We want this to be close to 1 for the context words



Skipgram
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• For each word t = 1 … T, predict surrounding words in a window 

of “radius” m of every word.

• Objective function: Maximize the probability of any context word 

given the current center word:

 

where θ represents all variables we will optimize

𝐽′ 𝜃 = ෑ

𝑡=1

𝑇

ෑ
−𝑚≤𝑗≤𝑚

𝑗≠0

𝑝 𝑤𝑡+𝑗 𝑤𝑡; 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑝 𝑤𝑡+𝑗 𝑤𝑡; 𝜃

likelihood

Negative 

Log Likelihood
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7.3

9.2

2.2

0.5

2.1

0.9

5.2

2.1

…

1.2

cat

on

0
0
0
0
0
0
0
1
…
0

Output layer

Hidden layer

sat

Input layer

one-hot 

vector of 

context 

words 𝑐

one-hot 

vector of 

word 𝑤

𝑊𝑁×𝑉

V-dim

N-dim

V-dim

𝑊′𝑉×𝑁

0.12.41.61.80.5 0.9 … … … 3.2

0.52.61.42.91.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.4 2.0 … … … 1.2

0.12.41.61.80.50.9 … … … 3.2

0.52.61.42.91.53.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.42.0 … … … 1.2

0.12.41.61.80.50.9 … … … 3.2

0.52.61.42.91.53.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.42.0 … … … 1.2

0
0
0
1
0
0
0
0
…
0

0
1
0
0
0
0
0
0
…
0

The product 𝑊′𝑣𝑤 gives the dot product 𝑣𝑐
′𝑣𝑤 

between the input presentation of 𝑤 and output 

representation of 𝑐, for all 𝑐

𝑊′𝑉×𝑁

The rows of 𝑊′ contain the output 

representation 𝑣𝑐
′of all words

The columns of 𝑊 contain the 

input representation of all words

7.3

9.2

2.2

0.5

2.1

0.9

5.2

2.1

…

1.2

The product 𝑊𝑤 = 𝑣𝑤

gives the 𝑁-dimensional 

input representation of 𝑤 

0.2

0.7

0.01

0.01

0.01

0.00

0.02

0.01

…

0.00

softmax

softmax

0.2

0.7

0.01

0.01

0.01

0.00

0.02

0.01

…

0.00

We want 

these to 

be close
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• The basic skipgram utilizes the softmax 

function:

𝑝 𝑐 𝑤 =
exp 𝑣𝑐

′𝑇
𝑣𝑤

σ𝑖=1
𝑇 exp( 𝑣𝑖

′𝑇
𝑣𝑤)

• Where:

– T – # of words in the corpus.

– 𝑣𝑤 - input vector of w.

– 𝑣′𝑤 - output vector of w. Word Input Output

King [0.2,0.9,0.1] [0.5,0.4,0.5]

Queen [0.2,0.8,0.2] [0.4,0.5,0.5]

Apple [0.9,0.5,0.8] [0.3,0.9,0.1]

Orang

e
[0.9,0.4,0.9] [0.1,0.7,0.2]
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An example
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These representations are very good at encoding similarity 

and dimensions of similarity!

• Analogies testing dimensions of similarity can be solved 

quite well just by doing vector subtraction in the 

embedding space

Syntactically

– xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies 

– Similarly for verb and adjective morphological forms

Semantically (Semeval 2012 task 2)

– xshirt − xclothing ≈ xchair − xfurniture 

– xking − xman ≈ xqueen − xwoman 
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king

man

woman

Test for linear relationships, examined by Mikolov et al.

man

woman

[ 0.20 0.20 ]

[ 0.60 0.30 ]

king [ 0.30 0.70 ]

[ 0.70 0.80 ]

−

+

+

man:woman :: king:?

a:b :: c:?

queen



SUPERVISED LEARNING



Learning

• Supervised Learning: learn a model from the data using labeled data.

• Classification and Regression are the prototypical examples of supervised learning 

tasks. Other are possible (e.g., ranking)

• Unsupervised Learning: learn a model – extract structure from 

unlabeled data. 

• Clustering and Association Rules are prototypical examples of unsupervised 

learning tasks.

• Semi-supervised Learning: learn a model for the data using both labeled 

and unlabeled data.

• Self-supervised Learning: Use supervised learning techniques for 

predicting target variables that are extracted in an unsupervised way



Supervised Learning Steps

• Model the problem
• What is you are trying to predict? What kind of optimization function do you need? 

Do you need classes or probabilities?

• Extract Features
• How do you find the right features that help to discriminate between the classes?

• Obtain labeled data
• Obtain a collection of labeled data. Make sure it is large enough, accurate and 

representative. Ensure that classes are well represented.

• Decide on the technique
• What is the right technique for your problem?

• Apply in practice
• Can the model be trained for very large data? How do you test how you do in 

practice? How do you improve?



Modeling the problem

• Sometimes it is not obvious. Consider the following problems

• Detecting if an email is spam

• Categorizing the queries in a search engine

• Ranking the results of a web search

• Predicting the reply to a question.

• Predicting the path of a moving object



Feature extraction 

• Feature extraction, or feature engineering is the most tedious but also the most 
important step
• How do you separate the players of the Greek national team from those of the Swedish national 

team?

• One line of thought: throw features to the classifier and the classifier will figure out 
which ones are important
• More features, means that you need more training data

• Another line of thought: Feature Selection: Select carefully the features using various 
functions and techniques
• Computationally intensive

• Deep Neural Networks
• Use raw data for classification in a supervised or self-supervised way

• Produce a representation of the data using intermediate weights of the DNNs

• Use these representations as features



Training data

• An overlooked problem: How do you get labeled data for training your 
model?
• E.g., how do you get training data for ranking web search results?

• Chicken and egg problem

• Usually requires a lot of manual effort and domain expertise and 
carefully planned labeling
• Results are not always of high quality (lack of expertise)

• And they are not sufficient (low coverage of the space)

• Recent trends:
• Find a source that generates the labeled data for you, or use the data themselves 

for the prediction task (self-supervised learning)

• Crowd-sourcing techniques

• Use self-supervised methods



Dealing with small amounts of labeled data

• Semi-supervised learning techniques have been developed for this 
purpose. 

• Self-training: Train a classifier on the data, and then feed back the high-
confidence output of the classifier as input

• Co-training: train two “independent” classifiers and feed the output of 
one classifier as input to the other.

• Regularization: Treat learning as an optimization problem where you 
define relationships between the objects you want to classify, and you 
exploit these relationships
• Example: Image restoration 



Technique

• The choice of technique depends on the problem requirements (do 

we need a probability estimate?) and the problem specifics (does 

independence assumption hold? do we think classes are linearly 

separable?)

• For many cases finding the right technique may be trial and error

• For many cases the exact technique does not matter.



Big Data Trumps Better Algorithms

• The web has made this 

possible.

• Especially for text-related tasks

• Search engine uses the collective 

human intelligence

Google lecture: Theorizing from 

the Data

• If you have enough data then the algorithms are not so important

http://www.youtube.com/watch?v=nU8DcBF-qo4
http://www.youtube.com/watch?v=nU8DcBF-qo4


Apply-Test

• How do you scale to very large datasets?

• Distributed computing – map-reduce implementations of machine learning 

algorithms (Mahaut, over Hadoop, Spark)

• How do you test something that is running online?

• You cannot get labeled data in this case

• A/B testing

• How do you deal with changes in data?

• Active learning
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