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ﬁ@ Power Laws - Recap

§ A (continuous) random variable X follows a
power-law distribution If it has density function

p(x) =Cx"°

§ A (continuous) random variable X follows a
Pareto distribution if it has cumulative function

P[X 3 X] =Cx P power-law with a=1+f

§8 A (discrete) random variable X follows Zipf's law
If the frequency of the r-th largest value satisfies

p, =Cr \ power-law with a=1+1/y



Power laws
are ubiquitous

minimum exponent
quantity Tmin '

(a)  frequency of nse of words 1 2.20(1)
ity number of citations to papers 100 3.04(2)
ic) number of hits on web sites 1 2.40(1)
id) copies of books sold in the US| 2000000 3.51(16)
ie) telephone ealls received 10 2.22(1)
ifi magnitude of earthquakes 3.8 3.0404)
ig) diameter of moon craters 0.01 3.14(5)
ih) intensity of solar flares 200 1.83(2)
(i) intensity of wars 3 1.80{%)
iy net worth of Americans F600m 2.00(4)
ik} frequency of family names 10000 1.84(1)
i1y population of US cities 40000 2.30(5)

TABLE 1 Parameters for the distributions shown in Fig. 4.
The labals on the left refer to the panels in the fipure. Expo-
nent values were calculated using the maximum likelihood
method of Eq. (5) and Appendix B, except for the moon
craters (g), for which only enmulative data were available. For
this case the exponent quoted is from a simple least-squares fit
and should be treated with caution. Numbers in parentheses
give the standard error on the trailing figures.
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FIG, 5 Cumulative distributions of some gquantities whose
distributions span several orders of magnitude but that
nonetheless do not follow power laws. () The number of
sightings of 591 species of birds in the Morth American Breed-
ing Bird Survey 2003. (b) The number of addresses in the
email address books of 16881 users of a large university com-
puter system [34]. (¢} The size in acres of all wildfires cceur-
ring on U5 federal land between 1986 and 1996 (National Fire
Occurrence Database, USDA Forest Service and Department
of the Interior). Mote that the horizontal axis is logarithmic
in frames (a) and (¢} but linear in frame ().



-~ Measuring power laws

Simple log-log plot gives poor estimate

—
in
|

0
- 10
1 (a)
4 107
O . \ o -2
r=y — |I = 10 =
o .Dj__ | b 107 =
i \ -
1\ 10" =
0 T T |¥] T T T T T ID_j T TTTT] T T

oo —
—

10 100
X



§ Bin the observations In bins of exponential
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W Cumulative distribution

8§ Fit a line on the log-log plot of the
cumulative distribution

§ it also follows a power-law with exponent a-1
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M Maximum likelihood estimation

§ Assume that the data are produced by a
power-law distribution with some
exponent a

§ FInd the exponent that maximizes the
probability P(a]x)
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FiG. 3.17. Variation of the mean number of coauthorships (the average degree
k) of the network of coauthorships in neuroscience journals with increasing
number of authors, NV (according to Barabasi, Jeong, Néda, Ravasz, Schubert,
and Vicsek 2002).




M The 80/20 rule

§ Cumulative distribution is top-heavy
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*ﬁ@ Power Laws — Generative processes

§ We have seen that power-laws appear in
various natural, or man-made systems

§ What are the processes that generate
power-laws?

8 Is there a “universal” mechanism?



M\ Preferential attachment

§ The main idea is that “the rich get richer”
§ first studied by Yule for the size of biological genera
§ revisited by Simon
§ reinvented multiple times

§ Also known as
§ Gibrat principle
§ cumulative advantage
§ Mathew effect



M\ The Yule process

§ The setting:
§ a set of species defines a genus
§ the number of species in genera follows a power-law

§ The Yule process:
§ at the n-th step of the process we have n genera

§ m new species are added to the existing genera through
speciation evens: an existing species splits into two

§ the generation of the (m+1)-th species causes the creation of
the (n+1)-th genera containing 1 species

§ The sizes of genera follows a power law with
pk — k- (2+1/m)




A Critical phenomena

§ When the characteristic scale of a system
diverges, we have a phase transition.

§ Critical phenomena happen at the vicinity
of the phase transition. Power-law
distributions appear

§ Phase transitions are also referred to as
threshold phenomena



M Percolation on a square lattice

§8 Each cell is occupied with probability p

§ What Is the mean cluster size?



Critical phenomena and power laws
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§ For p < p. mean size is independent of the lattice size

§ For p > p, mean size diverges (proportional to the lattice
size - percolation)

§ For p = p, we obtain a power law distribution on the
cluster sizes



. Self Organized Criticality

§ Consider a dynamical system where trees appear in randomly at a
constant rate, and fires strike cells randomly

}

|

§ The system eventually stabilizes at the critical point, resulting In
power-law distribution of cluster (and fire) sizes



| The idea behind self-organized
ﬂ‘/ criticality (more or less)

§ There are two contradicting processes
§ e.g., planting process and fire process

§ For some choice of parameters the system
stabilizes to a state that no process is a clear
winner

§ results in power-law distributions

§ The parameters may be tunable so as to
Improve the chances of the process to survive

§ e.g., customer’s buying propensity, and product
quality.



M\ Combination of exponentials

§ If variable Y Is exponentially distributed
p(y) ~e”

§ If variable X Is exponentially related to Y
X ~ e

§ Then X follows a power law

p(X) ~ X-(1+a/b)

§ Model for population of organisms



’ﬁw Monkeys typing randomly

§ Consider the following generative model for a
language [Miller 57]
§ The space appears with probability g,

§ The remaining m letters appear with equal probability
(1-q5)/m

§ Frequency of words follows a power law!

§ Real language is not random. Not all letter
combinations are equally probable, and there are
not many long words



M\ Least effort principle

§ Let C; be the cost of transmitting the J-th most
frequent word

C, ~log,,]
§ The average cost Is

O n

C:aj:lijj
§ The average information content Is
H=-a,pjog,p,
§ Minimizing cost per information unit C/H yields
P; ~ :



) The log-normal distribution

§ The variable Y = log X follows a normal
distribution

f(y) = «/Zl_n . o (y-n)?/207
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) Lognormal distribution

§ Generative model: Multiplicative process
X =FX,,

d
In X, =InX,+a InF

k=1
§ Central Limit Theorem: If X, X,,....X,, are I.I.d.
variables with mean m and finite variance s,

then if S, = X +X,+...+X_
S, - nm

ns?

~N(0,1)




 Example — Income distribution

§ Start with some income X,

§ At time t with probability 1/3 double the income,
with probability 2/3 cut the income in half

§ The probability of having income x after n steps
follows a log-normal distribution

§ BUT... If we have a reflective boundary

§ when reaching income X, with probability 2/3
maintain the same income

§ then the distribution follows a power-law!



Double Pareto distribution

§ Double Pareto: Combination of two Pareto
distributions

ccdf: Lognormal and Double Pareto
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) Double Pareto distribution

§ Run the multiplicative process for T steps,
where T Is an exponentially distributed
random variable
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