Online Social Networks and
Media

Graph ML

Graph Machine Learning

Outline

Part I: Introduction, Traditional ML
Part II: Graph Embeddings

Part Ill: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on:

CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University
http://cs224w.stanford.edu

http://cs224w.stanford.edu/

Part I:

Types of ML Tasks
Traditional ML
Feature Engineering

Tools

wr PyG

The ultimate library for Graph Neural Networks
We further recommend:

PyG (PyTorch Geometric):

GraphGym: Platform for designing Graph Neural
Networks.

Modularized GNN implementation, simple hyperparameter
tuning, flexible user customization

Other network analytics tools: SNAP.PY, NetworkX

Types of ML tasks in graphs

Types of ML tasks in graphs

Graph-level
prediction,
Graph
generation

Node
level

Community
(subgraph)

level

Edge (link) level

Traditional ML Pipeline

Design features for nodes/links/graphs
Obtain features for all training data

€ RP

e RP

“.Graph features

Traditional ML Pipeline

Train an ML model: Apply the model:

Random forest Given a new
SVM node/link/graph, obtain
its features and make a
Neural network, etc. .
prediction
X y
1 —' 1 x _' .

Node Level Tasks (example)

Node classification

Feature Design

Using effective features over graphs is the key to
achieving good model performance.
Traditional ML pipeline uses hand- designed

features.
We will overview traditional features for:

= Node-level prediction
" Link-level prediction

= Graph-level prediction
For simplicity, we focus on undirected graphs.

10

Goal: Make predictions for a
set of objects

Design choices:
Features: d-dimensional vectors
Objects: Nodes, edges, sets of nodes,
entire graphs
Objective function:

What task are we aiming to solve?

NODE LEVEL FEATURES AND TASKS

Node Level Features

Goal: Characterize the structure and position of a node
in the network:

Node degree

Node centrality

Clustering coefficient Node feature

Graphlets

»|
L)
.
Py
“““
s
"
s
Py

13

Node degree

The degree k,, of node v is the number of
edges (neighboring nodes) the node has.
Treats all neighboring nodes equally.

Node centrality

Node degree counts the neighboring nodes
without capturing their importance.
Node centrality ¢, takes the node importance

in a graph into account
Different ways to model importance:

Eigenvector (Pagerank) centrality

Betweenness centrality
Closeness centrality

and many others...

15

Pagerank centrality

A node v is important if surrounded by important
neighboring nodes u € N(v).

We model the centrality of node v as the sum of
the centrality of neighboring nodes:

() = p(u)
PRV = OutDegree(u)

u-—->v

16

Betweness centrality

A node is important if it lies on many shortest paths
between other nodes.

z #(shortest paths betwen s and t that contain v)
Cp, =

#(shortest paths between s and t)
S#EVv#L

Example:
Cp = Cp = Cg = 0

Cc = 3
(A-C-B, A-C-D, A-C-D-E)

Cp — 3
(A-C-D-E, B-D-E, C-D-E)

17

Closeness centrality

A node is important if it has small shortest path
lengths to all other nodes.

1
Y..,=, Shortest path length between v and v

Cy =

Example:

ca=1/2+1+2+3)=1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

cp=1/2+1+1+1)=1/5
(D-C-A, D-B, D-C, D-E)

18

Clustering coefficient

Measures how connected the neighboring
nodes of v are:

#(edges among neighboring nodes)
e, = - €
(%)

2

#(node pairs among k,, neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).

[0,1]

Examples:

19

Graphlets

Observation: Clustering coefficient counts the
#(triangles) in the ego-network

R

3 triangles (out of 6 node triplets)

We can generalize the above by counting
#(pre-specified subgraphs), i.e.,

20

Graphlets

Goal: Describe network structure around

node u

Graphlets are small subgraphs that describe
the structure of node u’s network
neighborhood

Analogy:

Degree counts #(edges) that a node touches
Clustering coefficient counts #(triangles) that a node touches.
Graphlet Degree Vector (GDV): Graphlet-base features for

nodes
GDV counts #(graphlets) that a node touches

21

Graphlets

Def: Induced subgraph is another graph, formed
from a subset of vertices and a// the edges
connecting the vertices in that subset.

Induced Not induced
subgraph: subgraph:

22

Graphlets

Def: Graph Isomorphism

Two graphs which contain the same number of nodes
connected in the same way are said to be isomorphic.

(one-to-one mapping of their nodes)

c [+
€9 Co
0]
N
d
- . ’ ’ b d
€1 €3 (&1 C3
e
a e
€5 €4 Cs C4
f

Isomorphic Non-lsomorphic
Node mapping: (e2,c2), (el, cb), The right graph has cycles of length 3 but the left
(e3,c4), (e5,c3), (e4,cl) Source: Mathoverflow graph does not, so the graphs cannot be isomorphic.

23

Graphlets

Graphlets: Rooted connected induced non-
isomorphic subgraphs:

All possible graphlets on up to 3 nodes
a b c
VAN
Graphlet Degree Vector (GDV): A count
vector of graphlets rooted at a given node.

24

Graphlets

Example: All possible graphlets on up to 3 nodes
G a b c
u
d
Graphlet instances of node u:

d Graphlets of node u:

a b C
a,b,cd
J g . Bih

25

Graphlets

u has
2-node 3-node graphlets 4-node graphlets graphlets:
graphlet ; 3 0,1,2,3,5,
0 % A I:I @ 10,11, ...
Graphlet G Gl G3 G4 GS GE G’.F GB
id (Root/ 5-node graphlets
“position”
of node u)

Mﬁ'ﬂ?m?ﬁ

Gy Gy Gu Gp Gl?- G GIS G G Gls

520 s - 65 ﬁa' 72
50 51 54 56 50 60
GZ[} GEI GEE GEE Gz4 GZS GZIS GZT GEE GEEI

There are 73 different graphlets on up to 5 nodes
26

Graphlets

Considering graphlets of size 2-5 nodes we get:

Vector of 73 coordinates is a sighature of a node that
describes the topology of node's neighborhood

Graphlet degree vector provides a measure of a node’s
local network topology:

Comparing vectors of two nodes provides a more detailed
measure of local topological similarity than node degrees or
clustering coefficient

u has graphlets: 0, 1, 2, 3, 5,10, 11, ...

27

Node Level Features

They can be categorized as:

Node degree
Different node centrality measures

Node degree
Clustering coefficient
Graphlet count vector

Node Level Features

Importance-based features: capture the
importance of a node in a graph

Node degree:

Simply counts the number of neighboring nodes

Node centrality:

Models importance of neighboring nodes in a graph

Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

Useful for predicting influential nodes in a graph

Example: predicting celebrity users in a social
network

29

Node Level Features

Structure-based features: Capture topological
properties of local neighborhood around a node.
Node degree:
Counts the number of neighboring nodes
Clustering coefficient:
Measures how connected neighboring nodes are

Graphlet degree vector:
Counts the occurrences of different graphlets

Useful for predicting a particular role a node
plays in a graph:
Example: Predicting protein functionality in a
protein-protein interaction network.

Node Level Tasks

Machine \ \
Learning

Node classification

Protein Folding

Computationally predict the 3D structure of a protein
based solely on its amino acid sequence:
For each node predict its 3D coordinates

T1037 / 6vr4 T1049 / 6yaf

90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

® Experimental result

® Computational prediction

DeepMind

32

Median Free-Modelling Accuracy

»

19 One of

reatest
Challenges

By Shelly Fan - Dec 15,2020 ® 24,780

SSS
2008

SingularityHub

AI haFold’s Al could change the world of
hlologlcal science as we know it

DeepMind's latest Al breakthrough can
accurately predict the way proteins fold

Has Artificial Intelligence ‘Solved’ Biology's
Protein-Folding Problem?

12-14-20

DeepMind’s latest Al

breakthrough could turbocharge
drug discovery 33

P - P I (=< - Pﬁ\ L — 1_7
/«," = */—s\ ”‘, /—\“ l . K),v« ‘ ¥ y p J’, D ‘ = i ,_\ N = }‘ : p o=
IphaFold: Solving Protein Folding

Key idea: “Spatial graph”
* Nodes: Amino acids in a protein sequence
* Edges: Proximity between amino acids (residues)

MSA embedding Sequence-residue edges

Residues — %
% e Confidence
- 2 : Residues — Residues — Score
) b4 a8va % IANE » A BHIE
Genetics g — 8¢ 8¢
—> search — 3 | | evoacw|| e —_— 5 s § ' b 00—
& embed g 2 2
‘L UV @ g)
= L% 1# 0.

Protein sequence Structure
p = 0d

BB

Embed &
outer sum

S Pairwise
8 distances

3D structure

Residue-residue edges

Spatial graph

Image credit: DeepMind

LINK PREDICTION

Link Prediction
The task is to predict new links based on the

existing links.

Two ways: (a) define a score for each pair of
nodes, rank pairs, return top K ones, (b) build a
classifier with input pair of nodes, output
probability of existence

36

Link Prediction

(for computing the score, as input to the classifier
First, score

“““

s
"
“““
u .
s
"

37

Link Prediction

(1) Links missing at random:

Missing/unknown, incomplete information

Remove a random set of links and then aim to
predict them

38

Link Prediction

(2) Temporal Links Prediction

Given G|t, té,] a graph defined by edges
up to time to,

of edges (not in G[to, ty]) that are
predicted to appear in time G|t;, tl]

Score-based Link Prediction

Methodology:

For each pair of nodes (x,y) compute score c(x,y)

For example, c(x,y) could be the # of common neighbors
of xand y

Sort pairs (x,y) by the decreasing score c(x,y)

Predict top n pairs as new links

Evaluation:

n = |E..|: # new edges that appear during
the test period [tq,t']
Take top n elements of L and count correct edges

40

Link Level Features

Distance-based feature
Local neighborhood overlap
Global neighborhood overlap

41

Distance-based Features

Shortest-path distance between two nodes

Example:

Spy = Spg = Syp = 2

However, this does not capture the degree of neighborhood
overlap:

Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and
(A, B) only have 1 such node.

42

Local Neighborhood Overlap Features

Local Neighborhood Features: Captures # neighboring
nodes shared between two nodes

Example:
c(4,B)

Common neighbors:

IN(vy N vy)]

Jaccard coefficient:
IN(vy N vy)|
IN(v, U v,)|

43

Local Neighborhood Overlap Features

Adamic-Adar index:

z log(lku)

uEN(v1) N N(vy)

44

Global Neighborhood Overlap Features

Limitation of local neighborhood features:

Metric is always zero if the two nodes do not have any
neighbors in common.

NAnNE=§b
INANNg| =0

However, the two nodes may still potentially connect in the
future.

Global neighborhood overlap metrics resolve the limitation
by considering the entire graph.

45

Global Neighborhood Overlap Features

Katz index: counts the number of walks of all
lengths between a given pair of nodes.

How to compute #walks between two nodes?

= Use powers of the adjacency matrix!

46

Global Neighborhood Overlap Features

Computing #walks between two nodes
Recall: 4,, = 11f u € N(v)

Let ng,) = #walks of length K between uand v
We will show P(K) = Ak

Pg,) = #walks of length 1 (direct neighborhood)

between uand v = A4,, PV =4,
(05150 1)
1 00 1
= 0 0 0 1
\1 1 1 0/

Global Neighborhood Overlap Features

= How to computePflzv) ?

= Step 1: Compute #walks of length 1 between
each of u’s neighbor and v

= Step 2: Sum up these #walks across u’s neighbors

2 1
- Pgw) :ZiAui*Plgv) =L ; Ay x Ay :A%w

P(122)_A%2

(0.120:.1y /0.1.0 1\ (2:171 1)

e |10 0 1-0°0 1| [172 11
e =100 0 1] fo.0o.0 1|71 11 0
adiacency \1 1 1 0/ \1-1-1 0/ \1 1 0 3/,

Global Neighborhood Overlap Features
How to compute #walks between two nodes?

Use adjacency matrix powers

A, specifies #walks of length 1 (direct
neighborhood) between u and v.

A2 specifies #walks of length 2 (neighbor of
neighbor) between u and v.

And, AL specifies #walks of length L.

Global Neighborhood Overlap Features

Katz index between v; and v, is calculated as
Sum over all walk lengths

#walks of length [
vlvz 2. m between v, and v,
o< f < 1: discount factor

Katz index matrix is computed in closed-form:

S = ZﬁiAi = -pA)"1 —1
= \ v J
=07, B'A
by geometric series of matrices

Link Level Features

Distance-based features:

= Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

= Captures how many neighboring nodes are shared
by two nodes.

= Becomes zero when no neighbor nodes are shared.
Global neighborhood overlap:

= Uses global graph structure to score two nodes.

= Katz index counts #walks of all lengths between two
nodes.

51

Classification for Link Prediction

Predict link e = (v, u)

Input
Features describing v and u

Output
Prediction

positive class: link
negative class: no-link

Example: Recommender Systems

Users interacts with items
Watch movies, buy merchandise, listen to music
= Nodes: Users and items

= Edges: User-item interactions
Goal: Recommend items users might like

Users @ @ @ @ @ Interactions
/

--->

“You might also like”
Iltems

o
s o —
-~

Example: Drug Side Effects

Many patients take multiple drugs to treat
complex or co-existing diseases:

46% of people ages 70-79 take more than 5 drugs
Many patients take more than 20 drugs to treat
heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict
adverse side effects

29 — @.

30% 65%
prob. prob.

Modeling Polypharmacy Side Effects with Graph Convolutional Networks

Example: Drug Side Effects

Nodes: Drugs & Proteins
Edges: Interactions

A Drug O Protein

ry Gastrointestinal bleed side effect A—@ Drug-protein interaction

I'> Bradycardia side effect

O©—O Protein-protein interaction

Query: How likely will
Simvastatin and
Ciprofloxacin, when taken
together, break down
muscle tissue?

Simvastatin

1

'? r2 (breakdown of muscle tissue)
7

Ciprofloxacin

55

GRAPH LEVEL FEATURES AND TASKS

Graph Level Features

Goal: We want features that characterize the
structure of an entire graph.

For example:

Graph Kernels

Graph Kernels: Measure similarity between two
graphs
Kernel K(G,G') € R measures similarity

Kernel matrix K = (K (G, G,))G,G’ must always be
positive semidefinite (i.e., has positive eigenvalues)
There exists a feature representation ¢(-) such that
K(G,G)=p(G)Td(G)

Once the kernel is defined, off-the-shelf ML model,
such as kernel SVM, can be used to make predictions.

Graph Kernels

Graph Kernels: Measure similarity between two
graphs:

= QOther kernels are also proposed in the literature
= (beyond the scope of this lecture)

» Random-walk kernel
= Shortest-path graph kernel
= And many more...

1 Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
2 Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Graph Kernels

Goal: Design graph feature vector ¢(G)

Key idea: Bag-of-Words (BoW) for a graph
BoW simply uses the word counts as features for
documents (no ordering considered).

Naive extension to a graph: Regard nodes as words.

Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs

(D = ¢ (D

Graph Kernels

What if we use Bag of node degrees?

Degl: e Deg2: e Deg3:

d([\]) = count(\]) = 1,2, 1

Obtains different features
for different graphs!

qb(ISI) = count(lST) =10, 2, 2]

Both Graphlet Kernel and Weisfeiler-Lehman
(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than
node degrees!

Graphlet Features

Key idea: Count the number of different
graphlets in a graph.

Note: Definition of graphlets here is slightly
different from node-level features.

The two differences are:

Nodes in graphlets here do not need to be connected
(allows for isolated nodes)

The graphlets here are not rooted.

Graphlet Features

For kK = 3, there are 4 graphlets.
g1 92 g3 ga
A [o)
ANVAENS
For k = 4, there are 11 graphlets.
Vo O— O0—0 O O
(@) @) o—o0 O O O QO Shervashidzeetal., AISTATS 2011

6

Graphlet Features

Given graph (;, and a graphlet list
define the graphlet count

vector e IRk as

Graphlet Features

Example for k = 3. g1

A
1

e

G

<]

A >

L AAANAA

|
N
=

o8

w

Graphlet Kernel

Given two graphs, G and G, graphlet kernel is
computed as

K(G, G’) — fGTfG’

Problem: if G and G have different sizes, that
will greatly skew the value.
Solution: normalize each feature vector

fe

" = Sim(r)

K(G,G") = hGThG'

Graphlet Kernel

Limitation: Counting graphlets is expensive

Counting size-k graphlets for a graph with size n by
enumeration takes nk.

This is unavoidable in the worst-case since subgraph
isomorphism test (judging whether a graph is a subgraph
of another graph) is NP-hard.

If the node degree of a graph is bounded by d, an

O (nd*~1) algorithm exists to count all the graphlets of
size k.

Can we design a more efficient graph kernel?

67

Weisfeiler-Lehman Kernel

Goal: Design an efficient graph feature
descriptor ¢(G)

Idea: Use neighborhood structure to
iteratively enrich node vocabulary.

Generalized version of Bag of node degrees since

node degrees are one-hop neighborhood
information.

Algorithm to achieve this:

Color refinement

68

Color Refinement

Given: A graph G with a set of nodes V.

Assign an initial color ¢(®) (v) to each node v.
Iteratively refine node colors by

where maps different inputs to different colors.

After K steps of color refinement, ¢ €) (v)
summarizes the structure of K-hop neighborhood

Color Refinement

Assign initial colors

Color Refinement

Aggregated colors

Hash table
1,1 > 2
1,11 > 3
1,111 > 4
1,1111 > 5

Color Refinement

Aggregated colors
)—CG) (3—4)

© %) © 4

Hash aggregated colors

Color Refinement

Aggregated colors

Hash aggregated colors Hash table

1y —® (O s
e 11 13 10 g:jg
4,245
4,345
D ~0) OO 5,044

5,2344

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
V VVYVYVYVYVYV
=
o

Weisfeiler-Lehman Kernel

After color refinement, WL kernel counts number of
nodes with a given color.

Colors 1,2,3,4,5,6,7,8,9,10,11,12,13
= [6 211)211101211101 0,0,2,1]

P (=)

Colors 1,2,3,4,5,6,7,8,9,10,11,12,13=

¢(E ; :) [6/2/1)211/1)110/1) 1)11011]

Weisfeiler-Lehman Kernel

The WL kernel value is computed by the inner
product of the color count vectors:

= B (L) Tp(E)

=49

Weisfeiler-Lehman Kernel

WL kernel is computationally efficient

The time complexity for color refinement at each stepis
linear in #(edges), since it involves aggregating neighboring
colors.

When computing a kernel value, only colors
appeared in the two graphs need to be tracked.

Thus, #(colors) is at most the total number of nodes.
Counting colors takes linear-time w.r.t. #(nodes).

In total, time complexity is linear in #(edges).

Graph Kernels

Graphlet Kernel

Graph is represented as Bag-of-graphlets
Computationally expensive

Weisfeiler-Lehman Kernel

Apply K-step color refinement algorithm to enrich

node colors

Different colors capture different K-hop neighborhood
structures

Graph is represented as Bag-of-colors
Computationally efficient

Closely related to Graph Neural Networks (as we
will seel)

77

™

Example 1: Traffic Prediction

§H]
O =m B F H
Stanford University

University of California, Berkeley

Add destination

Leave now ~ OPTIONS

Send directions to your phone

via I-880 N

Fastest route now, avoids road closure on 38.9 miles
University Ave

51 min

DETAILS

via I-280 N 52 min
46.2 miles

via CA-84 Eand I-880 N 52 min
41.1 miles

Explore University of California, Berkeley

O0000

Restaurants

Hotels Gas stations Parking Lots More

& google.com

- i El Parrito
| 5o, B Gasstations » B Groceries || lm Hotels . Q More Waipit Creek
A
R i e S V<o L, & Tl Mt Diabld|
, University of (580,
e 5 08 ey @
o California, Berkele:
__Golden Gate .. G g
. National \3}_ R
Recreation;’ {
N N\ Diablo
) b Danville
(3
o Oakland :
& W Tas
B AN 4 @ 1
& Al 2
San Frangisco Spce & 52 min
”' Q 51 min ‘.‘\' 41.1 miles San Ramon
U 38.9 miles Sy
T\
Dublin
i
DalyCity A
@
Pleasant
= 52 min
46.2 miles 1l
—t/
P:;cwfta ; 82)
O) R Sunol
R
% N San Mateo (550)
Y N
% ™ Fremont
b \ Bair Island
> 1 Don Edwards feso)
El,Granad
| Granada San Erancisco ®
(52 Bay National
Wildlife Y @ |
Half
Moon Bay Gl +
SIRRA
‘ alo Alto =
| satelite | O Stanford University Mief R
L g k.

E—— = d o1 v
Map data ©2021 Google United States Terms Send feedback Zmiﬁ

Traffic Prediction

Road networks as graphs
Nodes: Road segments

Edges: Connectivity between road segments
Prediction: Time of Arrival (ETA)

79

Traffic Prediction with GNNSs
Predicting Time of Arrival with GNNS

Predictions

erse . Google Maps
Analysed Training API

data

Surfaced

Used in Google Maps

Google'Maps Candidate Google Maps
fouting user routes =RP
System A-B

THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME. Image credit: Dee Bial

Example 2: Drug Prediction

Antibiotics are small molecular graphs
Nodes: Atoms
EdgeS' Chemical bonds

ROCHN ROCHN ROCHN

CO, H CO, H
cillins cephalospor cephamyci
ROCHN
I YJ\ mf jjf
CO,H CO,H
ooooo phems clavul acid penems
(an penem)
g
HO = . RHN o RHN
N/ j;rL N
CO,H CO,H
carbapenems ~ nocar dicin monobactams

A Deep Learning Approach to Antibiotic Discovery

Drug Prediction

A Graph Neural Network graph classification model
Predict promising molecules from a pool of candidates

Chemical landscape

Directed message [Large scale predictions

passing neural network (upper limit 108 +)]
)
[T
1
2
5

Qodgn |
o"’“}o&

Training set Iterative
4
(10* molecules) model

l re-training

Conventional small
molecule screening
s N

==

Chemical screening
(upper limit 10° - 10°)

|

Hit validation
(1 - 3% hit rate)

Machine learning

|

Predictions &
model validation

N\
"L o identification ,

[antibiotic] & optimization

82

Learning to simulate complex physics with graph networks

Example 3: Physical Simulation

Physical simulation as a graph:
Nodes: Particles
Edges: Interaction between particles

83

Learning to simulate complex physics with graph networks

Physical Simulation

A graph evolution task:
Goal: Predict how a graph will evolve over

XK

~ | Learned simulator, sg

G

dg
(b) ENCODER CGN! PROCESSOR r aNM DECODER
P e BPPRN I & UMV I NPV p T
(c) Construct graph 40 (d) Pass messages (¢) Extract dynamics info
© (J) »fk m 4"*'& m—+1 .
C & € ﬂl';m\zez',j & ;ﬂ\:ei,j ° , ¢ »
— X o X
©0 x v GO\ T geT v W Tee v
¢ © ¢ O Y=o U ¥¢ ¢ ©
C € C),

Application: Weather Forecasting

a) Input weather state b) Predicting the next state ¢) Rolling out a forecast

"f’!ﬂnl‘llll L

https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-
9d114460aa0c 85

Summary

Hand-crafted feature + ML model

Node-level:
Node degree, centrality, clustering coefficient, graphlets
Link-level:

Distance-based feature
local/global neighborhood overlap

Graph-level:
Graphlet kernel, WL kernel

Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford
University, http://cs224w.stanford.edu

http://cs224w.stanford.edu/

	Slide 1: Online Social Networks and Media
	Slide 2
	Slide 3: Part I: Types of ML Tasks Traditional ML Feature Engineering
	Slide 4
	Slide 5: Types of ML tasks in graphs
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Goal: Make predictions for a set of objects
	Slide 12: NODE LEVEL FEATURES AND TASKS
	Slide 13: Goal: Characterize the structure and position of a node in the network:
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Computationally predict the 3D structure of a protein based solely on its amino acid sequence: For each node predict its 3D coordinates
	Slide 33
	Slide 34
	Slide 35: LINK PREDICTION
	Slide 36
	Slide 37
	Slide 38: Link Prediction
	Slide 39: Link Prediction
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Local Neighborhood Features: Captures # neighboring nodes shared between two nodes
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Many patients take multiple drugs to treat complex or co-existing diseases:
	Slide 55
	Slide 56: GRAPH LEVEL FEATURES AND TASKS
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Let 𝓖𝒌 = (𝒈𝟏, 𝒈𝟐, … , 𝒈𝒏𝒌) be a list of graphlets of size 𝒌.
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: K(,)
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Predicting Time of Arrival with GNNS
	Slide 81
	Slide 82
	Slide 83: Physical simulation as a graph:
	Slide 84: A graph evolution task:
	Slide 85
	Slide 86
	Slide 87

