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The Web graph




Vannevar Bush — “As we may think” (1945)

The “MEMEX": A photo-electrical-mechanical
device that stores documents and images and
allows to create and follow links between them



Tim Berners-Lee

1980 — CERN: Writes a notebook program
“Enquire-upon-within-everything”
that allows links to be made between
arbitrary nodes
1989 — CERN: Circulates the document
“Information management: a proposal”
1990 — CERN: The first Web browser, and the first
Web server-client communication
1994 : The creation of the WWW consortium (W3C)




—- The history of the Web

The as a Side Effect

of the 40 yvears of Patlicie Physics Experiments.

The fragment from authar (G.R.G) email discussions with Ben Segal

Ben. Feturn-Fath:

It happened many times during history of science that the Date: Thu, 23 May 1336 0847534 +0200
most impressive results of large scale scientific efforts From: ben@dxcern cern.ch (Ben Segal)
appeared far away from the main directions of those efforts. To: view@netvalley.com

Subject: Gregory, here are some CERN. .
| hope you agree that Web was a side effect of the CERM's

scientific agenda. =f hope you agree that Web was g side effect of the
CERN'S sclentific agendsa.

Absolutely! (And itwas not 100% appreciated by
the masters of CERM, the physicists and
accelerator builders, that such a "side effect” with
wiorld shaking consequences was born in the
P S Itis quite remarkable that * obscure bit of the organization that handled

“do not have a word about YWeb. So, it looks computing, a relatively low-status activity...).

like a classic side effect that normally is not be mentioned at
the main text of official record... Ben Segal

Gregory Gromaoy




The history of the Web

Hypertext 1991: Tim Berners-Lee paper on WWW
was accepted only as a poster




A

§ The Web consists of hundreds of billions
of pages

8§ It is considered one of the biggest
revolutions In recent human history



Web page

URL = Universal Resource Locator
http://www.cism.it/cism/hotels 2001.htm
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M\ Which pages do we care for?

§ We want to avoid “dynamic” pages
§ catalogs
§ pages generated by queries

§ pages generated by cgi-scripts (the
nostradamus effect)

§ We are only interested in “static” web
pages



ﬁw The Static Public Web

§Static § Public

§ not the result of a cgi-bin § no password required
scripts § no robots.txt exclusion

§ no “?” in the URL § no “noindex” meta tag

§ doesn’t change very often § etc.

§ etc.

§ These rules can still be fooled
§ “Dynamic pages” appear static
browseable catalogs (Hierarchy built from DB)

§ Spider traps -- infinite url descent
www.x.com/home/home/home/..../home/home.html

§ Spammer games



) The Web graph

§ Agraph G = (V, E) is defined by
§ a set V of vertices (nodes)
§ a set E of edges (links) = pairs of nodes

§ The Web page graph (directed)
§ V is the set of static public pages
§8 E is the set of static hyperlinks

§ Many more graphs can be defined
§ The host graph
§ The co-citation graph
§ etc



:ﬂﬁ Why do we care about the Web graph?

\ (!

§8 It Is the largest human artifact ever created

§ Exploit the Web structure for
§ crawlers
§ search and link analysis ranking
§ spam detection
§ community discovery
§ classification/organization

§ Predict the Web future
§ mathematical models
§ algorithm analysis
§ sociological understanding



The first question: what is the size of the Web?

)

§ Surprisingly hard to answer

§ Naive solution: keep crawling until the whole graph has been
explored

§ Extremely simple but wrong solution: crawling is complicated
because the web is complicated

§ spamming
§ duplicates
§ mirrors

§ Simple example of a complication: Soft 404

§ When a page does not exists, the server is supposed to return an error
code = “404”

§ Many servers do not return an error code, but keep the visitor on site,
or simply send him to the home page



ﬁ» A sampling approach

§ Sample pages uniformly at random

§ Compute the percentage p of the pages that
belong to a search engine repository (search
engine coverage)

§ Estimate the size of the Web
size(Web) = size(Search Engine)/p

§8 Problems:
§ how do you sample a page uniformly at random?

§ how do you test if a page is indexed by a search
engine?



) Sampling pages [Lawrence et al]

§ Create IP addresses uniformly at random
§ problems with virtual hosting, spamming



Near uniform sampling
ﬂ‘/ [Henzinger et al]

§ Starting from a subset of pages perform a
random walk on the graph (with restarts).
After “enough” steps you should end up In
a random page.

§ problem: pages with high degree are more
likely to be sampled



- Near uniform sampling
¥ [Henzinger et al]

§ Perform a random walk to obtain a random
crawl. Then sample a subset of these pages

§ How to sample?
P(X sampled) = P(X sampled | X crawled)* P(X crawled)

§ sample a page with probability inversely proportional
to the P(X crawled)

§ Estimating P(X crawled)
§ using the number of visits in the random walk
§ using the PageRank value of the node in the crawl



aa EStimating the size of the indexed
7% web

§ Estimating the relative size of search engines

Prob(ANB|A) = |ANBJ/|A| Prob(ANB|B) = |ANBJ/|B|
|Al/|B| = Prob(ANB|B) / Prob(ANB|A)
§ Sample from A and compute the fraction f, of pages in intersection

§ Sample from B and compute the fraction f, of pages in intersection
§ Ratio f,/f, is the ratio of size of A over size of B



-z Sampling and Checking
¢ % [Bharat and Broder]

§ We need to procedures:

8 procedure for obtaining a uniformly
random page of a search engine

§ Checking procedure to test if a sampled page
IS contained In another search engine.



-~z Sampling procedure
"W [Bharat and Broder]

§ From a collection of Web documents
construct a lexicon

§ Use combination of keywords to perform
OR and AND queries

§ Sample from the top-100 pages returned

§ Biases:
§ query bias, towards rich in content pages
§8 ranking bias, towards highly ranked pages



ﬁw Checking procedure

§ Create a . with the k most
significant terms

§ significance Is inversely proportional to the
frequency In the lexicon

§ Query search engine and check if it
contains a given URL

§ full URL check
§ text similarity



Results [Gulli, Signorini 2005]

MSN BETA (63.24%)
ASK/TEOMA (67.87%) |

Y AHOO! (83.20%) |

GOOGLE (100.00%)

Figure 3: Estimated relative size per search engine

Figure 4 graphically represents the percentage of the in-
dexable web that lies in each search engine’s index and in
their respective intersections.
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Figure 4: Results distribution across engines.




ﬁ@ Estimating Web size

§ Results indicate that the search engines
are independent
§ Prob(ANBJA) = Prob(ANC|C)
§ Prob(ANBJ|A) = Prob(B)

§ If we know the size of B we can estimate the
size of the Web

§ In 2005: 11.5 hillion



ﬁw Measuring the Web

§ It is clear that the Web that we see Is what the
crawler discovers

§ We need large crawls in order to make
meaningful measurements

8§ The measurements are still biased by

§ the crawling policy

§ size limitations of the crawl

§ Perturbations of the "natural™ process of birth and
death of nodes and links



"\ Measures on the Web graph [Broder et al]

»

§ Degree distributions
§ Reachability

§ The global picture
§ what does the Web look from far?

§ Connected components
§ Community structure
§ The finer picture



In-degree distribution

§8 Power-law distribution with exponent 2.1
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Out-degree distribution

§8 Power-law distribution with exponent 2.7
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‘ﬁw The good news

§ The fact that the exponent Is greater than
2 Implies that the expected value of the
degree Is a constant (not growing with n)

§ Therefore, the expected number of edges
IS linear In the number of nodes n

§ This I1s good news, since we cannot handle
anything more than linear



-

@ Is the Web a small world?

Fr

§ Based on a simple model, [Barabasi et.
al.] predicted that most pages are within
19 links of each other. Justified the model
by crawling nd.edu (1999)



,_ Distance measurements

§ The probability that there exists a directed path between
two nodes is ~25%

§ Therefore, for ~75% of the nodes there exists no path that
connects them

§ Average directed distance between two nodes in the
CORE: —16

§ Average undirected distance between two nodes in the
CORE: —7

§ Maximum directed distance between two nodes in the
CORE: =28

§ Maximum directed distance between any two nodes in
the graph: = 900



Connected components — definitions

§ Weakly connected components (WCC)

§ Set of nodes such that from any node can go to any node via an
undirected path

§ Strongly connected components (SCC)

§ Set of nodes such that from any node can go to any node via a
directed path.
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#)) SCC and WCC distribution

§ The SCC and WCC sizes follows a power
law distribution

§ the second largest SCC is significantly smaller




N The inner structure of the bow-
W tie

§ What do the individual components of the
bow tie look like?

§ They obey the same power laws in the degree
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- 1he Inner structure of the bow-
W tie

§ Is it the case that the bow-tie repeats itself in
each of the components (self-similarity)?

§ It would look nice, but this does not seem to be the
case

§ no large WCC, many small ones

e e —
In WCC distribution ~ +




ﬁ@ The daisy structure?

§ Large connected core, and highly fragmented IN
and OUT components

§ Unfortunately, we do not have a large crawl to
verify this hypothesis



~=m. A different kind of self-similarity

§8 Consider Thematically Unified Clusters
(TUC): pages grouped by
§ keyword searches
§ web location (intranets)
§ geography
§ hostgraph
§ random collections

§ All such TUCs exhibit a bow-tie structure!



) Self-similarity

§ The Web consists of a collection of self-
similar structures that form a backbone of
the SCC
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Fig. 4. TUCs connected by the navigational backbone inside the SCC of the Web graph.



&\ Community discovery [Kumar et al]

§ Hubs and authorities
§ hubs: pages that point to (many good)
pages
§ authorities: pages that are pointed to
by (many good) pages

§8 Find the (i,]) bipartite cliques of
hubs and authorities

§ Intuition: these are the core of a
community

§ grow the core to obtain the community




ﬁw Bipartite cores

§ Computation of bipartite cores requires
heuristics for handling the Web graph

§ iterative pruning steps

§ Surprisingly large number of bipartite cores
§ lead to the copying model for the Web

§ Discovery of unusual communities of enthusiasts
§ Australian fire brigadiers



~m Hierarchical structure of the Web
¢ % [Eiron and McCurley]

§ The links follow in large part the
hierarchical structure of the file directories

§ locality of links
Type of link All static links | Both ends crawled | Bidirectional
Intra-directory 32.3% 41.1% 80.3%
Up 9.0% 11.2% 1.5%
Down 5.7% 3.9% 4.5%
Across directories 18.4% 18.7% 10.0%
External to host 33.6% 25.0% 0.7%
Total 5.1 billion 534893 156859

Table 1: Distribution of links by type. Shown are the distribution of links for the
complete corpus, a sample among links where both source and destination pages were
crawled, and a sample among bidirectional links. Self loops (which were not included in
the sample) account for roughly 0.9% of the links.



ﬁ@ Web graph representation

§ How can we store the web graph?

§ we want to compress the representation of
the web graph and still be able to do random
and sequential accesses efficiently.

§ for many applications we need also to store
the transpose



’”% Links files

§ A sequence a records

§8 Each record consists of a source URL
followed by a sequence of destination
URLS

http://www.foo.com/ -« source URL
http://www.foo.com/css/foostyle.css )
http://www.foo.com/images/logo.gif
http://www.foo.com/images/navigation.gif
http://ww.foo.com/about/ r destination URLs
http://www.foo.com/products/
http://www.foo.com/jobs/



http://www.foo.com/
http://www.foo.com/css/foostyle.css
http://www.foo.com/images/logo.gif
http://www.foo.com/images/navigation.gif
http://www.foo.com/about/
http://www.foo.com/products/
http://www.foo.com/jobs/

A simple representation

also referred to as starts
table, or offset table

Mode Table .\

ptrto LIRL ptrto inlist table | ptr to outlist table
i ™

LRL Database

the link
Inlist Table Outlist Table database




M\ The URL Database

§ Three kinds of representations for URLS
§ Text: original URL
§ Fingerprint: a 64-bit hash of URL text
§ URL-id: sequentially assigned 32-bit integer



;%/ﬁ URL-Ids

§ Sequentially assigned from 1 to N

§8 Divide the URLs into three partitions based on
their degree

§ indegree or outdegree > 254, high-degree
§ 24 - 254, medium degree
§ Both <24, low degree

§ Assign URL-ids by partition
§8 Inside each partition, by lexicographic order



"\ Compression of the URL database [BBHKV98]

§ When the URLs are sorted
lexicographically we can exploit the fact

that consecutive URLs are similar

www.foobar.com
www.foobar.com/gandalf

§ delta-encoding: store only the differences
between consecutive URLs


http://www.foobar.com
http://www.foobar.com/gandalf

) delta-encoding of URLS

Original text Delta Encoding

wety fo bl cory 0wty foobar.corm 1
wiwyy foobar.comigandalf. htm _ -~ 19 gandalf.htrm 26
vy foogra b, corm P T grab.com’ 41

15 gandalf.htm 1] 26

T A

|
size of shared prefix Hode 1D

§ problem: we may have to traverse long
reference chains



ﬁw Checkpoint URLS

§ Store a set of Checkpoint URLs

§8 we first find the closest Checkpoint URL and
then go down the list until we find the URL

Checkpoint Delta Encoding

URL's /n 0-0-0C heckmate com 1

0-00Checkmate.com ™ |

fookar .cam Lz himl 11 sz itml 2213

T o iBscsims

\bn 77 pe u-tokyo Ao jp 89123456

sy didital comfarc —

ZZpe u-tokyoacjp

§ results in 70% reduction of the URL space



. The Link Database [RSWW]

§ Maps from each URL-id to the sets of URL-
Ids that are its out-links (and its In-links)

adjacency data
starts
url-id|__ ¢ 101 | x
105 | X+3—~—— 174
106 k3 ———=={"101
107 [X+6~ 168
: \ 174




Vanilla representation

§ Avg 34 bits per in-link
§ Avg 24 bits per out-link



M Compression of the link database

)

§ We will make use of the following properties

§ Locality: usually most of the hyperlinks are local, I.e,
they point to other URLs on the same host. The
literature reports that on average 80% of the
hyperlinks are local.

§ Lexicographic proximity: links within same page are
likely to be lexicographically close.
§ Similarity: pages on the same host tend to have

similar links (results in lexicographic proximity on the
IN-links)

§ How can we use these properties?




url-id

106
107

adjacency data
starts i
. —
: . 101
i (132)
— (174)
~ 168
: \ 174

delta-encoding of the link lists

adjacency data

staris "
ur-idf 2 | 43

104 =
105 — 42
106 B
1o | s \ 67
: 6

-3=101- 104
31=132-101
42 =174 - 132




ﬁw How do we represent deltas?

§ Any encoding is possible (e.g. Huffman codes) —
It affects the decoding time.

§ Use of Nybbles

§ nybble: four bits, last bit is 1 if there is another
nybble afterwards. The remaining bits encode an
unsigned number

28 = 0111 1000

§ if there are negative numbers then the least
significant bit (of the useful bits) encodes the sign

28 =1111 0000 -6=00111010 -28=11110010



ﬁw Compressing the starts array

§ For the medium and small degree partitions,
break the starts array into blocks. In each block
the starts are stored as offsets of the first index

§8 only 8 bits for the small degree partition, 16 bits for
the medium degree partition

§ considerable savings since most nodes (about 74%)
have low degree (power-law distribution)

§8 Intuition: for low and med partitions the starts
will be close to each other



-* Resulting compression

§ Avg 8.9 bits per out-link
§ Avg 11.03 bits per In-link



§ Any Ideas?

url-1d
104
105
106
107

We can do better

adjacency data
starts
: 01
S—— 174
~ 168
: \ 174

101, 132, 174

101, 168, 174



ﬁ@ Reference lists

§ Select one of the adjacency lists as a
reference list

§ The other lists can be represented by the
differences with the reference list

§ deleted nodes
§ added nodes



Reference lists

adjacency data
starts
url-id|__ ¢ 101
ol = 1%
105 — 174
106 =101
107 S 168
. 174

104
105
106
107

starts

adjacency data

| ref=10

adds = {-3,31,42}

— ref =2

deletes = {1}

SAVIRNE

\ adds = {168}




) Interlist distances

£z — inlinks
é 0.6 \ outlinks
=

‘7 0.4

=%}

c‘j i

£

o 0.2

-«

20 40 60 80 100
Distance between URL-ids

Figure 4: Similarity between
neighboring adjacency lists

§ Pages that with close URL-ids have similar lists
§ Resulting compression

§ Avg 5.66 bits per in-link

§ Avg 5.61 bits per out-link



Space-time tradeoffs

Algorithm Size (avg bits/link) | Max DB | Time (avg ns/link) | Time (s)
Inlinks | Outlinks E;Iges) Seq Rand SCC
Link1 34.00 24.00 214 13 72 187
Link2 8.90 11.03 546 47 109 217
Link2-1part 9.02 12.81 488 49 117 217
Link2-+huff 7.92 10.8 583 117 195 287
Link3 5.66 5.61 862 248 336 414
Link3+huff 5.39 555 868 278 367 451

Table 2. Space and time measurements for implementations of 7 day crawl dataset.



) Exploiting consecutive blocks [BV04]

§ Many sets of links correspond to
consecutive blocks of URL-ids. These can
be encoded more efficiently



b
|

Interlist compression

Uncompressed link list

Interlist compression

Node | Outdegree | Successors
15 11 13,15, 16, 17] 18, 19] 23, 24] 203,[315] 1034
16 10 15, 16, 17,|22] 23, 24/ B15,|316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
Node | Outd. | Ref. | Copy list Extra nodes
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 | 22, 316, 317, 3041
17 0
18 5 3 11110000000 | 50




Compressing copy blocks

Node | Outd. | Ref. | Copy list Extra nodes

15 |1 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034

Interlist compression | . | 4, 1| 01110011010 | 22, 316, 317, 3041
17 0
18 |5 3 | 11110000000 | 50

Node | Outd. | Ref | # blocks | Copy blocks Extra nodes

Adjacency list with copy |15 |11 |0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034

blocks 16 10 1 7 @u, 2,1,1,0,0 | 22, 316, 317, 3041
] 17 0
18 5 3 |1 4 50

The last block is omitted,;
The first copy block is O if the copy list starts with O;
The length is decremented by one for all blocks except the first one.




; , Compressing intervals

Adjacency list with copy

blocks.

Adjacency list
with intervals.

Node | Outd. | Ref | # blocks | Copy blocks Extra nodes
15 11 12' 15, 16,17, 18, l- 23, 244 203, 315, 1034
16 10 1 7 0,0,2,1,1,0,0 | 22, 316, 317, 3041
17 0
18 B 3 1 4 50
Node | Outd. | Ref | # blocks | Copy blodks # intervals | Left extremes | Length | Residuals
15 11 0 2 3,0 @lﬂg. 111, T18
16 10 1 T 0,021,100 |1 0 23013
17 0
18 5 3 1 4 0 @
0 = (15-15)*2

Intervals: represented by their left extreme and length;

Intervals length: are decremented by the threshold Lmin (=2);

Residuals: compressed using differences.

v(x)

%
2l =1

for the first residual value

ifx>0
fx<0

600 = (316-16)*2
5 = |13-15[*2-1
3018 = 3041-22-1

2=23-19-2




-* Resulting compression

§ Avg 3.08 bits per in-link
§ Avg 2.89 bits per out-link
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