
1

Online Social Networks and
Media

Graph ML II

Graph Embeddings

2

Graph Machine Learning

Outline

Part I: Introduction, Traditional ML
Part II: Graph Embeddings
Part III: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on:

 CS224W: Machine Learning with Graphs

 Jure Leskovec, Stanford University
http://cs224w.stanford.edu

http://cs224w.stanford.edu/

Edge (link) level

Community

(subgraph)

level

Graph-level

prediction,

Graph

generation

Node

level

Types of ML tasks in graphs

3

4

Graph embeddings: why?

Raw
Data

Structured
Data

Learning
Algorithm

Model

Downstream
prediction task

Feature Engineering

Machine learning lifecycle

degree, PageRank,
graphlets, neighborhood
overlap, etc

5

Part II:
Introduction to embeddings

Node embeddings on
matrix decomposition

random-walks

Quick overview of word embedding
Link and subgraph embeddings

6

Graph embeddings: why?

Raw
Data

Structured
Data

Learning
Algorithm

Model

Downstream
prediction task

Feature Engineering

Machine learning lifecycle

degree, PageRank,
graphlets, neighborhood
overlap, etc

Representation Learning
Automatically learn the features

Node embeddings: what are they?

7

vector

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, embedding

node
u

Map nodes to d-dimensional vectors so that:
“similar” nodes in the graph have embeddings that are
close together.

▪ Encode network information

▪ Potentially used for many downstream predictions

Example

8

Output

Zachary’s Karate Club Network:

Image from: Perozzi et al.. DeepWalk: Online Learning of Social Representations. KDD 2014.

Input

using t-SNE

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

9

Graph embeddings

• Encoder: maps each node to a low-dimensional
vector

dot product between node

embeddings

Decoder

ENC 𝑣 = 𝑧𝑣

similarity 𝑢, 𝑣

Similarity of 𝑢 and 𝑣 in

the original network

 ≈𝑧𝑢
𝑇 ∙ 𝑧𝑣

node in the input graph

• Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

d-dimensional

embedding

1
0

Two key components

Need to define!

in the original network

Similarity of the embedding

Embedding nodes
Goal: similarity(𝑢, 𝑣) ≈ 𝑧𝑢

𝑇 ∙ 𝑧𝑣

Learning node embeddings

12

1. Define an encoder ENC that maps nodes to low
dimensional spaces

2. Define a node similarity function (i.e., a measure of
similarity in the original network).

3. Decoder 𝐃𝐄𝐂 maps from embeddings to the similarity
score

4. Optimize the parameters of the encoder so that we
minimize a loss function L that looks (roughly) like:

𝑳 = ෍

 𝑢,𝑣 ∈ 𝑉

(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) − 𝑧𝑢
𝑇 ∙ 𝑧𝑣)2

Dimension/size of

embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

𝐙 =

Each node is assigned a single d-dimensional vector
Learn 𝑉 × 𝑑 embedding matrix 𝒁: each column i is the
embedding 𝑧𝑖 of node i

Shallow embeddings(*)

(*) As opposed to deep learning in graphs (GNN embeddings)

Shallow embeddings

14

Z

𝑧𝑖

i

𝐸𝑁𝐶 𝑣 = 𝑍 𝐼𝑣

𝑣

One-hot or indicator
vector, all 0s but
position 𝑣

𝐼𝑣

Encoder is just an embedding lookup

0

0

1

0

𝑁 × 1𝑑 × 𝑁

Encoder + Decoder Framework

 Shallow encoder: Embedding lookup

 Parameters to optimize: 𝐙 which contains node
embeddings for all nodes 𝑢 ∈ 𝑉

 We will cover deep encoders in the GNNs

 Decoder: based on node similarity.

 Objective: maximize 𝑧𝑢
𝑇 ∙ 𝑧𝑣 for node pairs (𝑢, 𝑣)

that are similar

Framework Summary

• Key choice of methods is how they define node
similarity.

• Should two nodes have a similar embedding if
they…
 are linked?

 share neighbors?

 have similar “structural roles”?

How to define node similarity

• This is unsupervised/self-supervised way of
learning node embeddings.

 We are not utilizing node labels

 We are not utilizing node features

 The goal is to directly estimate a set of coordinates
(i.e., the embedding) of a node so that some aspect
of the network structure (captured by DEC) is
preserved.

• These embeddings are task independent:

 They are not trained for a specific task but can be
used for any task.

Note on node embeddings

ADJACENCY-BASED

18

Adjacency Matrix

• Simplest node similarity: Nodes 𝑢, 𝑣 are
similar if they are connected by an edge

• This means: 𝐳𝑣
Τ𝐳𝑢 = 𝐴𝑢,𝑣

which is the (𝑢, 𝑣) entry of the graph
adjacency matrix 𝐴

• Therefore, 𝒁𝑇𝒁 = 𝐴

1

4

3

2

×

𝒁𝑇 𝒁

𝐳𝑢 𝐳𝑣





















=

0111

1000

1001

1010

A

Adjacency-based approach
• The embedding dimension 𝑑 (number of rows in 𝒁) is

much smaller than number of nodes 𝑛.

• Inner product decoder with node similarity defined by
edge connectivity is equivalent to matrix factorization of
𝐴.

• Exact factorization 𝐴 = 𝒁𝑻𝒁 is generally not possible

• Matrix decomposition (for example, SVD decomposition)
1. Scalability issues

2. Produced matrices that are very dense

Adjacency-based approach

• However, we can learn 𝒁 approximately

• Objective:min
𝐙

∥ A − 𝒁𝑇𝒁 ∥2

– We optimize 𝒁 such that it minimizes the L2 norm
(Frobenius norm) of A − 𝒁𝑇𝒁

– We used softmax instead of L2. But the goal to
approximate A with 𝒁𝑇𝒁 is the same.

How: stochastic gradient descent

21

22

𝐿 = σ 𝑢,𝑣 ∈ 𝑉 × 𝑉 ||𝐴𝑢,𝑣 - 𝑍𝑢
𝑇 ∙ 𝑍𝑣

 ||2

sum over all node pairs

The loss that what we want to minimize

(possibly weighted) adjacency
matrix for the graph

embedding similarity

Adjacency-based approach

A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, A. J. Smola: Distributed large-scale natural graph factorization.
WWW 2013

23

𝐿 = σ 𝑢,𝑣 ∈ 𝐸(𝐴𝑢𝑣 - 𝑍𝑢
𝑇 ∙ 𝑍𝑣

)2

𝐿 = σ 𝑢,𝑣 ∈ 𝑉 × 𝑉 ||𝐴𝑢𝑣 - 𝑍𝑢
𝑇 ∙ 𝑍𝑣

 ||2

sum over all edges

𝐿 =
1

2
σ 𝑢,𝑣 ∈ 𝐸(𝐴𝑢𝑣 - 𝑍𝑢

𝑇 ∙ 𝑍𝑣
)2 +

𝜆

2
σ𝑢 ||𝑍𝑢 ||2

Adjacency-based approach –
stochastic gradient descent

regularization factor

A few manipulations

sum over all node pairs

Stochastic Gradient Descent

After we obtain the objective function, how do we
optimize (minimize) it?

Gradient Descent: a simple way to minimize ℒ :

▪ Initialize 𝑧𝑢 at some randomized value for all nodes 𝑢.

▪ Iterate until convergence:

▪ For all 𝑢, compute the derivative
𝜕ℒ

𝜕𝑧𝑢
.

▪ For all 𝑢, make a step in reverse direction of derivative: 𝑧𝑢 ← 𝑧𝑢 − 𝜂
𝜕ℒ

𝜕𝑧𝑢
.

𝜂: learning rate

𝐿 =
1

2
σ 𝑢,𝑣 ∈ 𝐸(𝐴𝑢𝑣 - 𝑍𝑢

𝑇 ∙ 𝑍𝑣
)2 +

𝜆

2
σ𝑢∈𝑉 ||𝑍𝑢 ||2

Adjacency-based approach

25

𝐿 =
1

2
σ 𝑢,𝑣 ∈ 𝐸(𝐴𝑢𝑣 - 𝑍𝑢

𝑇 ∙ 𝑍𝑣
)2 +

𝜆

2
σ𝑢∈𝑉 ||𝑍𝑢 ||2

Gradient of 𝐿 with respect to each row (column) of 𝑍 (learn one
vector per node)

𝜕𝐿

𝜕𝑍𝑢
 = - σ𝑣 ∈ 𝑁(𝑢) 𝐴𝑢𝑣 − 𝑍𝑣 ∙ 𝑍𝑢

𝑇 𝑍𝑣 + λ 𝑍𝑢

For each edge (𝑢, 𝑣) ∈ 𝐸 this amounts for

𝜕𝐿

𝜕𝑍𝑢
 = - (𝐴𝑢𝑣 −𝑍𝑣 ∙ 𝑍𝑣) 𝑍𝑣 + λ 𝑍𝑢

Taking the gradient

Adjacency-based approach

26

Requires: Adjacency matrix A, rank d, accuracy ε
Ensures: Local minimum
1: Initialize Z’ at random
2: t  1
3; repeat
4: Z  Z’
5: for all edges (i, j)  E do

6: η  1/ 𝑡
7: t  t +1
8: Zi  Zi + η ((Aij – <Zi ∙ Zj>Zj) + λ Ζi)
9: end for
10: until ||Z- Z’||2 <= ε
11: return Z

▪ Complexity O(|E|)
▪ Can be parallelized

η: learning rate, captures the extent at which
newly acquired information overrides old

Multi-hop approaches

27

Only considers direct connections

What about further neighbors?

Look further than the 1-step neighbors and learn by using information
from/for k-step neighbors

We will see two approaches
▪ GraRep: looks at probabilities of reaching a node
▪ HOPE: various metrics of similarity based on neighbors and paths

High-order Proximity Preserved Embeddings
(HOPE)

28

For directed graphs, learn two embedding vectors
𝑍 = |𝑍𝑠, 𝑍𝑡|

Based on a high order proximity matrix 𝑆,

 𝑆𝑢𝑣= 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑢, 𝑣)

𝐿 = σ 𝑢,𝑣 ∈ 𝑉 𝑥 𝑉 ||𝑆𝑢𝑣 - 𝑍𝑢
𝑠 ∙ 𝑍𝑣

𝑡||2

M. Ou, P. Cui, J. Pei, Z.i Zhang, W. Zhu: Asymmetric Transitivity Preserving Graph Embedding. KDD 2016

HOPE

29

Local High Order Proximity
Common Neighbors (for
directed graphs, source-
target)

𝑆𝐶𝑁 = 𝐴2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=













































00221

10120

10000

01001

10010

01001

00111

00010

10000

00110

*

01001

00111

00010

10000

00110

A2 =

Adamic-Adar

𝑆𝐴𝐴 = 𝐴

𝐷 𝐴

Similar but assigns a weight to the neighbor
reciprocal of its degree

HOPE

30

Global High Order Proximity

Katz
Sum over all paths of length l, using a decay parameter

𝑆𝐾𝑎𝑡𝑧 = ෍

𝑙=1

∞

𝛽𝑙 𝐴𝑙

Rooted Pagerank

SVD with some tricks to save computations

Node embeddings

31

Approaches based on:
▪ Adjacency-like matrices

▪ Adjacency matrix
▪ Multi-hop neighborhoods

▪ HOPE
▪ GraRep (random walks)

▪ Random-walks
▪ DeepWalk
▪ Node2Vec

Random walks
based on
word embeddings

WORD EMBEDDINGS
(Some material from Chris Manning course)

32

Basic Idea

33

• You can get a lot of value by representing a word by
means of its neighbors (distributional semantics)

• “You shall know a word by the company it keeps”
• (J. R. Firth 1957: 11)

• One of the most successful ideas of modern
statistical NLP

34

Basic Idea

She reached up to pluck a ripe apple from the tree, its sweet aroma filling the
air.

Window = 3

A word is defined by its context

Context: words that appear in a fixed length window
around the word

Use the many contexts of 𝑤 to represent a word

I enjoyed a crisp and juicy apple as a snack this afternoon.

Window = 3

center

center

35

𝑤1

𝑤2

𝑤3

.

.

.
𝑤𝑑

word

𝑤′1
𝑤′2

𝑤′3

.

.

.
𝑤′𝑑

Context

Center

Basic idea
Learn two embeddings per word: (1) as context (2) as center

▪ Center-embedding of a center word similar with the context
embeddings of its context words

▪ And vice-versa
Use text to learn these embeddings

Word2Vec

36

Predict between every word and its context words

Two algorithms

1. Skip-grams (SG)

Predict context words given the center word

2. Continuous Bag of Words (CBOW)

Predict center word from a bag-of-words context

Position independent (do not account for distance from center)

Two training methods

1. Hierarchical softmax

2. Negative sampling

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean: Distributed Representations of Words and
Phrases and their Compositionality. NIPS 2013: 3111-3119

Hierarchical softmax

37

Instead of learning O(|V|) vectors, learn O(log(|V|)
vectors

How?

▪ Build a binary tree with leaves the words and learn
one vector for each internal node.

▪ The value for each word w is the product of the
values of the internal nodes in the path from the
root to w.

38

pluck a ripe _____ from the tree

____ ____ ____ apple ____ ____ ____

She reached up to pluck a ripe apple from the tree, its sweet aroma filling
the air.

Window = 3

Basic Idea

CBOW

Skipgram

39

0
.
1
.
.
.
0

0
.
.
1
.
.
0

1-hot vector of center word

0
1
.
.
.
.
.

1-hot vectors of context words

2𝑚
.
.

.

Output
Input

CBOW

CBOW

Use a window of context words to predict the center word

CBOW

40

|V|

Embedding of the i-th word
when center word

i

d

𝑊
𝑊’d

|V|

i

Embedding of
the i-th word
when context
word

|𝑉| × 𝑑 context embeddings
when input

𝑑 × |𝑉| center embeddings
when output

CBOW

41

Intuition
The 𝑊’-embedding of the center word should be similar
to the (average of) the 𝑊-embeddings of its context
words

▪ For similarity, we will use cosine (dot product)
▪ We will take the average of the W-embeddings of the context

word

We want similarity close to one for the center word and close to 0
for all other words

42

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer𝑊|𝑉|×𝑑

𝑊|𝑉|×𝑑

V-dim

V-dim

N-dim

𝑊′|𝑉|×𝑑

V-dim

N will be the size of word vector

We must learn W and W’

cat sat on
window size = 1

Index of cat in vocabulary

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

CBOW

43

Given window size m

𝑥(𝑐) one hot vector for context words, y one hot vector for the center word

1. INPUT: the one hot vectors for the 2m context words

𝑥(𝑐−𝑚), …, 𝑥(𝑐−1), 𝑥(𝑐+1), …, 𝑥(𝑐+𝑚)

2. GET THE EMBEDDINGS of the context words

 𝑣𝑐−𝑚 = 𝑊𝑥(𝑐−𝑚), …, 𝑣𝑐−1 = 𝑊𝑥(𝑐−1), 𝑣𝑐+1 = 𝑊𝑥(𝑐+1), …, 𝑣𝑐+𝑚= 𝑊𝑥(𝑐+𝑚)

3. TAKE THE SUM these vectors (average)

ො𝑣 =
𝑣𝑐−𝑚+𝑣𝑐−𝑚+1+⋯𝑣𝑐+𝑚

2𝑚
, ො𝑣 ∈ 𝑅𝑁

4. COMPUTE SIMILARITY: dot produce W’ (all center vectors) and context ො𝑣 (generate
score vector z)
z = W’ ො𝑣

5. Turn the score vector to probabilities
ො𝑦 = softmax(z)

We want this to be close to 1 for the center word

44

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥𝑖 =
𝑒𝑥𝑖

σ𝑗=1
𝑛 𝑒𝑥𝑗

▪ “Most” probability to the largest value (max)
▪ “Some” probability to the other values (soft)

From values to probability distributions

>>> import numpy as np

>>> a = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]

>>> np.exp(a) / np.sum(np.exp(a))

array([0.02364054, 0.06426166, 0.1746813, 0.474833,

0.02364054, 0.06426166, 0.1746813])

Softmax

Exponentiate to make
positive

Normalize to get
probabilities

45

1-hot vector of center word

0
1
.
.
.
.
.

1-hot vectors of context words

0
.
1
.
.
.
0

0
.
.
1
.
.
0

2𝑚.
.

.

OutputInput

Skipgram

Given the center word, predict (or, generate) the context words

Skipgram

Learn two matrices
𝑊: 𝑑 × |𝑉|, input matrix, word representation as center word
𝑊’: |𝑉| × 𝑑, output matrix, word representation as context word

Skipgram

46

𝑦(𝑗) one hot vector for context words

1. Input: one hot vector of the center word
𝑥

2. Get the embedding of the center word
 𝑣𝑐 = 𝑊 𝑥

3. Generate a score vector for each context word
z = W’ 𝑣𝑐

5. Turn the score vector into probabilities
ො𝑦 = softmax(z)

We want this to be close to 1 for the context words

Given the center word, predict (or, generate) the context words

47

BACK TO GRAPHS

48

RANDOM -WALK BASED EMBEDDINGS

49

50

Words = Nodes
Sentences = Paths, Random walks

How?

1

4

3

2

5
6

7

10
9

8

12

Given a graph and a starting point, we
select a neighbor of it at random, and
move to this neighbor; then we select
a neighbor of this point at random, and
move to it, etc.

The (random) sequence of points
visited this way is a random walk on
the graph.

Step 1
Step 2

Step 3 Step 4

Step 5

Random Walk

11

Random-walk embeddings

52

probability that i and j
co-occur on a random
walk over the network

𝑧𝑖 ∙ 𝑧𝑗 ≈

Random-walk Embeddings

53

1. Estimate probability of
visiting node 𝑣 on a random
walk starting from node 𝑢
using some random walk
strategy R.

2. Optimize embeddings to
encode these random walk
statistics.

Why Random Walks?

54

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information.
Idea: if random walk starting from node 𝑢 visits 𝑣
with high probability, 𝑢 and 𝑣 are similar (high-order
multi-hop information)

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks.

Unsupervised Feature Learning

• Intuition: Find embedding of nodes in
𝑑-dimensional space that preserves similarity

• Idea: Learn node embedding such that nearby
nodes are close together in the network

• Given a node 𝑢, how do we define nearby
nodes?

– 𝑁𝑅 𝑢 : neighbourhood of 𝑢 obtained by some
random walk strategy 𝑅

Random Walk Optimization
1. Run short fixed-length random walks starting from each

node 𝑢 in the graph using some random walk strategy R.

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset* of nodes
visited on random walks starting from 𝑢.

3. Optimize embeddings according to: Given node 𝑢, predict
its neighbors 𝑁R(𝑢).

arg max
𝑧

෍

𝑢 ∈𝑉

log P(𝑁R(𝑢)| 𝐳𝑢)

*𝑁𝑅(𝑢) can have repeat elements since nodes can be visited multiple times on random walks

Maximum likelihood

objective

Random Walk Optimization

Intuition: Optimize embeddings 𝒛𝑢 to minimize the negative log-
likelihood of random walk neighborhoods 𝑁(𝑢).

Parameterize 𝑃(𝑣|𝐳𝑢) using softmax:
Why softmax?

We want node 𝑣 to be most similar

to node 𝑢 (out of all nodes 𝑛).

Intuition: σ𝑖 exp 𝑥𝑖 ≈ max
𝑖

exp(𝑥𝑖)𝑃 𝑣 𝐳𝑢 =
exp(𝐳𝑢

T𝐳𝑣)

σ𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

arg min
𝑧

ℒ = ෍

𝑢∈𝑉

෍

𝑣∈𝑁𝑅(𝑢)

−log(𝑃(𝑣|𝐳𝑢))

Equivalently,

Random Walk Optimization

Putting it all together:

sum over all
nodes 𝑢

sum over nodes 𝑣
seen on random

walks starting from 𝑢

predicted probability of 𝑢
and 𝑣 co-occuring on

random walk

Optimizing random walk embeddings = Finding embeddings z𝑢 that minimize L

ℒ = ෍

𝑢∈𝑉

෍

 𝑣∈𝑁𝑅(𝑢)

− log(
exp(𝐳𝑢

T𝐳𝑣)

σ𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

)

Random Walk Optimization

But doing this naively is too expensive!

Nested sum over nodes gives
O(|V|2) complexity!

ℒ = ෍

𝑢∈𝑉

෍

 𝑣∈𝑁𝑅(𝑢)

−log(
exp(𝐳𝑢

T𝐳𝑣)

σ𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

)

ℒ = ෍

𝑢∈𝑉

෍

 𝑣∈𝑁𝑅(𝑢)

−log(
exp(𝐳𝑢

T𝐳𝑣)

σ𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

)

Random Walk Optimization

Jure Leskovec, Stanford CS224W: Machine
Learning with Graphs,

http://cs224w.stanford.edu
60

The normalization term from the softmax is
the culprit… can we approximate it?

11/30/2023

But doing this naively is too expensive!

• Solution: Negative sampling

Instead of normalizing w.r.t. all nodes, just normalize against 𝑘
random “negative samples” 𝑛𝑖

• Negative sampling allows for quick likelihood calculation.

Negative Sampling

sigmoid function
(makes each term a “probability”

between 0 and 1)

random distribution

over nodes

Why is the approximation valid?

Technically, this is a different objective. But

Negative Sampling is a form of Noise

Contrastive Estimation (NCE) which approx.

maximizes the log probability of softmax.

New formulation corresponds to using a

logistic regression (sigmoid func.) to

distinguish the target node 𝑣 from nodes 𝑛𝑖

sampled from background distribution 𝑃𝑣.

More at https://arxiv.org/pdf/1402.3722.pdf

≈ log 𝜎 𝐳𝑢
T𝐳𝑣 + σ𝑖=1

𝑘 log 𝜎 −𝐳𝑢
T𝐳𝑛𝑖

, 𝑛𝑖~𝑃𝑉

−log(
exp 𝐳𝑢

T𝐳𝑣

σ𝑛∈𝑉 exp 𝐳𝑢
T𝐳𝑛

)

https://arxiv.org/pdf/1402.3722.pdf

Negative Sampling
random distribution

over nodes

▪ Sample 𝑘 negative nodes 𝑛𝑖 each with prob.
proportional to its degree.

▪ Two considerations for 𝑘 (# negative samples):
1. Higher 𝑘 gives more robust estimates

2. Higher 𝑘 corresponds to higher bias on negative events

In practice 𝑘 =5-20.

≈ log 𝜎 𝐳𝑢
T𝐳𝑣 + ෍

𝑖=1

𝑘

log 𝜎 −𝐳𝑢
T𝐳𝑛𝑖

, 𝑛𝑖~𝑃𝑉

log(
exp 𝐳𝑢

T𝐳𝑣

σ𝑛∈𝑉 exp 𝐳𝑢
T𝐳𝑛

)

Can negative sample be any node or only the nodes not on the

walk? People often sample any node (for efficiency).

Stochastic Gradient Descent
▪ After we obtained the objective function, how do

we optimize (minimize) it?

▪ Gradient Descent: a simple way to minimize ℒ :

▪ Initialize 𝑧𝑢 at some randomized value for all nodes 𝑢.

▪ Iterate until convergence:

▪ For all 𝑢, compute the derivative
𝜕ℒ

𝜕𝑧𝑢
.

▪ For all 𝑢, make a step in reverse direction of derivative: 𝑧𝑢 ← 𝑧𝑢 − 𝜂
𝜕ℒ

𝜕𝑧𝑢
.

ℒ = ෍

𝑢∈𝑉

෍

𝑣∈𝑁𝑅(𝑢)

−log(𝑃(𝑣|𝐳𝑢))

𝜂: learning rate

Stochastic Gradient Descent

64

▪ Stochastic Gradient Descent: Instead of evaluating
gradients over all examples, evaluate it for each
individual training example.

▪ Initialize 𝑧𝑢 at some randomized value for all nodes 𝑢.

▪ Iterate until convergence:

▪ Sample a node 𝑢, for all 𝑣 calculate the gradient
𝜕ℒ(𝑢)

𝜕𝑧𝑣
.

▪ For all 𝑣, update:𝑧𝑣 ← 𝑧𝑣 − 𝜂
𝜕ℒ(𝑢)

𝜕𝑧𝑣
.

ℒ(𝑢) = ෍

𝑣∈𝑁𝑅(𝑢)

−log(𝑃(𝑣|𝐳𝑢))

Random Walks: Summary
1. Run short fixed-length random walks starting

from each node on the graph

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset of
nodes visited on random walks starting from 𝑢.

3. Optimize embeddings 𝑍 using Stochastic
Gradient Descent:

65

We can efficiently approximate this using negative sampling!

ℒ = ෍

𝑢∈𝑉

෍

𝑣∈𝑁𝑅(𝑢)

−log(𝑃(𝑣|𝐳𝑢))

66

▪ DeepWalk just runs fixed-length,
unbiased random walks starting from
each node

▪ Node2vec: biased random walks that
can trade-off between local and global
views of the network

A. Grover, J. Leskovec: node2vec: Scalable Feature Learning for Networks. KDD 2016

How should we randomly walk?

B. Perozzi, R. Al-Rfou, S. Skiena: DeepWalk: online learning of social representations. KDD 2014

67

Short random walks = sentences

Short truncated random walks are sentences in an
artificial language

DeepWalk

68

DeepWalk

Node frequency in random walks on
scale free graphs also follows a
power law.

Words frequency in a natural
language corpus follows a power law.

69

Representation mapping

70

▪ Window w
▪ Generate γ random walks for

each vertex in the graph
▪ Each short random walk has

length t (intuitively, sentence
length)

▪ Pick the next step uniformly
from the node neighbors

DeepWalk

The algorithm consists of two main components; first a random
walk generator and second an update procedure

71

DeepWalk

node2vec: Biased Walks

Two classic strategies to define a neighborhood
𝑁𝑅 𝑢 of a given node 𝑢:

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view (BFS)

Global macroscopic view (DFS)

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

Walk of length 3 (𝑁𝑅 𝑢 of size 3):

BFS vs DFS

BFS:
𝑁𝑅(⋅) will provide a

micro-view of
neighbourhood

𝑢

DFS:
𝑁𝑅(⋅) will provide a

macro-view of
neighbourhood

𝑢

Biased 2nd Order Random Walks

74

𝑡

x1

𝒗

x2

Closer to 𝒕

Farther from 𝒕

Walker from t, traversed (𝑡, 𝑣) and is now in 𝑣, where to
go next?

How much far away from 𝑡? Only three possible choices:
▪ Farther distance (distance =2)
▪ Same distance (distance = 1)
▪ Back to t (distance = 0)

Same distance to 𝒕

Interpolating BFS and DFS
Biased random walk 𝑅 that given a node 𝑢 generates
neighborhood 𝑁𝑅 𝑢

• Two parameters:
– Return parameter 𝑝:

• Return to the previous node

– In-out parameter 𝑞:

• Moving outwards (DFS) vs. inwards (BFS)

• Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

• Specify how a single step of biased random walk is
performed

– Random walk is then just a sequence of these steps.

75

One step of the biased random walk

76

Same distance to 𝒕

𝑡

x1

𝑣

x2

Closer to 𝒕

Farther from 𝒕

At 𝑣 from 𝑡, where to go
next?

1

1/𝑞
1/𝑝

▪ 1 to node with same distance
▪ 1/q node further apart
▪ 1/p back to t
(unnormalized probabilities)

BFS-like walk: Low value of 𝑝
DFS-like walk: Low value of 𝑞

Define the random walk by specifying the
walk transition probabilities on edges
adjacent to the current node 𝑣:

One step of the biased random walk

77

𝑣 →

𝑡
s2

s3

s4

1/𝑝
1

1/𝑞
1/𝑞

Unnormalized

transition prob.

segmented based

on distance from 𝑡

1

1/𝑞

1/𝑝t

s2

𝑣

s3

𝑢 s4

1/𝑞
Target Prob. Dist. (𝑺𝒊, 𝒕)

 0

 1

 2

 2

At 𝑣 from 𝑆1

𝑁𝑅(𝑣) are the nodes visited by the biased walk

node2vec algorithm

78

1) Compute edge transition probabilities:

▪ For each edge (𝑠1, 𝑤) we compute edge walk
probabilities (based on 𝑝, 𝑞) of edges (𝑤,⋅)

2) Simulate 𝑟 random walks of length 𝑙 starting
from each node 𝑢
3) Optimize the node2vec objective using
Stochastic Gradient Descent

Linear-time complexity
All 3 steps are individually parallelizable

Other Random Walk Ideas

• Different kinds of biased random walks:
– Based on node attributes (Dong et al., 2017).
– Based on learned weights (Abu-El-Haija et al., 2017)

• Alternative optimization schemes:

– Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

• Network preprocessing techniques:

– Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017 struct2vec, Chen et al.

2016 HARP).

https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

80

Path of length k =1

Path of length k = 2

GraRep

Path of length k = 3

Path of length k = 4

▪ Look at the paths that
connect the nodes

▪ More paths -- more
similar
o Probability from a

node to reach the
other

▪ Considers paths of
different lengths

S. Cao, W. Lu, Q.i Xu: GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015

81

Nearest neighborhoods more important

Maintain different k-step information differently in the graph representation

GraRep

But not all k-neighbors equally important

GraRep

82

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=

01001

00111

00010

10000

00110

A























=

20000

03000

00100

00010

00002

D























== −

01/2001/2

001/31/31/3

00010

10000

001/21/20

1ADP

Probabilistic adjacency matrix 𝑃𝑖𝑗 the probability of transition from node i to
node j where the transition has length exactly 1

GraRep

83

𝑣2

𝑣3

𝑣4𝑣5

𝑣1













































==

01/2001/2

001/31/31/3

00010

10000

001/21/20

*

01/2001/2

001/31/31/3

00010

10000

001/21/20

*2 PPP

Nodes reachable in 1-step
from node 2

Nodes that reach node 4
in one step























=

005/125/121/6

1/301/61/20

10000

01/2001/2

1/2001/20

2P

𝑃𝑖𝑗
2 the probability of transition

form node i from node j when the
transition has length exactly 2

GraRep

84

𝑃𝑖𝑗
𝑘

: Transition probability from node i to node j where the

transition consists of exactly k steps

Basic idea:

• Train embeddings to predict k-hop neighbors.

• Approach based on skipgrams

𝐿𝑘 = σ 𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝑃𝑖𝑗
𝑘 - 𝑧𝑖 ∙ 𝑧𝑗 ||2

2. Concatenate the embeddings for the different k

1. Minimize the loss for a specific k

GraRep

85

𝑃𝑖𝑗
𝑘 = 𝑝𝑘 𝑗 | 𝑖

Transition probability from node i (current node) to node j
(context node) where the transition consists of exactly k steps

Given a center word w, predict the context words c, i.e.,
the words that appear within distance k from w

𝑃𝑐𝑤
𝑘 = 𝑝𝑘 𝑐 | 𝑤

Skip-gram model

Learn two representations:
▪ One for node i as the source node (i.e., center word)
▪ One for node i as the destination node (i.e., context word)

GraRep

86

Use negative sampling (*) and maximum likelihood
Assume for a given k, the collection of all paths from G that start from i and end at j.
Maximize
(1) Probability that these pairs came from the graph, and
(2) Probability that all other pairs did not come form the graph

𝐿𝑘 𝑖 = σ𝑗 ∈ 𝑉 (𝑝𝑘 𝑗 𝑖 log 𝜎(𝑧𝑖 ∙ 𝑧𝑗)) + 𝜆 𝐸𝑗′~𝑝𝑘(𝑉)[log 𝜎(−𝑧𝑖 ∙ 𝑧𝑗′)]

Sampled vertices drawn
according to the vertex
distribution over the
graph (𝑝𝑘(V))

hyper parameter
indicating the number
of negative samples

probability that pair (i, j)
came from the graph

probability that pair (i, j) did not
come from the graph

σ: sigmoid function

GraRep

87

𝐿𝑘 𝑖 = σ𝑗 ∈ 𝑉 (𝑝𝑘 𝑗 𝑖 log 𝜎(𝑧𝑖 ∙ 𝑧𝑗)) + 𝜆 𝐸𝑗′~𝑝𝑘(𝑉)[log 𝜎(−𝑧𝑖 ∙ 𝑧𝑗′)]

𝐿𝑘 𝑖, 𝑗 = 𝑃𝑖𝑗
𝑘 log 𝜎 𝑧𝑖 ∙ 𝑧𝑗 +

𝜆

N
 σ𝑗′∈𝑉 𝑃𝑖𝑗′

𝑘
log σ(−𝑧𝑖 ∙ 𝑧𝑗′)]

Local objective for a specific pair of nodes

As before, compute the gradient and use stochastic gradient descent

𝑧𝑖𝑧𝑗= log(
𝑆𝑖,𝑗𝑘

σ𝑖′ 𝐴𝑖′,𝑗𝑘𝑘

) – log(β), β =
𝜆

Ν

Or solve by setting = 0 and get

Summary

88

• Basic idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.

• Different notions of node similarity:
– Adjacency-based (i.e., similar if connected)

– Multi-hop similarity definitions (HOPE, GraRep)

– Random walk approaches (DeepWalk, node2vec)

• No one method wins in all cases
– e.g., node2vec performs better on node classification

while multi-hop methods performs better on link
prediction

LINK ANG SUBGRAPH EMBEDDINGS

89

From node to link embeddings

90

Also learns edge vectors based on the vectors of
their endpoints

Embedding Entire Graphs
• Goal: Want to embed a subgraph or an entire

graph 𝐺. Graph embedding: 𝐳𝑮.

• Tasks:
– Classifying toxic vs. non-toxic molecules

– Identifying anomalous graphs

𝒛𝐺

Approach 1

Simple (but effective) approach 1:

• Run a standard graph embedding
technique on the (sub)graph 𝐺.

• Then just sum (or average) the node
embeddings in the (sub)graph 𝐺.

Used by Duvenaud et al., 2016 to classify molecules based on
their graph structure

𝒛𝑮 = ෍

𝑣∈𝐺

𝒛𝑣

https://arxiv.org/abs/1509.09292

Approach 2
• Approach 2: Introduce a “virtual node” to

represent the (sub)graph and run a standard
graph embedding technique

Proposed by Li et al., 2016 as a general technique for subgraph
embedding

https://arxiv.org/abs/1511.05493

Preview: Hierarchical Embeddings

• DiffPool: We can also hierarchically cluster
nodes in graphs, and sum/avg the node
embeddings according to these clusters.

94

EMBEDDINGS AND FACTORIZATION

95

Embeddings & Matrix Factorization

Recall: encoder as an embedding lookup

96

Dimension/size

of embeddings

one column per node

embedding

matrix

embedding vector for a

specific node

𝐙 =

Objective: maximize 𝐳𝑣
Τ𝐳𝑢 for node pairs (𝑢, 𝑣) that are similar

Matrix Factorization
Simplest nodes similarity, two nodes are similar if connected by an
edge.

Exact factorization 𝐴 = 𝒁𝑻𝒁 is generally not possible

However, we can learn 𝒁 approximately

• Objective:min
𝐙

∥ A − 𝒁𝑇𝒁 ∥2

– We optimize 𝒁 such that it minimizes the L2 norm (Frobenius
norm) of A − 𝒁𝑇𝒁

– Note today we used softmax instead of L2. But the goal to
approximate A with 𝒁𝑇𝒁 is the same.

Conclusion: Inner product decoder with node similarity defined by
edge connectivity is equivalent to matrix factorization of A.

97

Random Walk-based Similarity

• DeepWalk and node2vec have a more
complex node similarity definition based on
random walks

• DeepWalk is equivalent to matrix factorization
of the following complex matrix expression:

– Explanation of this equation is on the next slide.

98

𝑙𝑜𝑔 𝑣𝑜𝑙(𝐺)
1

𝑇
 ෍

𝑟=1

𝑇

(𝐷−1𝐴)𝑟 𝐷−1 − log 𝑏

Random Walk-based Similarity

• Node2vec can also be formulated as a matrix
factorization (albeit a more complex matrix)

• Refer to the paper for more details:

99
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

Power of normalized

adjacency matrix

context window size

𝑇 = |𝑁𝑅 𝑢 |
Number of

negative samples

Diagonal matrix 𝐷
𝐷𝑢,𝑢 = deg(𝑢)

log 𝑣𝑜𝑙(𝐺)
1

𝑇
 ෍

𝑟=1

𝑇

(𝐷−1𝐴)𝑟 𝐷−1 − log 𝑏

Volume of graph

𝑣𝑜𝑙 𝐺 = ෍

𝑖

෍

𝑗

𝐴𝑖,𝑗

SUMMARY

100

How to Use Embeddings
• How to use embeddings 𝒛𝒊 of nodes:

– Clustering/community detection: Cluster points 𝒛𝒊

– Node classification: Predict label of node 𝑖 based on 𝒛𝒊

– Link prediction: Predict edge (𝑖, 𝑗) based on (𝒛𝒊, 𝒛𝒋)
• Where we can: concatenate, avg, product, or take a difference

between the embeddings:
– Concatenate: 𝑓(𝒛𝑖 , 𝒛𝑗)= 𝑔([𝒛𝑖 , 𝒛𝑗])

– Hadamard: 𝑓(𝒛𝑖 , 𝒛𝑗)= 𝑔(𝒛𝑖 ∗ 𝒛𝑗) (per coordinate product)

– Sum/Avg: 𝑓(𝒛𝑖 , 𝒛𝑗)= 𝑔(𝒛𝑖 + 𝒛𝑗)

– Distance: 𝑓(𝒛𝑖 , 𝒛𝑗)= 𝑔(||𝒛𝑖 − 𝒛𝒋||2)

– Graph classification: Graph embedding 𝒛𝑮 via
aggregating node embeddings or virtual-node.
Predict label based on graph embedding 𝒛𝐺.

Limitations (1)
Limitations of node embeddings via matrix
factorization and random walks

– Transductive (not inductive) method: Cannot
obtain embeddings for nodes not in the training
set. Cannot apply to new graphs, evolving graphs.

102

1

4

3

2
5

Training set

A newly added node 5 at test time

(e.g., new user in a social network)

Cannot compute its embedding

with DeepWalk / node2vec. Need to

recompute all node embeddings.

Limitation (2)
Cannot capture structural similarity:

– Node 1 and 11 are structurally similar – part of one triangle, degree 2, …

– However, they have very different embeddings.

• It is unlikely that a random walk will reach node 11 from node 1.

DeepWalk and node2vec do not capture structural similarity.

struct2vec
▪ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑟 𝑢, 𝑣 : based on the difference of the degree sequence of nodes

at radius 𝑟 of 𝑢 and 𝑣

▪ Builds a multilayer weighted graph, weights set based on similarity

▪ Perform a random walk: change layer, or do a weight-biased walk in the
same layer

103

1

3

4

2

5 10

11

13

12

LFR Ribeiro et. al., struc2vec Learning Node Representations from Structural Identity, KDD 2017

Limitations (3)

• Cannot utilize node, edge and graph features

104

1

4

3

2
5

Feature vector

(e.g. protein properties in a

protein-protein interaction graph)

DeepWalk / node2vec

embeddings do not incorporate

such node features

Summary
We discussed graph representation learning, a way to learn
node and graph embeddings for downstream tasks,
without feature engineering.

• Encoder-decoder framework:
– Encoder: embedding lookup
– Decoder: predict score based on embedding to match node

similarity

• Node similarity measure: (biased) random walk
– Examples: DeepWalk, Node2Vec

• Extension to Graph embedding: Node embedding
aggregation

105

106

Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford

University, http://cs224w.stanford.edu

http://cs224w.stanford.edu/

	Slide 1: Online Social Networks and Media
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Part II: Introduction to embeddings Node embeddings on matrix decomposition random-walks Quick overview of word embedding Link and subgraph embeddings
	Slide 6
	Slide 7: Node embeddings: what are they?
	Slide 8: Example
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Learning node embeddings
	Slide 13: Shallow embeddings(*)
	Slide 14: Shallow embeddings
	Slide 15
	Slide 16
	Slide 17
	Slide 18: ADJACENCY-Based
	Slide 19: Adjacency Matrix
	Slide 20: Adjacency-based approach
	Slide 21: Adjacency-based approach
	Slide 22: Adjacency-based approach
	Slide 23: Adjacency-based approach – stochastic gradient descent
	Slide 24: Stochastic Gradient Descent
	Slide 25: Adjacency-based approach
	Slide 26: Adjacency-based approach
	Slide 27: Multi-hop approaches
	Slide 28: High-order Proximity Preserved Embeddings (HOPE)
	Slide 29: HOPE
	Slide 30: HOPE
	Slide 31: Node embeddings
	Slide 32: Word EMBeddings (Some material from Chris Manning course)
	Slide 33: Basic Idea
	Slide 34
	Slide 35
	Slide 36: Word2Vec
	Slide 37: Hierarchical softmax
	Slide 38
	Slide 39
	Slide 40: CBOW
	Slide 41: CBOW
	Slide 42
	Slide 43: CBOW
	Slide 44
	Slide 45
	Slide 46: Skipgram
	Slide 47
	Slide 48: Back to graphs
	Slide 49: Random -walk based embeddings
	Slide 50
	Slide 51
	Slide 52: Random-walk embeddings
	Slide 53: Random-walk Embeddings
	Slide 54: Why Random Walks?
	Slide 55: Unsupervised Feature Learning
	Slide 56: Random Walk Optimization
	Slide 57: Random Walk Optimization
	Slide 58: Random Walk Optimization
	Slide 59: Random Walk Optimization
	Slide 60: Random Walk Optimization
	Slide 61: Negative Sampling
	Slide 62: Negative Sampling
	Slide 63: Stochastic Gradient Descent
	Slide 64: Stochastic Gradient Descent
	Slide 65: Random Walks: Summary
	Slide 66: How should we randomly walk?
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: node2vec: Biased Walks
	Slide 73: BFS vs DFS
	Slide 74: Biased 2nd Order Random Walks
	Slide 75: Interpolating BFS and DFS
	Slide 76: One step of the biased random walk
	Slide 77: One step of the biased random walk
	Slide 78: node2vec algorithm
	Slide 79: Other Random Walk Ideas
	Slide 80
	Slide 81
	Slide 82: GraRep
	Slide 83: GraRep
	Slide 84: GraRep
	Slide 85: GraRep
	Slide 86: GraRep
	Slide 87: GraRep
	Slide 88: Summary
	Slide 89: LINK ANG SUBGRAPH embeddings
	Slide 90: From node to link embeddings
	Slide 91: Embedding Entire Graphs
	Slide 92: Approach 1
	Slide 93: Approach 2
	Slide 94: Preview: Hierarchical Embeddings
	Slide 95: EmBeddings and Factorization
	Slide 96: Embeddings & Matrix Factorization
	Slide 97: Matrix Factorization
	Slide 98: Random Walk-based Similarity
	Slide 99: Random Walk-based Similarity
	Slide 100: Summary
	Slide 101: How to Use Embeddings
	Slide 102: Limitations (1)
	Slide 103: Limitation (2)
	Slide 104: Limitations (3)
	Slide 105: Summary
	Slide 106

