
Information Networks

Link Analysis Ranking
Lecture 8



Why Link Analysis?

§ First generation search engines
§ view documents as flat text files
§ could not cope with size, spamming, user

needs
§ Second generation search engines
§ Ranking becomes critical
§ use of Web specific data: Link Analysis
§ shift from relevance to authoritativeness
§ a success story for the network analysis



Outline

§ …in the beginning…
§ previous work
§ some more algorithms
§ some experimental data
§ a theoretical framework



Link Analysis: Intuition

§ A link from page p to page q denotes
endorsement
§ page p considers page q an authority on a

subject
§ mine the web graph of recommendations
§ assign an authority value to every page



Link Analysis Ranking Algorithms

§ Start with a collection
of web pages
§ Extract the underlying

hyperlink graph
§ Run the LAR

algorithm on the
graph
§ Output: an authority

weight for each node
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Link Analysis: Intuition

§ A link from page p to page q denotes
endorsement
§ page p considers page q an authority on a

subject
§ mine the web graph of recommendations
§ assign an authority value to every page



Algorithm input

§ Query independent: rank the whole Web
§ PageRank (Brin and Page 98) was proposed

as query independent
§ Query dependent: rank a small subset of

pages related to a specific query
§ HITS (Kleinberg 98) was proposed as query

dependent



Query dependent input

Root Set



Query dependent input

Root Set
IN OUT



Query dependent input

Root Set
IN OUT



Query dependent input

Root Set
IN OUT

Base Set



Link Filtering

§ Navigational links: serve the purpose of moving
within a site (or to related sites)

• www.espn.com www.espn.com/nba
• www.yahoo.com www.yahoo.it
• www.espn.com www.msn.com

§ Filter out navigational links
§ same domain name

• www.yahoo.com vs yahoo.com

§ same IP address
§ other way?

http://www.espn.com
http://www.espn.com/nba
http://www.yahoo.com
http://www.yahoo.it
http://www.espn.com
http://www.msn.com
http://www.yahoo.com


InDegree algorithm

§ Rank pages according to in-degree
§ wi = |B(i)|

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

w=1 w=1

w=2

w=3
w=2



PageRank algorithm [BP98]

§ Good authorities should be
pointed by good authorities

§ Random walk on the web graph
§ pick a page at random
§ with probability 1- jump to a

random page
§ with probability follow a random

outgoing link

§ Rank according to the
stationary distribution

§

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page
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Markov chains

§ A Markov chain describes a discrete time stochastic
process over a set of states

according to a transition probability matrix

§ Pij = probability of moving to state j when at state i
• jPij = 1 (stochastic matrix)

§ Memorylessness property: The next state of the chain
depends only at the current state and not on the past of
the process (first order MC)
§ higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}



Random walks

§ Random walks on graphs correspond to
Markov Chains
§ The set of states S is the set of nodes of the

graph G
§ The transition probability matrix is the

probability that we follow an edge from one
node to another



An example
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State probability vector

§ The vector qt = (qt
1,qt

2, … ,qt
n) that stores

the probability of being at state i at time t
§ q0

i
= the probability of starting from state i

qt = qt-1 P
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Stationary distribution

§ A stationary distribution for a MC with transition matrix P,
is a probability distribution , such that = P

§ A MC has a unique stationary distribution if
§ it is irreducible

• the underlying graph is strongly connected
§ it is aperiodic

• for random walks, the underlying graph is not bipartite
§ The probability i is the fraction of times that we visited

state i as t 
§ The stationary distribution is an eigenvector of matrix P
§ the principal left eigenvector of P – stochastic matrices have

maximum eigenvalue 1



Computing the stationary distribution

§ The Power Method
§ Initialize to some distribution q0

§ Iteratively compute qt = qt-1P
§ After enough iterations qt

§ Power method because it computes qt = q0Pt

§ Why does it converge?
§ follows from the fact that any vector can be written as

a linear combination of the eigenvectors
• q0 = v1 + c2v2 +  … cnvn

§ Rate of convergence
§ determined by 2

t



The PageRank random walk

§ Vanilla random walk
§ make the adjacency matrix stochastic and run

a random walk
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The PageRank random walk

§ What about sink nodes?
§ what happens when the random walk moves

to a node without any outgoing inks?
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The PageRank random walk

§ Replace these row vectors with a vector v
§ typically, the uniform vector

P’ = P + dvT
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The PageRank random walk

§ How do we guarantee irreducibility?
§ add a random jump to vector v with prob

• typically, to a uniform vector

P’’ = P’ + (1- )uvT,  where u is the vector of all 1s



Effects of random jump

§ Guarantees irreducibility
§ Motivated by the concept of random surfer
§ Offers additional flexibility
§ personalization
§ anti-spam

§ Controls the rate of convergence
§ the second eigenvalue of matrix P’’ is



A PageRank algorithm

§ Performing vanilla power method is now
too expensive – the matrix is not sparse

q0 = v
t = 1
repeat

t = t +1
until < 
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Research on PageRank

§ Specialized PageRank
§ personalization [BP98]

• instead of picking a node uniformly at random favor specific nodes
that are related to the user

§ topic sensitive PageRank [H02]
• compute many PageRank vectors, one for each topic
• estimate relevance of query with each topic
• produce final PageRank as a weighted combination

§ Updating PageRank [Chien et al 2002]
§ Fast computation of PageRank
§ numerical analysis tricks
§ node aggregation techniques
§ dealing with the “Web frontier”



Hubs and Authorities [K98]

§ Authority is not
necessarily transferred
directly between
authorities
§ Pages have double

identity
§ hub identity
§ authority identity

§ Good hubs point to good
authorities
§ Good authorities are

pointed by good hubs
hubs authorities



HITS Algorithm

§ Initialize all weights to 1.
§ Repeat until convergence
§ O operation : hubs collect the weight of the authorities

§ I operation: authorities collect the weight of the hubs

§ Normalize weights under some norm
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HITS and eigenvectors

§ The HITS algorithm is a power-method
eigenvector computation
§ in vector terms at = ATht-1 and ht = Aat-1

§ so a = ATAat-1 and ht = AATht-1

§ The authority weight vector a is the eigenvector of
ATA and the hub weight vector h is the eigenvector of
AAT

§ Why do we need normalization?
§ The vectors a and h are singular vectors of the

matrix A



Singular Value Decomposition

§ r : rank of matrix A

§ 1 2 … r : singular values (square roots of eig-vals AAT, ATA)

§ : left singular vectors (eig-vectors of AAT)

§ : right singular vectors (eig-vectors of ATA)

§
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33

Singular Value Decomposition

§ Linear trend v in matrix A:
§ the tendency of the row

vectors of A to align with
vector v

§ strength of the linear trend:
Av

§ SVD discovers the linear
trends in the data

§ ui , vi : the i-th strongest
linear trends

§ i : the strength of the i-th
strongest linear trend

1

2
v1

v2

§ HITS discovers the strongest linear trend in the
authority space



HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect



HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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3n · 2n

3n · 2n

after n iterationsweight of node p is
proportional to the number
of (BF)n paths that leave
node p



HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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Outline

§ …in the beginning…
§ previous work
§ some more algorithms
§ some experimental data
§ a theoretical framework



Previous work

§ The problem of identifying the most important
nodes in a network has been studied before in
social networks and bibliometrics
§ The idea is similar
§ A link from node p to node q denotes endorsement
§ mine the network at hand
§ assign an centrality/importance/standing value to

every node



Social network analysis

§ Evaluate the centrality of individuals in social
networks
§ degree centrality

• the (weighted) degree of a node

§ distance centrality
• the average (weighted) distance of a node to the rest in the

graph

§ betweenness centrality
• the average number of (weighted) shortest paths that use

node v
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Random walks on undirected graphs

§ In the stationary distribution of a random
walk on an undirected graph, the
probability of being at node i is
proportional to the (weighted) degree of
the vertex

§ Random walks on undirected graphs are
not “interesting”



Counting paths – Katz 53

§ The importance of a node is measured by the
weighted sum of paths that lead to this node
§ Am[i,j] = number of paths of length m from i to j
§ Compute

§ converges when b < 1(A)
§ Rank nodes according to the column sums of

the matrix P
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Bibliometrics

§ Impact factor (E. Garfield 72)
§ counts the number of citations received for

papers of the journal in the previous two years
§ Pinsky-Narin 76
§ perform a random walk on the set of journals
§ Pij = the fraction of citations from journal i that

are directed to journal j
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