
Information Networks

Failures and Epidemics in
Networks



Spread in Networks

§ Understanding the spread of viruses (or rumors,
information, failures etc) is one of the driving
forces behind network analysis
§ predict and prevent epidemic outbreaks (e.g. the

Bird-flu outbreak)
§ protect computer networks (e.g. against worms)
§ predict and prevent cascading failures (U.S. power

grid)
§ understanding of fads, rumors, trends

• viral marketing
§ anti-terrorism?



Percolation in Networks

§ Site Percolation: Each node of the network is
randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest connected component of occupied
vertices
§ Bond Percolation: Each edge of the network is

randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest component of nodes connected by
occupied edges

§ Good model for failures or attacks



Percolation Threshold

§ How many nodes should be occupied in
order for the network to not have a giant
component? (the network does not
percolate)



Percolation Threshold for the
configuration model

§ If pk is the fraction of nodes with degree k, then
if a fraction q of the nodes is occupied, the
probability of a node to have degree m is

§ This defines a new configuration model
§ apply the known threshold

§ For scale free graphs we have qc 0 for power
law exponent less than 3!
§ there is always a giant component (the network

always percolates)
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Percolation threshold

§ An analysis for general graphs is and
general occupation probabilities is possible
§ for scale free graphs it yields the same results

§ But … if the nodes are removed
preferentially (according to degree), then
it is easy to disconnect a scale free graph
by removing a small fraction of the edges



Network resilience

§ Scale-free graphs are resilient to random attacks, but
sensitive to targeted attacks. For random networks there
is smaller difference between the two



Real networks



Cascading failures

§ Each node has a load and a capacity that
says how much load it can tolerate.
§ When a node is removed from the

network its load is redistributed to the
remaining nodes.
§ If the load of a node exceeds its capacity,

then the node fails



Cascading failures: example

§ The load of a node is the betweeness
centrality of the node
§ The capacity of the node is C = (1+b)L
§ the parameter b captures the additional load

a node can handle



Cascading failures in SF graphs



The SIR model

§ Each node may be in the following states
§ Susceptible: healthy but not immune
§ Infected: has the virus and can actively propagate it
§ Recovered: (or Removed/Immune/Dead) had the

virus but it is no longer active

§ Infection rate p: probability of getting infected
by a neighbor per unit time
§ Immunization rate q: probability of a node

getting recovered per unit time



The SIR model

§ It can be shown that virus propagation
can be reduced to the bond-percolation
problem for appropriately chosen
probabilities
§ again, there is no percolation threshold for

scale-free graphs



A simple SIR model

§ Time proceeds in discrete time-steps
§ If a node is infected at time t it infects all

its neighbors with probability p
§ Then the node becomes recovered (q = 1)
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The caveman small-world graphs



The SIS model

§ Susceptible-Infected-Susceptible:
§ each node may be healthy (susceptible) or

infected
§ a healthy node that has an infected neighbor

becomes infected with probability p
§ an infected node becomes healthy with

probability q
§ spreading rate r=p/q



Epidemic Threshold

§ The epidemic threshold for the SIS model is a
value rc such that for r < rc the virus dies out,
while for r > rc the virus spreads.
§ For homogeneous graphs,

§ For scale free graphs

§ For exponent less than 3, the variance is infinite,
and the epidemic threshold is zero
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An eigenvalue point of view

§ Consider the SIS model, where every
neighbor may infect a node with probability
p. The probability of getting cured is q
§ If A is the adjacency matrix of the network,

then the virus dies out if

§ That is, the epidemic threshold is rc=1/ 1(A)
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An eigenvalue point of view

§ Time proceeds in discrete timesteps. At time t,
§ an infected node u infects a healthy neighbor v with

probability p.
§ node u becomes healthy with probability q

§ If A is the adjacency matrix of the network, then
the virus dies out if

§ That is, the epidemic threshold is rc=1/ 1(A)
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Multiple copies model

§ Each node may have multiple copies of the same
virus
§ v: state vector

• vi : number of virus copies at node i

§ At time t = 0, the state vector is initialized to v0

§ At time t,
For each node i

For each of the vi
t virus copies at node i

the copy is propagated to a neighbor j with prob p
the copy dies with probability q



Analysis

§ The expected state of the system at time t is
given by

§ As t à
§

• the probability that all copies die converges to 1

§
• the probability that all copies die converges to 1

§
• the probability that all copies die converges to a constant < 1
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Immunization

§ Given a network that contains viruses,
which nodes should we immunize in order
to contain the spread of the virus?

§ The flip side of the percolation theory



Immunization of SF graphs

§ Uniform immunization vs Targeted
immunization



Immunizing aquaintances

§ Pick a fraction f of nodes in the graph, and
immunize one of their acquaintances
§ you should gravitate towards nodes with high

degree



Reducing the eigenvalue

§ Repeatedly remove the node with the
highest value in the principal eigenvector



Reducing the eigenvalue

§ Real graphs



Gossip

§ Gossip can also be thought of as a virus
that propagates in a social network.
§ Understanding gossip propagation is

important for understanding social
networks, but also for marketing purposes
§ Provides also a diffusion mechanism for

the network



Independent cascade model

§ Each node may be active (has the gossip)
or inactive (does not have the gossip)
§ Time proceeds at discrete time-steps. At

time t, every node v that became active in
time t-1 actives a non-active neighbor w
with probability puw. If it fails, it does not
try again
§ the same as the simple SIR model



A simple SIR model

§ Time proceeds in discrete time-steps
§ If a node u is infected at time t it infects

neighbor v with probability puv

§ Then the node becomes recovered (q = 1)
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Linear threshold model

§ Each node may be active (has the gossip) or inactive
(does not have the gossip)

§ Every directed edge (u,v) in the graph has a weight buv,
such that

§ Each node u has a threshold value Tu (set uniformly at
random)

§ Time proceeds in discrete time-steps. At time t an
inactive node u becomes active if
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Influence maximization

§ Influence function: for a set of nodes A (target
set) the influence s(A) is the expected number
of active nodes at the end of the diffusion
process if the gossip is originally placed in the
nodes in A.

§ Influence maximization problem [KKT03]: Given
an network, a diffusion model, and a value k,
identify a set A of k nodes in the network that
maximizes s(A).

§ The problem is NP-hard



Submodular functions

§ Let f:2UàR be a function that maps the
subsets of universe U to the real numbers
§ The function f is submodular if

when
§ the principle of diminishing returns
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Approximation algorithms for
maximization of submodular functions

§ The problem: given a universe U, a function f, and a
value k compute the subset S of U of size k that
maximizes the value f(S)

§ The Greedy algorithm
§ at each round of the algorithm add to the solution set S the

element that causes the maximum increase in function f

§ Theorem: For any submodular function f, the Greedy
algorithm computes a solution S that is a (1-1/e)-
approximation of the optimal solution S*

§ f(S) (1-1/e)f(S*)
§ f(S) is no worse than 63% of the optimal



Submodularity of influence

§ How do we deal with the fact that
influence is defined as an expectation?

§ Express s(A) as an expectation over the
input rather than the choices of the
algorithm



Independent cascade model

§ Each edge (u,v) is considered only once, and it is
“activated” with probability puv.

§ We can assume that all random choices have been made
in advance
§ generate a subgraph of the input graph where edge (u,v) is

included with probability puv

§ propagate the gossip deterministically on the input graph
§ the active nodes at the end of the process are the nodes

reachable from the target set A

§ The influence function is obviously submodular when
propagation is deterministic

§ The weighted combination of submodular functions is
also a submodular function



Linear Threshold model

§ Setting the thresholds in advance does not
work
§ For every node u, sample one of the

edges pointing to node u, with probability
bvu and make it “live”, or select no edge
with probability 1- vbvu

§ Propagate deterministically on the
resulting graph



Model equivalence

§ For a target set A, the following two
distributions are equivalent
§ The distribution over active sets obtained by

running the Linear Threshold model starting
from A
§ The distribution over sets of nodes reachable

from A, when live edges are selected as
previously described.



Simple case: DAG

§ Compute the topological sort of the nodes
in the graph and consider them in this
order.
§ If Si neighbors of node i are active then

the probability that it becomes active is
§ This is also the probability that one of the

nodes in Si is sampled
§ Proceed inductively
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General graphs

§ Let At be the set of active nodes at the
end of the t-th iteration of the algorithm
§ Prob that inactive node v becomes active

at time t, given that it has not become
active so far, is
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General graphs

§ Starting from the target set, at each step we
reveal the live edges from reachable nodes
§ Each live edge is revealed only when the source

of the link becomes reachable
§ The probability that node v becomes reachable

at time t, given that it was not reachable at time
t-1 is the probability that there is an live edge
from the set At – At-1
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Experiments



Gossip as a method for diffusion of
information

§ In a sensor network a node acquires some new
information. How does it propagate the
information to the rest of the sensors with a small
number of messages?

§ We want
§ all nodes to receive the message fast (in logn time)
§ the neighbors that are (spatially) closer to the node to

receive the information faster (in time independent of
n)



Information diffusion algorithms

§ Consider points on a lattice

§ Randomized rumor spreading: at each round each node
sends the message to a node chosen uniformly at
random
§ time to inform all nodes O(logn)
§ same time for a close neighbor to receive the message

§ Neighborhood flooding: a node sends the message to all
of its neighbors, one at the time, in a round robin
fashion
§ a node at distance d receives the message in time O(d)
§ time to inform all nodes is O( n)



Spatial gossip algorithm

§ At each round, each node u sends the
message to the node v with probability
proportional to duv

-Dr, where D is the
dimension of the lattice and 1 < r < 2

§ The message goes from node u to node v
in time logarithmic in duv. On the way it
stays within a small region containing both
u and v
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