Information Networks

Power Laws and Network Models
Lecture 3




Bl Erdos-Renyl Random Graphs

§8 For each pair of vertices (i,]), generate the edge
(1,)) Independently with probability p
degree sequence: Binomial
p(K) =B(n;k;p) =B (- p)*
In the limit: Poisson

k

P =P(;2) =+ e
real life networks: poWer-Iaw distribution
p(k) = Ck=
Low clustering coefficient: C = z/n
Short paths, but not easy to navigate
Too random...



el Departing from the ER model

§ We need models that better capture the
characteristics of real graphs

degree sequences
clustering coefficient
short paths



B Graphs with given degree sequences

§ Assume that we are given the degree seguence
[d,,d,,...,d ]

§ Create d. copies of node i

§ Take a random matching (pairing) of the copies
self-loops and multiple edges are allowed

§ Uniform distribution over the graphs with the
given degree sequence



i 1 he glant component

§ The phase transition for this model
happens when

¥
a kk-2)p, =0
k=0
p.: fraction of nodes with degree k

§ The clustering coefficient is given by

o2 8F)- @9
T




I Power-law graphs

§ The critical value for the exponent a is
a=3.47/88...

§ The clustering coefficient Is
3a-7
a-1

C=n?" B=

§ When a<7/3 the clustering coefficient
Increases with n



Bl A different approach

§ Given a degree sequence [d,,d,,...,d ], where
d,=2d,2...2d, there exists a simple graph with
this sequence (the sequence is realizable)

k n
a d £kk- 1)+ g min{d.,k}

1 i=k+1

§8 There exists a connected graph with this
sequence
g_ d32(n-1)

1



Bl Getting a random graph

§ Perform a random walk on the space of all
possible simple connected graphs

at each step swap the endpoints of two
randomly picked edges



B Craphs with given degree sequence

§ The problem is that these graphs are too
contrived

§ It would be more interesting if the network
structure emerged as a side product of a
stochastic process



Power Laws

§ Two quantities y and x are related by a power law if

a

y»x'

§ A (continuous) random variable X follows a power-law
distribution if it has density function

f(x) =Cx"°
§ Cumulative function

C .
x (@D
a-1

P[X3 x]=



i \Normalization constant

§ Assuming a minimum value X

min
C (CI 1) min

§ The density function becomes

(a-1) & x o

f(x) =

X min X min ﬂ



I Pareto distribution

§ Pareto distribution Is pretty much the same
but we have

P[x3 x|]=C'xF

§ and we usually we require

X3 X

min



B Zipf's Law

§ A random variable X follows Zipf's law if
the r-th largest value x, satisfies

X »rY
§ Same as requiring a Pareto distribution

P[X 3 X] » X WY



Power laws
are ubiguitous

minimum exponent
quantity Tmin '

(a)  frequency of nse of words 1 2.20(1)
ity number of citations to papers 100 3.04(2)
ic) number of hits on web sites 1 2.40(1)
id) copies of books sold in the US| 2000000 3.51(16)
ie) telephone ealls received 10 2.22(1)
ifi magnitude of earthquakes 3.8 3.0404)
ig) diameter of moon craters 0.01 3.14(5)
ih) intensity of solar flares 200 1.83(2)
(i) intensity of wars 3 1.80{%)
iy net worth of Americans F600m 2.00(4)
ik} frequency of family names 10000 1.84(1)
i1y population of US cities 40000 2.30(5)

TABLE 1 Parameters for the distributions shown in Fig. 4.
The labals on the left refer to the panels in the fipure. Expo-
nent values were calculated using the maximum likelihood
method of Eq. (5) and Appendix B, except for the moon
craters (g), for which only enmulative data were available. For
this case the exponent quoted is from a simple least-squares fit
and should be treated with caution. Numbers in parentheses
give the standard error on the trailing figures.
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FIG, 5 Cumulative distributions of some gquantities whose
distributions span several orders of magnitude but that
nonetheless do not follow power laws. () The number of
sightings of 591 species of birds in the Morth American Breed-
ing Bird Survey 2003. (b) The number of addresses in the
email address books of 16881 users of a large university com-
puter system [34]. (¢} The size in acres of all wildfires cceur-
ring on U5 federal land between 1986 and 1996 (National Fire
Occurrence Database, USDA Forest Service and Department
of the Interior). Mote that the horizontal axis is logarithmic
in frames (a) and (¢} but linear in frame ().



Measuring power laws

Simple log-log plot gives poor estimate
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= Logarithmic binning

§ Bin the observations in bins of exponential

size

samples
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Cumulative distribution
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B Computing the exponent

§ Least squares fit of a line

§ Maximum likelihood estimate

1
. u

ég
a=1+ngq In Y
ei=1 Xmin U

X




I Power-law properties

§ FIrst moment




I Scale Free property

§ A power law holds in all scale
f(bx) = g(b)p(x)



‘4 The 80/20 rule

§ Cumulative distribution is top-heavy

1_

W

[ A

LIPS R (O T (O T S B

R R R R R

fraction of wealth

T T | T T T | T T T | T T T |
0.4 0.6 0.8 1

fraction of population P



I | he discrete case
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