
Models and Algorithms for
Complex Networks

The Web graph

The history of the Web

Vannevar Bush – “As we may think” (1945)

The “MEMEX”: A photo-electrical-mechanical
device that stores documents and images and
allows to create and follow links between them

The history of the Web

Tim Berners-Lee

1980 – CERN: Writes a notebook program
“Enquire-upon-within-everything”
that allows links to be made between
arbitrary nodes

1989 – CERN: Circulates the document
“Information management: a proposal”

1990 – CERN: The first Web browser, and the first
Web server-client communication

1994 : The creation of the WWW consortium (W3C)

The history of the Web

The history of the Web

Hypertext 1991: Tim Berners-Lee paper on WWW
was accepted only as a poster

Today

§ The Web consists of hundreds of billions
of pages
§ It is considered one of the biggest

revolutions in recent human history

Web page

Which pages do we care for?

§ We want to avoid “dynamic” pages
§ catalogs
§ pages generated by queries
§ pages generated by cgi-scripts (the

nostradamus effect)

§ We are only interested in “static” web
pages

The Static Public Web

§Static
§ not the result of a cgi-bin

scripts
§ no “?” in the URL
§ doesn’t change very often
§ etc.

§ Public
§ no password required
§ no robots.txt exclusion
§ no “noindex” meta tag
§ etc.

§ These rules can still be fooled
§ “Dynamic pages” appear static

• browseable catalogs (Hierarchy built from DB)
§ Spider traps -- infinite url descent

• www.x.com/home/home/home/…./home/home.html
§ Spammer games

The Web graph

§ A graph G = (V, E) is defined by
§ a set V of vertices (nodes)
§ a set E of edges (links) = pairs of nodes

§ The Web page graph (directed)
§ V is the set of static public pages
§ E is the set of static hyperlinks

§ Many more graphs can be defined
§ The host graph
§ The co-citation graph
§ etc

Why do we care about the Web graph?

§ It is the largest human artifact ever created
§ Exploit the Web structure for
§ crawlers
§ search and link analysis ranking
§ spam detection
§ community discovery
§ classification/organization

§ Predict the Web future
§ mathematical models
§ algorithm analysis
§ sociological understanding

The first question: what is the size of the Web?

§ Surprisingly hard to answer

§ Naïve solution: keep crawling until the whole graph has been
explored

§ Extremely simple but wrong solution: crawling is complicated
because the web is complicated
§ spamming
§ duplicates
§ mirrors

§ Simple example of a complication: Soft 404
§ When a page does not exists, the server is supposed to return an error

code = “404”
§ Many servers do not return an error code, but keep the visitor on site,

or simply send him to the home page

A sampling approach

§ Sample pages uniformly at random
§ Compute the percentage p of the pages that

belong to a search engine repository (search
engine coverage)
§ Estimate the size of the Web

§ Problems:
§ how do you sample a page uniformly at random?
§ how do you test if a page is indexed by a search

engine?

size(Web) = size(Search Engine)/p

Sampling pages [Lawrence et al]

§ Create IP addresses uniformly at random
§ problems with virtual hosting, spamming

Near uniform sampling
[Henzinger et al]

§ Starting from a subset of pages perform a
random walk on the graph (with restarts).
After “enough” steps you should end up in
a random page.
§ problem: pages with high degree are more

likely to be sampled

Near uniform sampling
[Henzinger et al]

§ Perform a random walk to obtain a random
crawl. Then sample a subset of these pages

§ How to sample?

§ sample a page with probability inversely proportional
to the P(X crawled)

§ Estimating P(X crawled)
§ using the number of visits in the random walk
§ using the PageRank value of the node in the crawl

P(X sampled) = P(X sampled | X crawled)* P(X crawled)

§ Estimating the relative size of search engines

§ Sample from A and compute the fraction f1 of pages in intersection
§ Sample from B and compute the fraction f2 of pages in intersection
§ Ratio f2/f1 is the ratio of size of A over size of B

Estimating the size of the indexed
web

BA

B

Prob(A B|A) = |A B|/|A| Prob(A B|B) = |A B|/|B|

|A|/|B| = Prob(A B|B) / Prob(A B|A)

Sampling and Checking
[Bharat and Broder]

§ We need to procedures:
§ Sampling procedure for obtaining a uniformly

random page of a search engine
§ Checking procedure to test if a sampled page

is contained in another search engine.

Sampling procedure
[Bharat and Broder]

§ From a collection of Web documents
construct a lexicon
§ Use combination of keywords to perform

OR and AND queries
§ Sample from the top-100 pages returned

§ Biases:
§ query bias, towards rich in content pages
§ ranking bias, towards highly ranked pages

Checking procedure

§ Create a strong query, with the k most
significant terms
§ significance is inversely proportional to the

frequency in the lexicon

§ Query search engine and check if it
contains a given URL
§ full URL check
§ text similarity

Results [Gulli, Signorini 2005]

Estimating Web size

§ Results indicate that the search engines
are independent
§ Prob(A B|A) Prob(A C|C)
§ Prob(A B|A) Prob(B)
§ if we know the size of B we can estimate the

size of the Web

§ In 2005: 11.5 billion

Measuring the Web

§ It is clear that the Web that we see is what the
crawler discovers

§ We need large crawls in order to make
meaningful measurements
§ The measurements are still biased by
§ the crawling policy
§ size limitations of the crawl
§ Perturbations of the "natural" process of birth and

death of nodes and links

Measures on the Web graph [Broder et al]

§ Degree distributions
§ Reachability
§ The global picture
§ what does the Web look from far?

§ Connected components
§ Community structure
§ The finer picture

In-degree distribution

§ Power-law distribution with exponent 2.1

Out-degree distribution

§ Power-law distribution with exponent 2.7

The good news

§ The fact that the exponent is greater than
2 implies that the expected value of the
degree is a constant (not growing with n)

§ Therefore, the expected number of edges
is linear in the number of nodes n

§ This is good news, since we cannot handle
anything more than linear

Is the Web a small world?

§ Based on a simple model, [Barabasi et.
al.] predicted that most pages are within
19 links of each other. Justified the model
by crawling nd.edu (1999)

§ Well, not really!

Distance measurements

§ The probability that there exists a directed path between
two nodes is ~25%
§ Therefore, for ~75% of the nodes there exists no path that

connects them

§ Average directed distance between two nodes in the
CORE: ~16

§ Average undirected distance between two nodes in the
CORE: ~7

§ Maximum directed distance between two nodes in the
CORE: >28

§ Maximum directed distance between any two nodes in
the graph: > 900

Connected components – definitions

§ Weakly connected components (WCC)
§ Set of nodes such that from any node can go to any node via an

undirected path
§ Strongly connected components (SCC)
§ Set of nodes such that from any node can go to any node via a

directed path.

SCCSCC

WCCWCC

The bow-tie structure of the Web

SCC and WCC distribution

§ The SCC and WCC sizes follows a power
law distribution
§ the second largest SCC is significantly smaller

The inner structure of the bow-
tie

§ What do the individual components of the
bow tie look like?
§ They obey the same power laws in the degree

distributions

The inner structure of the bow-
tie

§ Is it the case that the bow-tie repeats itself in
each of the components (self-similarity)?
§ It would look nice, but this does not seem to be the

case
§ no large WCC, many small ones

The daisy structure?

§ Large connected core, and highly fragmented IN
and OUT components

§ Unfortunately, we do not have a large crawl to
verify this hypothesis

A different kind of self-similarity
[Dill et al]

§ Consider Thematically Unified Clusters
(TUC): pages grouped by
§ keyword searches
§ web location (intranets)
§ geography
§ hostgraph
§ random collections

§ All such TUCs exhibit a bow-tie structure!

Self-similarity

§ The Web consists of a collection of self-
similar structures that form a backbone of
the SCC

Community discovery [Kumar et al]

§ Hubs and authorities
§ hubs: pages that point to (many good)

pages
§ authorities: pages that are pointed to

by (many good) pages

§ Find the (i,j) bipartite cliques of
hubs and authorities
§ intuition: these are the core of a

community
§ grow the core to obtain the community

Bipartite cores

§ Computation of bipartite cores requires
heuristics for handling the Web graph
§ iterative pruning steps

§ Surprisingly large number of bipartite cores
§ lead to the copying model for the Web

§ Discovery of unusual communities of enthusiasts
§ Australian fire brigadiers

Hierarchical structure of the Web
[Eiron and McCurley]

§ The links follow in large part the
hierarchical structure of the file directories
§ locality of links

Web graph representation

§ How can we store the web graph?
§ we want to compress the representation of

the web graph and still be able to do random
and sequential accesses efficiently.
§ for many applications we need also to store

the transpose

Links files

§ A sequence a records
§ Each record consists of a source URL

followed by a sequence of destination
URLs
http://www.foo.com/

http://www.foo.com/css/foostyle.css
http://www.foo.com/images/logo.gif
http://www.foo.com/images/navigation.gif
http://www.foo.com/about/
http://www.foo.com/products/
http://www.foo.com/jobs/

source URL

destination URLs

http://www.foo.com/
http://www.foo.com/css/foostyle.css
http://www.foo.com/images/logo.gif
http://www.foo.com/images/navigation.gif
http://www.foo.com/about/
http://www.foo.com/products/
http://www.foo.com/jobs/

A simple representation

also referred to as starts
table, or offset table

the link
database

The URL Database

§ Three kinds of representations for URLs
§ Text: original URL
§ Fingerprint: a 64-bit hash of URL text
§ URL-id: sequentially assigned 32-bit integer

URL-ids

§ Sequentially assigned from 1 to N
§ Divide the URLs into three partitions based on

their degree
§ indegree or outdegree > 254, high-degree
§ 24 - 254, medium degree
§ Both <24, low degree

§ Assign URL-ids by partition
§ Inside each partition, by lexicographic order

Compression of the URL database [BBHKV98]

§ When the URLs are sorted
lexicographically we can exploit the fact
that consecutive URLs are similar

§ delta-encoding: store only the differences
between consecutive URLs

www.foobar.com
www.foobar.com/gandalf

http://www.foobar.com
http://www.foobar.com/gandalf

delta-encoding of URLS

§ problem: we may have to traverse long
reference chains

Checkpoint URLs

§ Store a set of Checkpoint URLs
§ we first find the closest Checkpoint URL and

then go down the list until we find the URL

§ results in 70% reduction of the URL space

The Link Database [RSWW]

§ Maps from each URL-id to the sets of URL-
ids that are its out-links (and its in-links)

x
x+3
x+3
x+6

x

Vanilla representation

§ Avg 34 bits per in-link
§ Avg 24 bits per out-link

Compression of the link database

§ We will make use of the following properties
§ Locality: usually most of the hyperlinks are local, i.e,

they point to other URLs on the same host. The
literature reports that on average 80% of the
hyperlinks are local.
§ Lexicographic proximity: links within same page are

likely to be lexicographically close.
§ Similarity: pages on the same host tend to have

similar links (results in lexicographic proximity on the
in-links)

§ How can we use these properties?

delta-encoding of the link lists

-3 = 101 - 104
31 = 132 - 101
42 = 174 - 132

How do we represent deltas?

§ Any encoding is possible (e.g. Huffman codes) –
it affects the decoding time.
§ Use of Nybbles
§ nybble: four bits, last bit is 1 if there is another

nybble afterwards. The remaining bits encode an
unsigned number

§ if there are negative numbers then the least
significant bit (of the useful bits) encodes the sign

28 = 0111 1000

28 = 1111 0000 -28 = 1111 0010-6 = 0011 1010

Compressing the starts array

§ For the medium and small degree partitions,
break the starts array into blocks. In each block
the starts are stored as offsets of the first index
§ only 8 bits for the small degree partition, 16 bits for

the medium degree partition
§ considerable savings since most nodes (about 74%)

have low degree (power-law distribution)

§ Intuition: for low and med partitions the starts
will be close to each other

Resulting compression

§ Avg 8.9 bits per out-link
§ Avg 11.03 bits per in-link

We can do better

§ Any ideas?

101, 132, 174

101, 168, 174

Reference lists

§ Select one of the adjacency lists as a
reference list
§ The other lists can be represented by the

differences with the reference list
§ deleted nodes
§ added nodes

Reference lists

Interlist distances

§ Pages that with close URL-ids have similar lists
§ Resulting compression
§ Avg 5.66 bits per in-link
§ Avg 5.61 bits per out-link

Space-time tradeoffs

Exploiting consecutive blocks [BV04]

§ Many sets of links correspond to
consecutive blocks of URL-ids. These can
be encoded more efficiently

Interlist compression

Uncompressed link list

Interlist compression

Compressing copy blocks

Interlist compression

Adjacency list with copy
blocks.

The last block is omitted;
The first copy block is 0 if the copy list starts with 0;
The length is decremented by one for all blocks except the first one.

Compressing intervals

Adjacency list with copy
blocks.

Adjacency list
with intervals.

Intervals: represented by their left extreme and length;
Intervals length: are decremented by the threshold Lmin (=2);
Residuals: compressed using differences.

0 = (15-15)*2
600 = (316-16)*2
5 = |13-15|*2-1

3018 = 3041-22-1
2 = 23 -19 -2for the first residual value

Resulting compression

§ Avg 3.08 bits per in-link
§ Avg 2.89 bits per out-link

Acknowledgements

§ Thanks to Adrei Broder, Luciana Buriol,
Debora Donato, Stefano Leonardi for
slides material

References

§ K. Bharat and A. Broder. A technique for measuring the relative size and overlap of public Web
search engines. Proc. 7th International World Wide Web Conference, 1998.

§ M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On Near-Uniform URL Sampling . 9th
International World Wide Web Conference, May 2000.

§ S. Lawrence, C. L. Gilles, Searching the World Wide Web, Science 280, 98-100 (1998).
§ A. Albert, H. Jeong, and A.-L. Barab -bási, Diameter of the World Wide Web, Nature,401, 130-

131 (1999).
§ A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener.

Graph structure in the web. 9th International World Wide Web Conference, May 2000.
§ S. Dill, R. Kumar, K. McCurley, S. Rajagopalan, D. Sivakumar, A. Tomkins. Self-similarity in the

Web. 27th International Conference on Very Large Data Bases, 2001.
§ R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for cyber

communities, Proc. 8th WWW , Apr 1999.
§ Nadav Eiron and Kevin S. McCurley, Locality, Hierarchy, and Bidirectionality on the Web,

Workshop on Web Algorithms and Models, 2003.
§ D. Donato, S. Leonardi, P. Tsaparas, Mining the inner structure of the Web, WebDB 2005.
§ A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In Proceedings of

14th International World Wide Web Conference, Chiba, Japan, 2005.
§ [RSWW] K. Randall, R. Stata, R. Wickremesinghe, J. Wiener, The Link Database: Fast Access to

Graphs of the Web, Technical Report
§ [BBHKV98] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubramanian. The

connectivity server: fast access to linkage information on the web, Proc. 7th WWW, 1998.
§ [BV04] P. Boldi, S. Vigna, The Webgraph framework I: Compression Techniques, WWW 2004

