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Power Laws - Recap

§ A (continuous) random variable X follows a
power-law distribution if it has density function

§ A (continuous) random variable X follows a
Pareto distribution if it has cumulative function

§ A (discrete) random variable X follows Zipf’s law
if the frequency of the r-th largest value satisfies
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Power laws
are ubiquitous



But not everything is power law



Measuring power laws

Simple log-log plot gives poor estimate



Logarithmic binning

§ Bin the observations in bins of exponential
size



Cumulative distribution

§ Fit a line on the log-log plot of the
cumulative distribution
§ it also follows a power-law with exponent -1



Maximum likelihood estimation

§ Assume that the data are produced by a
power-law distribution with some
exponent
§ Find the exponent that maximizes the

probability P( |x)
1n

1i min

i

x
x

lnn1
−

=








+= ∑



Divergent(?) mean



The 80/20 rule

§ Cumulative distribution is top-heavy



Power Laws – Generative processes

§ We have seen that power-laws appear in
various natural, or man-made systems

§ What are the processes that generate
power-laws?

§ Is there a “universal” mechanism?



Preferential attachment

§ The main idea is that “the rich get richer”
§ first studied by Yule for the size of biological genera
§ revisited by Simon
§ reinvented multiple times

§ Also known as
§ Gibrat principle
§ cumulative advantage
§ Mathew effect



The Yule process

§ The setting:
§ a set of species defines a genus
§ the number of species in genera follows a power-law

§ The Yule process:
§ at the n-th step of the process we have n genera
§ m new species are added to the existing genera through

speciation evens: an existing species splits into two
§ the generation of the (m+1)-th species causes the creation of

the (n+1)-th genera containing 1 species

§ The sizes of genera follows a power law with
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Critical phenomena

§ When the characteristic scale of a system
diverges, we have a phase transition.
§ Critical phenomena happen at the vicinity

of the phase transition. Power-law
distributions appear
§ Phase transitions are also referred to as

threshold phenomena



Percolation on a square lattice

§ Each cell is occupied with probability p

§ What is the mean cluster size?



Critical phenomena and power laws

§ For p < pc mean size is independent of the lattice size
§ For p > pc mean size diverges (proportional to the lattice

size - percolation)
§ For p = pc we obtain a power law distribution on the

cluster sizes

pc = 0.5927462…



Self Organized Criticality

§ Consider a dynamical system where trees appear in randomly at a
constant rate, and fires strike cells randomly

§ The system eventually stabilizes at the critical point, resulting in
power-law distribution of cluster (and fire) sizes



The idea behind self-organized
criticality (more or less)

§ There are two contradicting processes
§ e.g., planting process and fire process

§ For some choice of parameters the system
stabilizes to a state that no process is a clear
winner
§ results in power-law distributions

§ The parameters may be tunable so as to
improve the chances of the process to survive
§ e.g., customer’s buying propensity, and product

quality.



Combination of exponentials

§ If variable Y is exponentially distributed

§ If variable X is exponentially related to Y

§ Then X follows a power law

§ Model for population of organisms
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Monkeys typing randomly

§ Consider the following generative model for a
language [Miller 57]
§ The space appears with probability qs

§ The remaining m letters appear with equal probability
(1-qs)/m

§ Frequency of words follows a power law!
§ Real language is not random. Not all letter

combinations are equally probable, and there are
not many long words



Least effort principle

§ Let Cj be the cost of transmitting the j-th most
frequent word

§ The average cost is

§ The average information content is

§ Minimizing cost per information unit C/H yields
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The log-normal distribution

§ The variable Y = log X  follows a normal
distribution
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Lognormal distribution

§ Generative model: Multiplicative process

§ Central Limit Theorem: If X1,X2,…,Xn are i.i.d.
variables with mean m and finite variance s,
then if Sn = X1+X2+…+Xn
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Example – Income distribution

§ Start with some income X0

§ At time t with probability 1/3 double the income,
with probability 2/3 cut the income in half
§ The probability of having income x after n steps

follows a log-normal distribution

§ BUT… if we have a reflective boundary
§ when reaching income X0 with probability 2/3

maintain the same income
§ then the distribution follows a power-law!



Double Pareto distribution

§ Double Pareto: Combination of two Pareto
distributions



Double Pareto distribution

§ Run the multiplicative process for T steps,
where T is an exponentially distributed
random variable
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