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What is an information network?

§ Network: a collection of entities that are
interconnected
§ A link (edge) between two entities (nodes)

denotes an interaction between two entities
§ We view this interaction as information

exchange, hence, Information Networks
§ The term encompasses more general

networks



Why do we care?

§ Networks are everywhere
§ more and more systems can be modeled  as

networks, and more data is collected
§ traditional graph models no longer work
§ Large scale networks require new tools to study

them

§ A fascinating “new” field (“new science”?)
§ involves multiple disciplines: computer science,

mathematics, physics, biology, sociology. economics



Types of networks

§ Social networks
§ Knowledge (Information) networks
§ Technology networks
§ Biological networks



Social Networks

§ Links denote a social interaction
§ Networks of acquaintances
§ actor networks
§ co-authorship networks
§ director networks
§ phone-call networks
§ e-mail networks
§ IM networks

• Microsoft buddy network
§ Bluetooth networks
§ sexual networks
§ home page networks



Knowledge (Information) Networks

§ Nodes store information, links associate
information
§ Citation network (directed acyclic)
§ The Web (directed)
§ Peer-to-Peer networks
§ Word networks
§ Networks of Trust
§ Bluetooth networks



Technological networks

§ Networks built for distribution of commodity
§ The Internet

• router level, AS level

§ Power Grids
§ Airline networks
§ Telephone networks
§ Transportation Networks

• roads, railways, pedestrian traffic

§ Software graphs



Biological networks

§ Biological systems represented as networks
§ Protein-Protein Interaction Networks
§ Gene regulation networks
§ Metabolic pathways
§ The Food Web
§ Neural Networks



Now what?

§ The world is full with networks. What do
we do with them?
§ understand their topology and measure their

properties
§ study their evolution and dynamics
§ create realistic models
§ create algorithms that make use of the

network structure



Erdös-Renyi Random graphs

Paul Erdös (1913-1996)



Erdös-Renyi Random Graphs

§ The Gn,p model
§ n : the number of vertices
§ 0  p  1
§ for each pair (i,j), generate the edge (i,j)

independently with probability p

§ Related, but not identical: The Gn,m model



Graph properties

§ A property P holds almost surely (or for almost
every graph), if

§ Evolution of the graph: which properties hold as
the probability p increases?
§ Threshold phenomena: Many properties appear

suddenly. That is, there exist a probability pc
such that for p<pc the property does not hold a.s.
and for p>pc the property holds a.s.
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The giant component

§ Let z=np be the average degree
§ If z < 1, then almost surely, the largest

component has size at most O(ln n)
§ if z > 1, then almost surely, the largest

component has size (n). The second
largest component has size O(ln n)
§ if z = (ln n), then the graph is almost

surely connected.



The phase transition

§ When z=1, there is a phase transition
§ The largest component is O(n2/3)
§ The sizes of the components follow a power-

law distribution.



Random graphs degree distributions

§ The degree distribution follows a binomial

§ Assuming z=np is fixed, as n B(n,k,p)
is approximated by a Poisson distribution

§ Highly concentrated around the mean,
with a tail that drops exponentially
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Phase Transition

§ Starting from some vertex v perform a
BFS walk
§ At each step of the BFS a Poisson

process with mean z, gives birth to new
nodes
§ When z<1 this process will stop after

O(logn) steps
§ When z>1, this process will continue for

(n) steps



Random graphs and real life

§ A beautiful and elegant theory studied
exhaustively

§ Random graphs had been used as
idealized generative models

§ Unfortunately, they don’t capture reality…



Measuring Networks

§ Degree distributions
§ Small world phenomena
§ Clustering Coefficient
§ Mixing patterns
§ Degree correlations
§ Communities and clusters



Degree distributions

§ Problem: find the probability distribution that best fits the
observed data

degree

frequency

k

fk

fk = fraction of nodes with degree k
= probability of a randomly

selected node to have degree k



Power-law distributions

§ The degree distributions of most real-life networks follow
a power law

§ Right-skewed/Heavy-tail distribution
§ there is a non-negligible fraction of nodes that has very high

degree (hubs)
§ scale-free: no characteristic scale, average is not informative

§ In stark contrast with the random graph model!
§ highly concentrated around the mean
§ the probability of very high degree nodes is exponentially small

p(k) = Ck



Power-law signature

§ Power-law distribution gives a line in the log-log
plot

§ : power-law exponent (typically 2 3)

degree

frequency

log degree

log frequency

log p(k) = - logk + logC



Examples

Taken from [Newman 2003]



A random graph example



Maximum degree

§ For random graphs, the maximum degree
is highly concentrated around the average
degree z
§ For power law graphs

§ Rough argument: solve nP[X k]=1
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Exponential distribution

§ Observed in some technological or collaboration
networks

§ Identified by a line in the log-linear plot

p(k) = e k

log p(k) = - k + log 

degree

log frequency



Collective Statistics (M. Newman 2003)



Clustering (Transitivity) coefficient

§ Measures the density of triangles (local
clusters) in the graph
§ Two different ways to measure it:

§ The ratio of the means
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Clustering (Transitivity) coefficient

§ Clustering coefficient for node i

§ The mean of the ratios
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Example

§ The two clustering coefficients give different
measures
§ C(2) increases with nodes with low degree
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Collective Statistics (M. Newman 2003)



Clustering coefficient for random graphs

§ The probability of two of your neighbors also being
neighbors is p, independent of local structure
§ clustering coefficient C = p
§ when z is fixed C = z/n =O(1/n)



Small world phenomena

§ Small worlds: networks with short paths

Obedience to authority (1963)

Small world experiment (1967)

Stanley Milgram (1933-1984):
“The man who shocked the world”



Small world experiment

§ Letters were handed out to people in Nebraska to be
sent to a target in Boston

§ People were instructed to pass on the letters to someone
they knew on first-name basis

§ The letters that reached the destination followed paths of
length around 6

§ Six degrees of separation: (play of John Guare)

§ Also:
§ The Kevin Bacon game
§ The Erdös number

§ Small world project:
http://smallworld.columbia.edu/index.html

http://smallworld.columbia.edu/index.html


Measuring the small world phenomenon

§ dij = shortest path between i and j
§ Diameter:

§ Characteristic path length:

§ Harmonic mean
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Collective Statistics (M. Newman 2003)



Is the path length enough?

§ Random graphs have diameter

§ d=logn/loglogn when z= (logn)

§ Short paths should be combined with other
properties
§ ease of navigation
§ high clustering coefficient
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Mixing patterns

§ Assume that we have various types of nodes.
What is the probability that two nodes of different
type are linked?
§ assortative mixing (homophily)

E : mixing matrix

p(i,j) = mixing probability

∑
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Mixing coefficient

§ Gupta, Anderson, May 1989

§ Advantages:
§ Q=1 if the matrix is diagonal
§ Q=0 if the matrix is uniform

§ Disadvantages
§ sensitive to transposition
§ does not weight the entries
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Mixing coefficient

§ Newman 2003

§ Advantages:
§ r = 1 for diagonal matrix , r = 0 for uniform matrix
§ not sensitive to transposition, accounts for weighting
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r=0.621 Q=0.528



Degree correlations

§ Do high degree nodes tend to link to high
degree nodes?
§ Pastor Satoras et al.
§ plot the mean degree of the neighbors as a

function of the degree
§ Newman
§ compute the correlation coefficient of the

degrees of the two endpoints of an edge
§ assortative/disassortative



Collective Statistics (M. Newman 2003)



Communities and Clusters

§ Use the graph structure to discover
communities of nodes
§ essentially clustering and classification on

graphs



Other measures

§ Frequent (or interesting) motifs
§ bipartite cliques in the web graph
§ patterns in biological and software graphs

§ Use graphlets to compare models
[Przulj,Corneil,Jurisica 2004]



Other measures

§ Network resilience
§ against random or

targeted node
deletions

§ Graph eigenvalues



Other measures

§ The giant component

§ Other?
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