Online Social Networks and
Media

Graph ML I
Graph Embeddings

Graph Machine Learning

Outline

Part |: Introduction, Traditional ML
Part II: Graph Embeddings

Part Ill: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on:

CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University
http://cs224w.stanford.edu

http://cs224w.stanford.edu/

Types of ML tasks in graphs

Graph-level
prediction,
Graph
generation

Node
level

Community
(subgraph)

level

Edge (link) level

Graph embeddings: why?

Machine learning lifecycle

I i
1 1
| |

Raw Structured N Learning |

Data Data M Algorithm |

1
| |
e ————— I

<€ >
Feature Engineering Downstream
degree, PageRank, prediction task
graphlets, neighborhood
overlap, etc

Part |l;

Introduction to embeddings
Node embeddings on

matrix decomposition
random-walks

Quick overview of word embedding
Link and subgraph embeddings

Graph embeddings: why?

Machine learning lifecycle

Raw Structured Learning

Data / Data M Algorithm
L_______(_ __________________________ _) _____ [

Engineering Downstream
prediction task

Representation Learning
Automatically learn the features

Node embeddings: what are they?

node

>

fifu->RY T

]Rd

Feature representation, embedding

O

Map nodes to vectors so that:
“similar” nodes in the graph have embeddings that are
close together.

Encode network information

Potentially used for many downstream predictions

Example

Zachary’s Karate Club Network:

Input

o0
—0.6}
® 4 3

-08| g gq LY °®

@ ®
-0} ® 1
—1.2}F . . &

®
—1.4}
—1.6L
26

—1.8¢L

| | | | | | 1 |

—-1.0 —0.5 0.0 0.5 1.0 1.5 2.0 2.5

Image from: Perozzi et al.. DeepWalk: Online Learning of Social Representations. KDD 2014.

using t-SNE

Graph embeddings

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

..............
L "y

"""""
.

-*

.

.
ot
.
+*
+®
.
Y
.
.
.
.
*
.
*
.
.
.
.
-
-
*
o
-

/ \\/u

\\
LN

*
.
+
*
.
.*
.
.
.
.
R
Py
.
......

L

original network embedding space

Two key components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

specifies how the
relationships in vector space map to the

relationships in the original network

similarity (u, v) =z,' -z, Decoder

Similarity of . and v in dot product between node
the original network embeddings

Embedding nodes

Ao ~ T
Goal: S|m||ar|ty(U, U) ~Zu *Zy Similarity of the embedding

in the original network

Need to define!

. .

---- ag fu
)
I“'
.
-
“
“
.
‘l
-
*

/ \ o .Z'U

\ % encode nodes A

VAN
\ _U ..

original network embedding space

Learning node embeddings

Define an that maps nodes to low
dimensional spaces

Define a node similarity function (i.e., a measure of
similarity in the original network).

maps from embeddings to the similarity
score

Optimize the parameters of the encoder so that we
minimize a loss function L that looks (roughly) like:

I = Z (similarity(u,v) — zl - z,)?

uve v

Shallow embeddings!™

Each node is assigned a single d-dimensional vector
Learn |V| X d embedding matrix Z: each column i is the
embedding z; of node i

embedding vector for a

embedding specific node
maitrix e

«@h

\ EE:EE

_ '@ > Dimension/size of

Z — EE:E embeddings
'@
+@:

~

one column per node

(*) As opposed to deep learning in graphs (GNN embeddings)

Shallow embeddings

Encoder is just an embedding lookup

ENC(v) =Z 1,

L

One-hot or indicator
vector, all Os but
position v

d X N N x 1

14

Framework Summary

Shallow encoder: Embedding lookup

Parameters to optimize: Z which contains node
embeddings for all nodesu € V

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize z. - z, for node pairs (u, v)

that are similar

How to define node similarity

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?

share neighbors?
have similar “structural roles”?

Note on node embeddings

This is way of
learning node embeddings.

We are not utilizing node labels

We are not utilizing node features

The goal is to directly estimate a set of coordinates
(i.e., the embedding) of a node so that some aspect
of the network structure (captured by DEC) is
preserved.

These embeddings are

They are not trained for a specific task but can be
used for any task.

ADJACENCY-BASED

Adjacency Matrix

* Simplest node similarity: Nodes u, v are

similar if they are connected by an edge

* This means: z,z,, = Ay,

which is the (u, v) entry of the graph
adjacency matrix A

e Therefore, Z'Z = A

R O O O

R O F O
b O O B+

e

o~H -
X
S

Adjacency-based approach

The embedding dimension d (number of rows in Z) is
much smaller than number of nodes n.

Inner product decoder with node similarity defined by

edge connectivity is equivalent to matrix factorization of
A.

Exact factorization A = ZTZ is generally not possible
Matrix decomposition (for example, SVD decomposition)

1. Scalability issues
2. Produced matrices that are very dense

Adjacency-based approach

» However, we can learn Z approximately
: Objective:mzin lA—Z"Z ||,

— We optimize Z such that it minimizes the L2 norm
(Frobenius norm) of A — Z'Z

— We used softmax instead of L2. But the goal to
approximate A with Z” Z is the same.

How: stochastic gradient descent

Adjacency-based approach

The loss that what we want to minimize

embedding similarity

/
L = Zu,v EVXYV HAu,v'ZZ 'Zv HZ

(possibly weighted) adjacency
matrix for the graph

A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, A. J. Smola: Distributed large-scale natural graph factorization.
WWW 2013

22

Adjacency-based approach —
stochastic gradient descent

A few manipulations

L = Z UVE VXV ”Auv _ZZ.ZU ”2

sum over all node pairs

L= Z(u,v) € E(Auv 'ZZZ + Ly)2

1 A
L = EZ(u,v) € E(Auv 'Z'ZZ) Zv)z LERPY Zu ”Zu ”2

regularization factor

23

Stochastic Gradient Descent

After we obtain the objective function, how do we
optimize (minimize) it?

1 A
L = EZ(u,v) = E(Auv 'Z‘ZZ 'Zv)2 T E ZuEV ||Zu ||2

Gradient Descent: a simple way to minimize £ :
" |nitialize z,, at some randomized value for all nodes u.

" |terate until convergence:

. . 0L . i
= For all u, compute the derivative — 7 learning rate

0zy

" For all u, make a step in reverse direction of derivative: z,, < z,, — 1 P
u

Adjacency-based approach

1 A
L= EZ(u,U) € E(Auv 'Z‘ZZ * Ly)2 T 5 ZuEV 124, ||2
Taking the gradient

Gradient of L with respect to each row (column) of Z (learn one
vector per node)

oL
ELZUENM(AW — Zy* 7y,) Zy +)\Zu

For each edge (u,v) € E this amounts for

:7Lu=' (Ayw —Zy 'Zv)Zv'I')\Zu

25

Adjacency-based approach

Requires: Adjacency matrix A, rank d, accuracy ¢
Ensures: Local minimum
1: Initialize Z’ at random

2: t<«1

3; repeat n: learning rate, captures the extent at which
4: <7 newly acquired information overrides old

5: for all edges (i, j) € Edo

6: n<« 1/\/t

/: t<—t+1l

8: Zi < Zi + n ((Aij — <Zi - Zj>Zj) + \ Zi)

9: end for

10: until ||Z-2'||%?<=¢

11: return Z

= Complexity O(|E|)
= (Can be parallelized

26

Multi-hop approaches

Only considers direct connections
What about further neighbors?

A

Look further than the 1-step neighbors and learn by using information

from/for k-step neighbors /
\\\\

AN
\”’\%/—\/
%

We will see two approaches !
" GraRep: looks at probabilities of reaching a node
= HOPE: various metrics of similarity based on neighbors and paths

27

High-order Proximity Preserved Embeddings
(HOPE)

Based on a high order proximity matrix S,
Sup=pvroximity(u, v)

For directed graphs, learn two embedding vectors
Z = |25, 7]

L = Z(u,v) EVxYV ”Suv'ZtSL' Z{}-”Z

M. Ou, P. Cui, J. Pei, Z.i Zhang, W. Zhu: Asymmetric Transitivity Preserving Graph Embedding. KDD 2016

28

HOPE

Local High Order Proximity

Common Neighbors (for
directed graphs, source-
target)

GCN — A2

%)

A2 =

\ &\‘/

Vs

0 1 1 0 o]fof1l1 0o o] [001 0O
O 00 O 1|0|0|0 O 1 1 0 0 1
O 1 0 O0O0|*O 210 0 0|=|0 0 O O
1 1 1 0 O 111211 0 O 0 2 10
1001 0j)[2j0j0 1 0} (212020
Us Adamic-Adar

SA44d = A DA

Similar but assigns a weight to the neighbor
reciprocal of its degree

O B Fk O K

29

HOPE

Global High Order Proximity

Katz
Sum over all paths of length |, using a decay parameter

cKatz _ ZﬁlAl
=1

Rooted Pagerank

SVD with some tricks to save computations

30

Node embeddings

Approaches based on:
" Adjacency-like matrices
" Adjacency matrix
" Multi-hop neighborhoods

= HOPE
" GraRep (random walks) — fandom walks
= Random-walks word embeddings
" DeepWalk —

= Node2Vec

31

WORD EMBEDDINGS

(Some material from Chris Manning course)

Basic Idea

You can get a lot of value by representing a word by
means of its neighbors (distributional semantics)

“You shall know a word by the company it keeps”
= (J. R. Firth 1957: 11)

One of the most successful ideas of modern
statistical NLP

33

Basic Idea

A word is defined by its context

Context: words that appear in a fixed length window
around the word

center

& [& »

She reached up to pluck a ripe apple from the tree, its sweet aroma filling the
air. < : >
Window =3

center

& [
»

| enjoyed a crisp and juicy apple as a snack this afternoon.

Window = 3

»

»

Use the many contexts of w to represent a word

34

Basic idea

Learn two embeddings per word: (1) as context (2) as center

Center

word ‘ V‘;d

Context

= Center-embedding of a center word similar with the context
embeddings of its context words

= And vice-versa
Use text to learn these embeddings

Word2Vec

Predict between every word and its context words
Two algorithms
1. Skip-grams (SG)
Predict context words given the center word
2. Continuous Bag of Words (CBOW)
Predict center word from a bag-of-words context

Position independent (do not account for distance from center)

Two training methods
1. Hierarchical softmax
2. Negative sampling

Tomas Mikolov, llya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean: Distributed Representations of Words and
Phrases and their Compositionality. NIPS 2013: 3111-3119

36

Hierarchical softmax

Instead of learning O(|V]) vectors, learn O(log(|V])
vectors

How?

" Build a binary tree with leaves the words and learn
one vector for each internal node.

" The value for each word w is the product of the
values of the internal nodes in the path from the
root to w.

37

Basic Idea

& »

She reached up to pluck a ripe apple from the tree, its sweet aroma filling
the air. . .

Window =3

CBOW
pluckaripe from the tree

apple Skipgram

38

CBOW

Use a window of context words to predict the center word

Input

Output
1-hot vectors of context words
— [0]
1 \
: 1-hot vector of center word
ne
0 -
1
m CBOW _
—

?/

CBOW

i—»\

Embedding of
the i-th word
VI when context
word

|[V| X d context embeddings
when input

Embedding of the j-th word
W' when center word

I /

VI

d X |V| center embeddings
when output

CBOW

Intuition

The W’-embedding of the center word should be similar
to the (average of) the W-embeddings of its context
words

= For similarity, we will use cosine (dot product)

= We will take the average of the W-embeddings of the context
word

We want similarity close to one for the center word and close to 0O
for all other words

41

cat sat on
window size =1

We must learn W and W'

Input layer
0
1
0
Index of cat in vocabulary 0 .
cat o W, Hidden layer Output layer
0 |[V|xd
0 0
0 o y = softmax(z)
V-dim |0 — , Z
— 0
— Wivixa | s
0 - 0 |
5 1|
0
- N-dim o] v-dim
5 I/V|V|><d
on
0
0
0
V-dim o N will be the size of word vector

42

CBOW
Given window size m

x(©) one hot vector for context words, y one hot vector for the center word

1. INPUT: the one hot vectors for the 2m context words
x(Ce=m) - ox (e x(erl) | yletm)

2. GET THE EMBEDDINGS of the context words
Ve = Wx©€™ v, =WxC€D y = WxCED v, = WxEtm

3. TAKE THE SUM these vectors (average)

vc mtVc—m+1t" vc+m = RN
2m

Q%)

4. COMPUTE SIMILARITY: dot produce W’ (all center vectors) and context ¥ (generate
score vector z)
z=W'7D

5. Turn the score vector to probabilities
y = softmax(z)

We want this to be close to 1 for the center word

43

Softmax
From values to probability distributions

Exponentiate to make

positive
X
softmax(x;) = o5—— Normalize to get
j:le) probabilities

= “Most” probability to the largest value (max)
= “Some” probability to the other values (soft)

>>> import numpy as np

>>a = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]

>>> np.exp (a) / np.sum (np.exp (a))

array ([0.02364054, 0.06426l1l66, 0.1746813, 0.474833,
0.02364054, 0.0604206l1l66, 0.17406813])

44

Skipgram
Given the center word, predict (or, generate) the context words

Input Output

1-hot vector of center word 1-hot vectors of context words

7

Skipgram

It

Learn two matrices
W:.d x |V|, input matrix, word representation as center word

W’ |V| X d, output matrix, word representation as context word v

Skipgram

Given the center word, predict (or, generate) the context words

y(f) one hot vector for context words

1. Input: one hot vector of the center word
X

2. Get the embedding of the center word
=W x

3. Generate a score vector for each context word
z=W’v,

5. Turn the score vector into probabilities
y = softmax(z)

We want this to be close to 1 for the context words

Input Lyer

F—Hidden Ia:ru.'r_.-'r
E e]

— ._.--.-_.'-
H & B, ’
1 y
I —
K, Wew K ___3'-.1.“'
i - LY
L "

-
P

2 M-,)

r a A
F.dim LY

WL,

i
.
i o] -

Chutpeat layer

¥

Tt

-]

""\._' v

l'\.c-:j.

F

T aE

.'-,'u
L= F-dim

46

gkirﬂsr‘d(\q

Vxl OIX\/
W
We
o [__ . 0.1 - _
0| |77 5% -
novs §o) & =
- T (S
(') i, DL
.OJ L-'"‘~ 0.5 -
1 (i
ome ho LMLS “f
v column o
l: b] w‘r‘ tW\bPJJ;hS
7m y malrix ©S

1 e w"\'a‘\'iah
Wo\r-ol ,;t‘Pc_uﬁcp wh

Vx i Vxl
W, = Plxle) =
[un've) softmax (u, Vc.)
:.7] Fo.o';
63| ¢ ‘ﬁ"\‘)‘ 6.
M) > |ees
~6-) o.0)
.0'2 .0
3
o\
0 6.7 &
b
:.7" .0.0';
63| ¢ & Mmoot 6.
B el b-03~
n‘.) 0.0}
'02 .0
> o
09 6.7 &
L4 b o

-:.71 .o.o;
63| ° & Mmoo 6.

M) > |ees
~6-) (X))
-0.2 .0
" o3
0 l 6.7 i
o 4 ~

x|
Aej'u 4|
Cov\‘ftx'\'
wovd 5

BACK TO GRAPHS

RANDOM -WALK BASED EMBEDDINGS

49

How?

Words = Nodes
Sentences = Paths, Random walks

50

Random Walk

10
Step 3 I l Step 4 @

Step 5
\

11

Given a graph and a starting point, we
Step 2 select a neighbor of it at random, and

Step 1
\ move to this neighbor; then we select
e a neighbor of this point at random, and
a move to it, etc.
\ The (random) sequence of points
@ visited this way is a random walk on

the graph.

Random-walk embeddings

probability thatjandj

Zi » / : & co-occur on arandom
]

walk over the network

Random-walk Embeddings

Estimate probability of
visiting node v on a random
walk starting from node u
using some random walk
strategy R.

Optimize embeddings to
encode these random walk
statistics.

Why Random Walks?

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information.
Idea: if random walk starting from node u visits v
with high probability, u and v are similar (high-order
multi-hop information)

Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks.

54

Unsupervised Feature Learning

* |ntuition: Find embedding of nodes in
d-dimensional space that preserves similarity

* |dea: Learn node embedding such that nearby
nodes are close together in the network

* Given a node u, how do we define nearby
nodes?

— N (u): neighbourhood of u obtained by some
random walk strategy R

Random Walk Optimization

1. Run short fixed-length random walks starting from each
node u in the graph using some random walk strategy R.

2. For each node u collect Ni(u), the multiset” of nodes
visited on random walks starting from u.

3. Optimize embeddings according to: Given node u, predict
its neighbors Ny (u).

arg max z log P(Nr(u)| zy,) :
£ wev Maximum likelihood

objective

*Nr(u) can have repeat elements since nodes can be visited multiple times on random walks

Random Walk Optimization

Equivalently,

argmianZ Z —log(P(v|z,))

Z
UueV veNg(u)

Intuition: Optimize embeddings z,, to minimize the negative log-
likelihood of random walk neighborhoods N (u).

Parameterize P(v|z,) using softmax:

Why softmax?
We want node v to be most similar

exp (Z;EZU) to node u (out of all nodes n).
T Intuition: Y; exp(x;) = max exp(x;)
2imev €Xp(ZyZy)

P(UlZu) —

Random Walk Optimization

Putting it all together:

B exp(z,Z,)
= z 2 Ry xp@lz)

UEV vENR(U)
/ \
sum over all predicted probability of u
nodes u and v co-occuring on
random walk

Optimizing random walk embeddings = Finding embeddings z,, that minimize L

Random Walk Optimization

But doing this naively is too expensive!

. z z -1og(5 exp(ZuZy))
TLEV eXp (Zu Zn)

UeV veNgr(u)

~

Nested sum over nodes gives
O(|V|?) complexity!

Random Walk Optimization

But doing this naively is too expensive!

B exp(zyZy)
~ = 2 z o8 2inev eXp(ZEZn))

uevV veNg(u)

The normalization term from the softmax is
the culprit... can we approximate it?

Jure Leskovec, Stanford CS224W: Machine
11/30/2023 Learning with Graphs,
http://cs224w.stanford.edu

60

Negative Sampling

Why is the approximation valid?
Technically, this is a different objective. But

e Solution: Negative Sampling Negative Sampling is a form of Noise

Contrastive Estimation (NCE) which approx.

T maximizes the log probability of softmax.
eXp (Zu Z'V) New formulation corresponds to using a
_log() logistic regression (sigmoid func.) to
Z 7 T 7 distinguish the target node v frqm nodes n;
nev eXp u&n sampled from background distribution P,.

More at https://arxiv.org/pdf/1402.3722.pdf
~ T k T
~ log (a(zuzv)) + .= log a(—zuzni)), n;~Py

/

sigmoid function random distribution
(makes each term a “probability” over nOd es

between 0 and 1)

Instead of normalizing w.r.t. all nodes, just normalize against k
random “negative samples” n;

* Negative sampling allows for quick likelihood calculation.

https://arxiv.org/pdf/1402.3722.pdf

Negative Sampling

" exp(z.z,) random distcrlibution
8(T over nodes
ZnEV exp(zuzn)
k
~ log (G(Zgzv)) + Zi—l log (0(—Z$zni)) , n;~Py

= Sample k negative nodes n; each with prob.
proportional to its degree.

" Two considerations for k (# negative samples):

1. Higher k gives more robust estimates
2. Higher k corresponds to higher bias on negative events
In practice k =5-20.

Can negative sample be any node or only the nodes not on the
walk? People often sample any node (for efficiency).

Stochastic Gradient Descent

= After we obtained the objective function, how do
we optimize (minimize) it?

L=3) -log(P(vlz,))

ueV veNg(u)
" Gradient Descent: a simple way to minimize L :
" |nitialize z,, at some randomized value for all nodes u.

" |terate until convergence:

. . 0L . i
= For all u, compute the derivative — 7 learning rate

0zy

" For all u, make a step in reverse direction of derivative: z,, < z,, — 1 P
u

Stochastic Gradient Descent

= Stochastic Gradient Descent: Instead of evaluating
gradients over all examples, evaluate it for each
individual training example.

" |nitialize z,, at some randomized value for all nodes u.

L(u) = z —lOg(P(vlzu))

= |terate until convergence:
VENR(U)

oL W)
0z,

= Sample a node u, for all v calculate the gradient

oL
0z,

" For all v, update:z, « z, — n

Random Walks: Summary

Run short fixed-length random walks starting
from each node on the graph

For each node u collect Ny (1), the multiset of
nodes visited on random walks starting from wu.

Optimize embeddings Z using Stochastic
Gradient Descent:

L=)) -log(P(vlz)

uU€eV veNg(u)

How should we randomly walk?

= DeepWalk just runs fixed-length,
unbiased random walks starting from
each node

= Node2vec: biased random walks that
can trade-off between local and global
views of the network

B. Perozzi, R. Al-Rfou, S. Skiena: DeepWalk: online learning of social representations. KDD 2014

A. Grover, J. Leskovec: node2vec: Scalable Feature Learning for Networks. KDD 2016

66

DeepWalk

Short random walks = sentences

U71 — V9q — VU — U] — Uy7 — Ugp —7

7 WA
Vg2 — V2 — V3 — U] —» V12 — U3 — g og &4
v37 — U34 — Vg — U1 — UVi0 — Vo4 —> <:| °‘t$@°°03 Py :
V73 — Vs — Us — U] —> V12— U] — ot

U7 —» U4 — Vg —» U1 —» V13 — Vgl —

Scale Free Graph

Short truncated random walks are sentences in an
artificial language

Words frequency in a natural

DeepWalk

language corpus follows a power law.

V71 — Ugq — Vs —
Vg — V2 — VU3 —
U337 —+ U34 — Vg —
U73 — Vg4 — Uy —
U75 — UVi4 — Vg —

v —

v —>

U] —

m —
v —r

U7 — Ugo —
V12 — U7y — QZI
vi0 —7 V9q —
V12 — V1 —
v13 — Vg1 —

Node frequency in random walks on
scale free graphs also follows a

power law.

of Words
=
o
%

10°

Frequency of Word Occurrence in Wikipedia

10° 100 10° 100 10* 100 10° 10’
Word mention count

Wikipedia Article Text

Scale Free Graph

F{gguency of Vertex Occurrence in Short Random Walks

of Vertices
=
<

10° 10" 10° 10° 10° 10° 10°

Vertex visitation count

You'Tube Social Graph
68

Representation mapping

W,U4 B U4 — Uz — U] — Vs — V1 — Uy —> Us1 — VR

We, = 4 _ Map the verte>§ under focus (U7) to
B Its representation.
w [1]o— 1’ m Define a window of size W
5 e
1 $d wlIfWw=1and V="

Maximize: Pr(vs|®(v1))
Pr(vs|®(v1))

Algorithm 2 SkipGram(&$, W, , w)

1: for each v; € W, do

2: for each u. € W, [j —w:j+ w] do
3: J(P) = —log Pr{ug | ®(v;))

4: b= — o= %

5: end for

f: end for

69

DeepWalk

The algorithm consists of two main components; first a random
walk generator and second an update procedure

= Window w

[Generate yra ndom walks for Algorithm 1 DEEPWALK(G, w, d, 7. t)
. Input: graph G{V.E)
each vertex in the graph window sine w
embedding size d
u EaCh Short random Walk haS walks per vertex -y
. .y . walk length ¢
|ength t (IntUItIVEIy, sentence Output: matrix of vertex representations & & RIVI*d
1: Initialization: Sample ® from L/"1*4
/ength) 2: Build a binary Tree T from V

3: for it =0 to v do
O = Shuffle(1)
for each v; € O do
We, = RandomWalk(G, v t)
SkipGram(&®, W,,, w)
end for
end for

= Pick the next step uniformly
from the node neighbors

=] T N =

(o]

0w

DeepWaIk

’U4 — 4
b o e v 3
o ® ._.,’ “ P Random Walks uk 1] v ——>= [J

P 1)

@ Input: Graph @ Representation Mapping

'0.6 - & .‘
08 Ggg L e
1.0+ = & ’ &

_]_2_.. &

1.4k

16k

O(v,) o ‘18]

I I 1 L I
—10 —05 00 0.5 1.0 1.5 2.0 2.5

@ Hierarchical Softmax @ Output: Representation

node2vec: Biased Walks

Two classic strategies to define a neighborhood
N (u) of a given node u:

Walk of length 3 (Nr(u) of size 3):

Ngrs(u) = {s1,55,S3} Local microscopic view (BFS)

NDFS(u) — { S4, S5, 56} Global macroscopic view (DFS)

BFS vs DFS

BFS: DFS:
Ng () will provide a N (-) will provide a
micro-view of macro-view of

neighbourhood neighbourhood

Biased 24 Order Random Walks

Walker from t, traversed (t, v) and is now in v, where to

go next?
Same distanceto t

Farther from ¢

Closerto t

How much far away from t? Only three possible choices:
= Farther distance (distance =2)

= Same distance (distance = 1)

= Back tot (distance = 0)

74

Interpolating BFS and DFS

Biased random walk R that given a node u generates
neighborhood Ny (u)

* Two parameters:

— Return parameter p:
e Return to the previous node

— In-out parameter q:
* Moving outwards (DFS) vs. inwards (BFS)
* Intuitively, g is the “ratio” of BFS vs. DFS

e Specify how a single step of biased random walk is
performed
— Random walk is then just a sequence of these steps.

One step of the biased random walk

At v from t, where to go Define the random walk by specifying the
next? walk transition probabilities on edges
adjacent to the current node v:

Same distance to t

= 1 to node with same distance
* 1/g node further apart

= 1/pbacktot

(unnormalized probabilities)

Farther from ¢

1/q

Closerto t

BFS-like walk: Low value of p
DFS-like walk: Low value of g

76

One step of the biased random walk

At v from S,
Target Prob. Dist. (S;, ©)
t([1/p]| o
V> |5 - !
ss||1/q | 2
i 1/C[2

Unnormalized
transition prob.
segmented based
on distance from t

Ny (v) are the nodes visited by the biased walk

77

node2vec algorithm

1) Compute edge transition probabilities:

For each edge (s1, w) we compute edge walk
probabilities (based on p, q) of edges (w,*)
2) Simulate r random walks of length [starting
from each node u
3) Optimize the node2vec objective using

Stochastic Gradient Descent

Linear-time complexity
All 3 steps are individually parallelizable

Other Random Walk Ideas

» Different kinds of biased random walks:
— Based on node attributes (Dong et al., 2017).
— Based on learned weights (Abu-El-Haija et al., 2017)

* Alternative optimization schemes:

— Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

* Network preprocessing techniques:

— Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017 struct2vec, Chen et al.

2016 HARP).

https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

GraRep

Path of length k =1 & @

= Look at the paths that
Al AZ connect the nodes

Al A2
ey
Al A2
Path of length k=2 § i Q\/ = More paths -- more
AT A NN ¥4 similar
B1 52 63 B N

o Probability from a
node to reach the
c1 other

Path of length k =3 O = Considers paths of
Al A KA\ a2 MoEE different lengths
=L x.
B, L
oA

Path of length k=4
Al

Al A2
I I Bl :.. .\.: :.. .\.: EE
Bl1/™) B2
. .) . -)

I'\-._.' '\._.-"

c1 C2 c3 c4

S. Cao, W. Lu, Q.i Xu: GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015 80

GraRep

But not all k-neighbors equally important

; °
+1y -
— = S |
C1 C2 3 c4 C3

Nearest neighborhoods more important

Maintain different k-step information differently in the graph representation

Probabilistic adjacency matrix P the probability of transition from node / to

node j where the transition has length exactly 1

O P O K

0
1/3
1/2

1 0 0
00 1
0 0 0
10 0
0 1 0]
12 12 0
0 0 0
1 0 O
13] 13 0
0 0 1/2

O O O o N

o O o +—» O

o O —» O O

o w O o o

82

N O O O O

—
Usg Vg

0 172 0

1/2 0 0

P°=| 0 0 0

0 12 1/6

1/6 5/12 5/12

Nodes reachable in 1-step

GraRep

(0 1/2 12
0O 0 O

P2=P*P=[0 1 0
13 1/3 1/3 0 0
0 12 0

1/2 0

from node 2

0
0
0

o] [0 12 12} 0
1 0O 0 O0f O
o*]0 1 0} O

1/3 1/3 1/3] 0
1/2 0 0 |1/2

o o o +—» O

Nodes that reach node 4
in one step

0 1/2]
!_1/_2: 0 Pl-zj the probability of transition
0 1 form node i from node j when the
0 1/3 transition has length exactly 2
0 0]

83

GraRep

Pl-lj-: Transition probability from node / to node j where the
transition consists of exactly k steps

1. Minimize the loss for a specific k

_ k o 112
Ly = Xgpevav IP-2i- 7 ||
2. Concatenate the embeddings for the different k

Basic idea:
* Train embeddings to predict k-hop neighbors.
* Approach based on skipgrams

84

GraRep

Transition probability from node i (current node) to node j
(context node) where the transition consists of exactly k steps

Pf = pr(G | D)
Skip-gram model

Given a center word w, predict the context words ¢, i.e.,
the words that appear within distance k from w

Pcl\(/v = pk(c | w)

Learn two representations:
= One for node i as the source node (i.e., center word)
= One for node i as the destination node (i.e., context word)

85

GraRep

Use negative sampling (*) and maximum likelihood

Assume for a given k, the collection of all paths from G that start fromiand end at .
Maximize

(1) Probability that these pairs came from the graph, and

(2) Probability that all other pairs did not come form the graph

probability that pair (i, j) probability that pair (i, j) did not
came from the graph I come from the graph

[I \
Le(D) = Xjev (Ul loga(z; - 7)) + A Ejep,nllogo(—z; - zj1)]

\

Sampled vertices drawn
according to the vertex
distribution over the

graph (pg(V))

hyper parameter
indicating the number
of negative samples

o: sigmoid function

86

GraRep

L) = Xjev (r(li) loga(z; - z;)) + A Ejp,n[logo(—z; - zj1) |
Local objective for a specific pair of nodes

. N pk A k
Li(i,j) = P;;log a(zi - Zj) + 5 Z]rev P log o(—z; - zj1)]
As before, compute the gradient and use stochastic gradient descent

Or solve by setting = 0 and get

ZiZj= log(z 4,)—log(B), B =

i’ jkk

87

Summary

* Basic idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.

* Different notions of node similarity:
— Adjacency-based (i.e., similar if connected)
— Multi-hop similarity definitions (HOPE, GraRep)
— Random walk approaches (DeepWalk, node2vec)

* No one method wins in all cases

— e.g., node2vec performs better on node classification
while multi-hop methods performs better on link

prediction

LINK ANG SUBGRAPH EMBEDDINGS

89

From node to link embeddings

Also learns edge vectors based on the vectors of
their endpoints

Operator Symbol Definition
Average 2 (f(u) B f(v)], = LIFLE)

Weighted-L1 |- I3 | f(uw) - f(v)l|z, = | fi(uw) — fi(v)]
Weighted-12 | || 1 (2) - F(¥)]2: = |fulu) — fi(v)]?

Hadamard -] [f(w) & f(v)]: = fi(u) * fi(v)
|
|

[]

90

Embedding Entire Graphs

* Goal: Want to embed a subgraph or an entire
graph G. Graph embedding: z,.

.................

e .

]
‘e

e

-

/ \\u ‘A. ZG
>
original network embedding space

* Tasks:
— Classifying toxic vs. non-toxic molecules
— ldentifying anomalous graphs

Approach 1

Simple (but effective) approach 1:

* Run a standard graph embedding
technique on the (sub)graph G.

* Then just sum (or average) the node
embeddings in the (sub)graph G.

veG

Used by Duvenaud et al., 2016 to classify molecules based on
their graph structure

https://arxiv.org/abs/1509.09292

Approach 2

* Approach 2: Introduce a “virtual node” to
represent the (sub)graph and run a standard
graph embedding technique

. ..
/\ 29
|
original network embedding space

Proposed by Li et al., 2016 as a general technique for subgraph
embedding

https://arxiv.org/abs/1511.05493

Preview: Hierarchical Embeddings

* DiffPool: We can also hierarchically cluster
nodes in graphs, and sum/avg the node
embeddings according to these clusters.

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

94

EMBEDDINGS AND FACTORIZATION

95

Embeddings & Matrix Factorization

Recall: encoder as an embedding lookup
embedding vector for a

embedding specﬁic node
mat\rjx / o
Dimension/size
1 — ~ of embeddings

|
one column per node

Objective: maximize z, z,, for node pairs (u, v) that are similar

96

Matrix Factorization

Simplest nodes similarity, two nodes are similar if connected by an
edge.

Exact factorization A = Z' Z is generally not possible
However, we can learn Z approximately
. Objective:mzin IA—-Z"Z |,
— We optimize Z such that it minimizes the L2 norm (Frobenius
norm)of A — Z'Z

— Note today we used softmax instead of L2. But the goal to
approximate A with Z' Z is the same.

Conclusion: Inner product decoder with node similarity defined by
edge connectivity is equivalent to matrix factorization of A.

97

Random Walk-based Similarity

 DeepWalk and node2vec have a more
complex node similarity definition based on
random walks

* DeepWalk is equivalent to matrix factorization
of the following complex matrix expression:

log (vol(G) (% Z:T (D‘lA)T> D‘1> — logb
r=1

— Explanation of this equation is on the next slide.

Random Walk-based Similarity

Volume of graph

vol(G) = ZZAU Diagonal matrix D
iJ

Du,u = deg(u)
\ r
log (vol(G) % z (D‘lA)’”> D‘1> —logh
r=1

™~

context window size Number of
T = |Ngz(u)] negative samples

* Node2vec can also be formulated as a matrix
factorization (albeit a more complex matrix)

* Refer to the paper for more details:

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

SUMMARY

100

How to Use Embeddings

* How to use embeddings z; of nodes:

— Clustering/community detection: Cluster points z;
— Node classification: Predict label of node i based on z;

— Link prediction: Predict edge (i, j) based on (z;, z;)
 Where we can: concatenate, avg, product, or take a difference
between the embeddings:
— Concatenate: f(z;,z;)= g(|z;, z;])
— Hadamard: f(z;,z;)= g(2; * z;) (per coordinate product)
— Sum/Avg: f(z;,2;)= g(z; + z;)
— Distance: f (2, 2))= g(I|z; — |l2)
— Graph classification: Graph embedding z via
aggregating node embeddings or virtual-node.
Predict label based on graph embedding z,,.

Limitations (1)

Limitations of node embeddings via matrix
factorization and random walks

— Transductive (not inductive) method: Cannot
obtain embeddings for nodes not in the training
set. Cannot apply to new graphs, evolving graphs.

A newly added node 5 at test time
(e.g., new user in a social network)

Cannot compute its embedding
with DeepWalk / node2vec. Need to
recompute all node embeddings.

Training set

102

Limitation (2)
Cannot capture structural similarity:

— Node 1 and 11 are structurally similar — part of one triangle, degree 2, ...
— However, they have very different embeddings.
* Itis unlikely that a random walk will reach node 11 from node 1.

DeepWalk and node2vec do not capture structural similarity.

struct2vec

= similarity,(u, v): based on the difference of the degree sequence of nodes
atradiusr ofuand v

= Builds a multilayer weighted graph, weights set based on similarity

= Perform a random walk: change layer, or do a weight-biased walk in the
same layer

LFR Ribeiro et. al., struc2vec Learning Node Representations from Structural Identity, KDD 2017 103

Limitations (3)

e Cannot utilize node, edge and graph features

I Feature vector
(e.g. protein properties in a
/ protein-protein interaction graph)

DeepWalk / node2vec
I embeddings do not incorporate
such node features

104

Summary

We discussed graph representation learning, a way to learn
node and graph embeddings for downstream tasks,
without feature engineering.

 Encoder-decoder framework:
— Encoder: embedding lookup

— Decoder: predict score based on embedding to match node
similarity

* Node similarity measure: (biased) random walk

— Examples: DeepWalk, Node2Vec

* Extension to Graph embedding: Node embedding
aggregation

105

Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford
University, http://cs224w.stanford.edu

http://cs224w.stanford.edu/

	Slide 1: Online Social Networks and Media
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Part II: Introduction to embeddings Node embeddings on matrix decomposition random-walks Quick overview of word embedding Link and subgraph embeddings
	Slide 6
	Slide 7: Node embeddings: what are they?
	Slide 8: Example
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Learning node embeddings
	Slide 13: Shallow embeddings(*)
	Slide 14: Shallow embeddings
	Slide 15
	Slide 16
	Slide 17
	Slide 18: ADJACENCY-Based
	Slide 19: Adjacency Matrix
	Slide 20: Adjacency-based approach
	Slide 21: Adjacency-based approach
	Slide 22: Adjacency-based approach
	Slide 23: Adjacency-based approach – stochastic gradient descent
	Slide 24: Stochastic Gradient Descent
	Slide 25: Adjacency-based approach
	Slide 26: Adjacency-based approach
	Slide 27: Multi-hop approaches
	Slide 28: High-order Proximity Preserved Embeddings (HOPE)
	Slide 29: HOPE
	Slide 30: HOPE
	Slide 31: Node embeddings
	Slide 32: Word EMBeddings (Some material from Chris Manning course)
	Slide 33: Basic Idea
	Slide 34
	Slide 35
	Slide 36: Word2Vec
	Slide 37: Hierarchical softmax
	Slide 38
	Slide 39
	Slide 40: CBOW
	Slide 41: CBOW
	Slide 42
	Slide 43: CBOW
	Slide 44
	Slide 45
	Slide 46: Skipgram
	Slide 47
	Slide 48: Back to graphs
	Slide 49: Random -walk based embeddings
	Slide 50
	Slide 51
	Slide 52: Random-walk embeddings
	Slide 53: Random-walk Embeddings
	Slide 54: Why Random Walks?
	Slide 55: Unsupervised Feature Learning
	Slide 56: Random Walk Optimization
	Slide 57: Random Walk Optimization
	Slide 58: Random Walk Optimization
	Slide 59: Random Walk Optimization
	Slide 60: Random Walk Optimization
	Slide 61: Negative Sampling
	Slide 62: Negative Sampling
	Slide 63: Stochastic Gradient Descent
	Slide 64: Stochastic Gradient Descent
	Slide 65: Random Walks: Summary
	Slide 66: How should we randomly walk?
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: node2vec: Biased Walks
	Slide 73: BFS vs DFS
	Slide 74: Biased 2nd Order Random Walks
	Slide 75: Interpolating BFS and DFS
	Slide 76: One step of the biased random walk
	Slide 77: One step of the biased random walk
	Slide 78: node2vec algorithm
	Slide 79: Other Random Walk Ideas
	Slide 80
	Slide 81
	Slide 82: GraRep
	Slide 83: GraRep
	Slide 84: GraRep
	Slide 85: GraRep
	Slide 86: GraRep
	Slide 87: GraRep
	Slide 88: Summary
	Slide 89: LINK ANG SUBGRAPH embeddings
	Slide 90: From node to link embeddings
	Slide 91: Embedding Entire Graphs
	Slide 92: Approach 1
	Slide 93: Approach 2
	Slide 94: Preview: Hierarchical Embeddings
	Slide 95: EmBeddings and Factorization
	Slide 96: Embeddings & Matrix Factorization
	Slide 97: Matrix Factorization
	Slide 98: Random Walk-based Similarity
	Slide 99: Random Walk-based Similarity
	Slide 100: Summary
	Slide 101: How to Use Embeddings
	Slide 102: Limitations (1)
	Slide 103: Limitation (2)
	Slide 104: Limitations (3)
	Slide 105: Summary
	Slide 106

