Information Networks

Failures and Epidemics In
Networks




ﬁ%) Spread in Networks

§ Understanding the spread of viruses (or rumors,
Information, failures etc) is one of the driving
forces behind network analysis

§ predict and prevent epidemic outbreaks (e.g. the
Bird-flu outbreak)

§ protect computer networks (e.g. against worms)
§ predict and prevent cascading failures (U.S. power
grid)
§ understanding of fads, rumors, trends
viral marketing

8 anti-terrorism?



ﬁ» Percolation in Networks

8 . Each of the network is
randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest connected component of occupied
vertices

S . Each of the network is
randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest component of nodes connected by
occupied edges

§ Good model for failures or attacks



M\ Percolation Threshold

§ How many nodes should be occupied in
order for the network to not have a giant
component? (the network does not

)



Percolation Threshold for the
" @ configuration model

§8 If p, Is the fraction of nodes with degree k, then
If aﬁ‘ractlon g of the nodes Is occupied, the
probablllty of a¥node to have degree m is

o) Gé(O
P'= A DL 3 "(1- q) "
k=m

§8 This defines a new configuration model
§ apply the known threshold

§ For scale free graphs we have g. = O for power
law exponent less than 3!

8§ there is always a giant component (the network
always percolates)



‘ﬁw Percolation threshold

§ An analysis for general graphs iIs and
general occupation probabilities Is possible

§ for scale free graphs it yields the same results

§ But ... If the nodes are removed
preferentially (according to degree), then
It IS easy to disconnect a scale free graph
by removing a small fraction of the edges



Network resilience

§ Scale-free graphs are resilient to random attacks, but
sensitive to targeted attacks. For random networks there
Is smaller difference between the two
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ﬁw Cascading failures

8 Each node has a load and a capacity that
says how much load it can tolerate.

§ When a node Is removed from the
network I1ts load Is redistributed to the
remaining nodes.

§ If the load of a node exceeds its capacity,
then the node falls



M\ Cascading failures: example

§8 The load of a node is the betweeness
centrality of the node
8 The capacity of the node is C = (1+b)L

§ the parameter b captures the additional load
a node can handle



Cascading failures in SF graphs
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Fig. 2. Cascading failure in scale-free networks with scaling exponent v = 3, as trig-
gered by the removal of one node chosen at random (squares), or among those with
largest connectivities (stars) or highest loads (circles). Each curve corresponds to the
average over b triggers and 10 realizations of the network. T'he error bars represent the
standard deviation. The number of nodes in the largest component is 5000 < N < 5100.



W\ The SIR model

§ Each node may be in the following states
§ Susceptible: healthy but not immune
§ Infected: has the virus and can actively propagate it
§ Recovered: (or Removed/Immune/Dead) had the
virus but it is no longer active
§ Infection rate p: probability of getting infected
by a neighbor per unit time

§ Immunization rate g: probability of a node
getting recovered per unit time



i *~ The SIR model

§ It can be shown that virus propagation
can be reduced to the bond-percolation
problem for appropriately chosen
probabilities

§ again, there is no percolation threshold for
scale-free graphs



§ Time proceeds In discrete time-steps

§ If a node is infected at time t it infects all
Its neighbors with probability p

§ Then the node becomes recovered (g = 1)

Time 1 Time 2 Time 3
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"*@ The SIS model

$

§ each node may be healthy (susceptible) or
Infected

§ a healthy node that has an infected neighbor
becomes infected with probability p

§ an infected node becomes healthy with
probabillity g

§ spreading rate r=p/q



‘”@ Epidemic Threshold

§ The epidemic threshold for the SIS model is a
value r. such that for r < r_ the virus dies out,
while for r = r_ the virus spreads.

§ For homogeneous graphs, p
1

ro=—

Kk
§ For scale free g<r>aphs
K
")
§8 For exponent less than 3, the variance is infinite,
and the epidemic threshold is zero




”ﬁ/ﬁ An eigenvalue point of view

§ Consider the SIS model, where
neighbor may infect a node with probability
p. The probability of getting cured Is g

§8 If A Is the adjacency matrix of the network,
then the virus dies out If

Al(A)£ICOI

§ That Is, the epidemic threshold is r.=1/A,(A)
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An eigenvalue point of view

§ Time proceeds in discrete timesteps. At time t,

§ an infected node u infects a healthy neighbor v with
probability p.

§ node u becomes healthy with probability g

§ If A is the adjacency matrix of the network, then
the virus dies out If

Al(A)£§'

§ That is, the epidemic threshold is r.=1/A,(A)



"W Multiple copies model

§ Each node may have multiple copies of the same
VIrus

§ v: state vector
v, : number of virus copies at node |

§ At time t = 0, the state vector is initialized to v°

§ At time t,
For each node |
For each of the v virus copies at node |
the copy Is propagated to a neighbor j with prob p
the copy dies with probability g



fw Analysis
4 )

§ The expected state of the system at time t is
given by

v =(pA +(L- g)i v
8§ Asta « _
g if A,(pA+(1-q))<10 A (A)<g/pthenv'® 0
the probability that all copies die converges to 1
§ if \,(pA+(1-q)1)=10 A(A)=qg/pthenVv'® c
the probability that all copies die converges to 1
§if \,(pA+(1-q)1)>10 A,(A)=q/pthenv'® ¥

the probability that all copies die converges to a constant < 1



ﬁw Immunization

§ GIven a network that contains viruses,
which nodes should we immunize in order
to contain the spread of the virus?

§ The flip side of the percolation theory



Immunization of SF graphs

§ Uniform immunization vs Targeted
Immunization
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 Immunizing aquaintances

§ Pick a fraction f of nodes in the graph, and
Immunize one of their acquaintances

§ you should gravitate towards nodes with high
degree




Mumber of removed nodes

) Reducing the eigenvalue

§ Repeatedly remove the node with the
highest value In the principal eigenvector
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Reducing the eigenvalue

§ Real graphs
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’*w Gossip

§ Gossip can also be thought of as a virus
that propagates in a social network.

§ Understanding gossip propagation Is
Important for understanding social
networks, but also for marketing purposes

§ Provides also a for
the network



ﬁ%/ﬁ Independent cascade model

§ Each node may be (has the gossip)
or (does not have the gossip)

§ Time proceeds at discrete time-steps. At
time t, every node v that became active In
time t-1 actives a non-active neighbor w
with probability p . If it fails, it does not
try again

§ the same as the simple SIR model



§ Time proceeds In discrete time-steps

§ If a node u Is Infected at time t it infects
neighbor v with probability p,,,

§ Then the node becomes recovered (g = 1)

Time 1 Time 2 Time 3




M Linear threshold model

Each node may be (has the gossip) or
(does not have the gossip)

Every directed edge (u,v) in the graph has a weight b
such that

uv?

ab, £1

v is a neighbor of u

Each node u has a threshold value T, (set uniformly at
random)

Time proceeds in discrete time-steps. At time t an
Inactive node u becomes active if

ab, >T

v is an active neighbor of u

u



ﬁ» Influence maximization

8 for a set of nodes A (target
set) the influence s(A) Is the expected number
of active nodes at the end of the diffusion

process Iif the gossip is originally placed in the
nodes in A.

8 [KKTO3]: Given
an network, a diffusion model, and a value k,
iIdentify a set A of k nodes in the network that
maximizes s(A).

§ The problem is NP-hard



M Submodular functions

§ Let f:2YaR be a function that maps the
subsets of universe U to the real numbers

§ The function f is submodular if

fSE{V})- f(s)® f(TE{v})- f(T)

when ST T
§ the principle of diminishing returns



~mm Approximation algorithms for
7 maximization of submodular functions

§ The problem: given a universe U, a function f, and a
value k compute the subset S of U of size k that
maximizes the value f(S)

§ The Greedy algorithm

§ at each round of the algorithm add to the solution set S the
element that causes the maximum increase in function f

§ Theorem: For any submodular function f, the Greedy
algorithm computes a solution S that is a (1-1/e)-
approximation of the optimal solution S~

§ (S) 2(1-1/e)f(SY)
§ f(S) is no worse than 63% of the optimal



M Submodularity of influence

§ How do we deal with the fact that
Influence Is defined as an expectation?

§ Express s(A) as an expectation over the
iInput rather than the choices of the
algorithm



ﬁ%) Independent cascade model

8

Each edge (u,v) is considered only once, and it is
“activated” with probability p,.

We can assume that all random choices have been made
IN advance

§ generate a subgraph of the input graph where edge (u,v) is
Included with probability p,,

§ propagate the gossip deterministically on the input graph
§ the active nodes at the end of the process are the nodes
reachable from the target set A
The influence function is obviously submodular when
propagation is deterministic

The weighted combination of submodular functions is
also a submodular function



f%/a Linear Threshold model

§ Setting the thresholds in advance does not
work

§ For every node u, sample one of the
edges pointing to node u, with probability
b,, and make 1t “live”, or select no edge
with probability 1-> b,

§ Propagate deterministically on the
resulting graph



ﬁw Model equivalence

§ For a target set A, the following two
distributions are equivalent

§ The distribution over active sets obtained by
running the Linear Threshold model starting
from A

§8 The distribution over sets of nodes reachable
from A, when live edges are selected as
previously described.



ﬁ%) Simple case: DAG

§ Compute the topological sort of the nodes
In the graph and consider them in this
order.

§ If S, neighbors of node | are active then
the probability that it becomes active is a o

§ This Is also the probability that one of the
nodes In S; IS sampled

§ Proceed inductively



’ﬁw General graphs

§ Let A, be the set of active nodes at the
end of the t-th iteration of the algorithm

§ Prob that inactive node v becomes active
at time t, given that it has not become
active so far, isc,)

a ul A- A, bUV
[e]

ul A, U




ﬁw General graphs

§ Starting from the target set, at each step we
reveal the live edges from reachable nodes

§ Each live edge is revealed only when the source
of the link becomes reachable

§ The probability that node v becomes reachable
at time t, given that it was not reachable at time
t-1 I1s the probability that there is an live edge
from the set A, — A,

a ul Ag- A, bUV
[e]

1- a ul Ay q bUV
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Gossip as a method for diffusion of
@ Information

§ In a sensor network a node acquires some new
Information. How does it propagate the
Information to the rest of the sensors with a small
number of messages?

§ We want
§ all nodes to receive the message fast (in logn time)

§ the neighbors that are (spatially) closer to the node to
receive the information faster (in time independent of

n)



M Information diffusion algorithms

§ Consider points on a lattice

§ Randomized rumor spreading: at each round each node
sends the message to a node chosen uniformly at
random

§ time to inform all nodes O(logn)
§ same time for a close neighbor to receive the message

§ Neighborhood flooding: a node sends the message to all
of its neighbors, one at the time, in a round robin
fashion

§ a node at distance d receives the message in time O(d)
§ time to inform all nodes is O(\/n)



ﬁw Spatial gossip algorithm

§ At each round, each node u sends the
message to the node v with probability
proportional to d ", where D is the
dimension of the latticeand 1 <r < 2

§ The message goes from node u to node v
In time logarithmic in d . On the way it
stays within a small region containing both
uand v
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