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Erdös-Renyi Random Graphs

§ For each pair of vertices (i,j), generate the edge
(i,j) independently with probability p
§ degree sequence: Binomial

§ in the limit: Poisson

§ real life networks: power-law distribution

§ Low clustering coefficient: C = z/n
§ Short paths, but not easy to navigate
§ Too random…
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Departing from the ER model

§ We need models that better capture the
characteristics of real graphs
§ degree sequences
§ clustering coefficient
§ short paths



Graphs with given degree sequences

§ Assume that we are given the degree sequence
[d1,d2,…,dn]

§ Create di copies of node i
§ Take a random matching (pairing) of the copies
§ self-loops and multiple edges are allowed

§ Uniform distribution over the graphs with the
given degree sequence



The giant component

§ The phase transition for this model
happens when

§ The clustering coefficient is given by
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Power-law graphs

§ The critical value for the exponent is

§ The clustering coefficient is

§ When <7/3 the clustering coefficient
increases with n
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A different approach

§ Given a degree sequence [d1,d2,…,dn], where
d1 d2 dn, there exists a simple graph with
this sequence (the sequence is realizable) if and
only if

§ There exists a connected graph with this
sequence if and only if
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Getting a random graph

§ Perform a random walk on the space of all
possible simple connected graphs
§ at each step swap the endpoints of two

randomly picked edges



Graphs with given degree sequence

§ The problem is that these graphs are too
contrived
§ It would be more interesting if the network

structure emerged as a side product of a
stochastic process



Power Laws

§ Two quantities y and x are related by a power law if

§ A (continuous) random variable X follows a power-law
distribution if it has density function

§ Cumulative function

xy −≈

Cxf(x) −=

[ ] 1)x
1

C
xXP −−

−
=≥



Normalization constant

§ Assuming a minimum value xmin

§ The density function becomes
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Pareto distribution

§ Pareto distribution is pretty much the same
but we have

§ and we usually we require
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Zipf’s Law

§ A random variable X follows Zipf’s law if
the r-th largest value xr satisfies

§ Same as requiring a Pareto distribution

r rx −≈

[ ] 1xxXP −≈≥



Power laws
are ubiquitous



But not everything is power law



Measuring power laws

Simple log-log plot gives poor estimate



Logarithmic binning

§ Bin the observations in bins of exponential
size



Cumulative distribution



Computing the exponent

§ Least squares fit of a line

§ Maximum likelihood estimate
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Power-law properties

§ First moment

§ Second moment
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Scale Free property

§ A power law holds in all scale
§ f(bx) = g(b)p(x)



The 80/20 rule

§ Cumulative distribution is top-heavy



The discrete case
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