
Information Networks

Searching in P2P networks
Lecture 11

What is P2P?

§ “the sharing of computer resources and
services by direct exchange of
information”

What is P2P?

§ “P2P is a class of applications that take
advantage of resources – storage, cycles,
content, human presence – available at
the edges of the Internet. Because
accessing these decentralized resources
means operating in an environment of
unstable and unpredictable IP addresses
P2P nodes must operate outside the DNS
system and have significant, or total
autonomy from central servers”

What is P2P?

§ “A distributed network architecture may be
called a P2P network if the participants
share a part of their own resources. These
shared resources are necessary to provide
the service offered by the network. The
participants of such a network are both
resource providers and resource
consumers”

What is P2P?

§ Various definitions seem to agree on
§ sharing of resources
§ direct communication between equals (peers)
§ no centralized control

Client/Server Architecture

§ Well known,
powerful, reliable
server is a data
source
§ Clients request

data from server

§ Very successful
model
§ WWW (HTTP),

FTP, Web services,
etc.

Server

Client

Client Client

Client

Internet

* Figure from http://project-iris.net/talks/dht-toronto-03.ppt

http://project-iris.net/talks/dht-toronto-03.ppt

Client/Server Limitations

§ Scalability is hard to achieve
§ Presents a single point of failure
§ Requires administration
§ Unused resources at the network edge

§ P2P systems try to address these
limitations

P2P Architecture

§ All nodes are both
clients and servers
§ Provide and consume

data
§ Any node can initiate a

connection

§ No centralized data
source
§ “The ultimate form of

democracy on the
Internet”

§ “The ultimate threat to
copy-right protection on
the Internet”

* Content from http://project-iris.net/talks/dht-toronto-03.ppt

Node

Node

Node Node

Node

Internet

http://project-iris.net/talks/dht-toronto-03.ppt

P2P Network Characteristics

§ Clients are also servers and routers
§ Nodes contribute content, storage, memory, CPU

§ Nodes are autonomous (no administrative
authority)
§ Network is dynamic: nodes enter and leave the

network “frequently”
§ Nodes collaborate directly with each other (not

through well-known servers)
§ Nodes have widely varying capabilities

P2P Goals and Benefits

§ Efficient use of resources
§ Unused bandwidth, storage, processing power at the “edge of the network”

§ Scalability
§ No central information, communication and computation bottleneck
§ Aggregate resources grow naturally with utilization

§ Reliability
§ Replicas
§ Geographic distribution
§ No single point of failure

§ Ease of administration
§ Nodes self-organize
§ Built-in fault tolerance, replication, and load balancing
§ Increased autonomy

§ Anonymity – Privacy
§ not easy in a centralized system

§ Dynamism
§ highly dynamic environment
§ ad-hoc communication and collaboration

P2P Applications

§ Are these P2P systems?

§ File sharing (Napster, Gnutella, Kazaa)

§ Multiplayer games (Unreal Tournament, DOOM)

§ Collaborative applications (ICQ, shared whiteboard)

§ Distributed computation (Seti@home)

§ Ad-hoc networks

§ We will focus on information sharing P2P systems

Information sharing P2P systems

§ The resource to be shared is information (e.g.
files)
§ The participants create an overlay network over

a physical network (e.g. the Internet)
§ P2P search problem: locate the requested

information in the overlay network efficiently
§ small number of messages and hops
§ low latency
§ load balance
§ easy to update in a highly dynamic setting

Popular file sharing P2P Systems

§ Napster, Gnutella, Kazaa, Freenet

§ Large scale sharing of files.
§ User A makes files (music, video, etc.) on

their computer available to others
§ User B connects to the network, searches for

files and downloads files directly from user A

§ Issues of copyright infringement

Napster

§ program for sharing files over the Internet
§ a “disruptive” application/technology?
§ history:
§ 5/99: Shawn Fanning (freshman, Northeasten U.) founds

Napster Online music service
§ 12/99: first lawsuit
§ 3/00: 25% UWisc traffic Napster
§ 2000: est. 60M users
§ 2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

§ 7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K, Morpheus: 300K

Napster: how does it work

Application-level, client-server protocol over point-to-
point TCP

Four steps:
§ Connect to Napster server
§ Upload your list of files (push) to server.
§ Give server keywords to search the full list with.
§ Select “best” of correct answers. (pings)

Napster

napster.com

users

File list is
uploaded

1.

Napster

napster.com

user

Request
and

results

User
requests
search at
server.

2.

Napster

napster.com

user

pings
pings

User pings
hosts that
apparently
have data.

Looks for best
transfer rate.

3.

Napster

napster.com

user

Retrieves
file

User retrieves
file

4.

Napster

§ Central Napster server
þ Can ensure correct results
þ Fast search

ý Bottleneck for scalability
ý Single point of failure
ý Susceptible to denial of service

• Malicious users
• Lawsuits, legislation

§ Hybrid P2P system – “all peers are equal but some are
more equal than others”
§ Search is centralized
§ File transfer is direct (peer-to-peer)

Gnutella

§ Share any type of files (not just music)
§ Completely decentralized method of searching for files
§ applications connect to peer applications

§ each application instance serves to:
§ store selected files
§ route queries (file searches) from and to its neighboring peers
§ respond to queries (serve file) if file stored locally

§ Gnutella history:
§ 3/14/00: release by AOL, almost immediately withdrawn
§ too late: 23K users on Gnutella at 8 am this AM
§ reverse engineered. many iterations to fix poor initial design

Gnutella

Searching by flooding:
§ If you don’t have the file

you want, query 7 of your
neighbors.

§ If they don’t have it, they
contact 7 of their
neighbors, for a maximum
hop count of 10.

§ Requests are flooded, but
there is no tree structure.

§ No looping but packets
may be received twice.

§ Reverse path forwarding

* Figure from http://computer.howstuffworks.com/file-sharing.htm

http://computer.howstuffworks.com/file-sharing.htm

Gnutella

fool.* ?

TTL = 2

Gnutella

TTL = 1

TTL = 1

IPX:fool.her

fool.herX

TTL = 1

Gnutella

fool.you

fool.me
Y

IPY:fool.me
fool.you

Gnutella

IPY:fool.me
fool.you

Gnutella: strengths and weaknesses

§ pros:
þflexibility in query processing
þcomplete decentralization
þsimplicity
þfault tolerance/self-organization

§ cons:
ýsevere scalability problems
ýsusceptible to attacks

§ Pure P2P system

Gnutella: initial problems and fixes

§ 2000: avg size of reachable network only 400-
800 hosts. Why so small?
§ modem users: not enough bandwidth to provide

search routing capabilities: routing black holes
§ Fix: create peer hierarchy based on capabilities
§ previously: all peers identical, most modem black

holes
§ preferential connection:

• favors routing to well-connected peers
• favors reply to clients that themselves serve large number of

files: prevent freeloading

Kazaa (Fasttrack network)

§ Hybrid of centralized Napster and decentralized Gnutella
§ hybrid P2P system

§ Super-peers act as local search hubs
§ Each super-peer is similar to a Napster server for a small portion

of the network
§ Super-peers are automatically chosen by the system based on

their capacities (storage, bandwidth, etc.) and availability
(connection time)

§ Users upload their list of files to a super-peer
§ Super-peers periodically exchange file lists
§ You send queries to a super-peer for files of interest

Anonymity

§ Napster, Gnutella, Kazaa don’t provide
anonymity
§ Users know who they are downloading from
§ Others know who sent a query

§ Freenet
§ Designed to provide anonymity among other

features

Freenet

§ Keys are mapped to IDs
§ Each node stores a cache of keys, and a routing

table for some keys
§ routing table defines the overlay network

§ Queries are routed to the node with the most
similar key
§ Data flows in reverse path of query
§ Impossible to know if a user is initiating or forwarding a

query
§ Impossible to know if a user is consuming or forwarding

data
§ Keys replicated in (some) of the nodes along the path

Freenet routing

K117 ?
TTL = 8

N01

N02

N03

N04

N07

N06

N05

N08

K124 N02
K317 N08
K613 N05

Freenet routing

K117 ?

TTL = 7

N01

N02

N03

N04

N07

N06

N05

N08

K124 N02
K317 N08
K613 N05

K514 N01

TTL = 6

sorry...

Freenet routing

K117 ?

TTL = 7

N01

N02

N03

N04

N07

N06

N05

N08

K124 N02
K317 N08
K613 N05

K514 N01

TTL = 6

K100 N07
K222 N06
K617 N05

TTL = 5

Freenet routing

K117 ?

TTL = 7

N01

N02

N03

N04

N07

N06

N05

N08

K124 N02
K317 N08
K613 N05

K514 N01

TTL = 6

K100 N07
K222 N06
K617 N05

TTL = 5
117

117

Freenet routing

K117 ?

TTL = 7

N01

N02

N03

N04

N07

N06

N05

N08

K124 N02
K317 N08
K613 N05

K514 N01

TTL = 6

K117 N07
K100 N07
K222 N06
K617 N05 TTL = 5

117
117

117

Freenet routing

N01

N02

N03

N04

N07

N06

N05

N08

K117 N07
K124 N02
K317 N08
K613 N05

K514 N01

K117 N07
K100 N07
K222 N06
K617 N05

117
117

117

Freenet routing

N01

N02

N03

N04

N07

N06

N05

N08

K117 N08
K124 N02
K317 N08
K613 N05

K514 N01

K117 N08
K100 N07
K222 N06
K617 N05

117
117

117

Inserts are performed similarly – they are unsuccessful queries

Freenet strengths and weaknesses

§ pros:
þcomplete decentralization
þfault tolerance/self-organization
þanonymity
þscalability (to some degree)

§ cons:
ýquestionable efficiency & performance
ýrare keys disappear from the system
ýimprovement of performance requires high overhead

(maintenance of additional information for routing)

Unstructured vs Structured P2P

§ The systems we described do not offer
any guarantees about their performance
(or even correctness)
§ Structured P2P
§ Scalable guarantees on numbers of hops to

answer a query
§ Maintain all other P2P properties (load

balance, self-organization, dynamic nature)

§ Approach: Distributed Hash Tables (DHT)

Distributed Hash Tables (DHT)

§ Distributed version of a hash table data structure
§ Stores (key, value) pairs
§ The key is like a filename
§ The value can be file contents, or pointer to location

§ Goal: Efficiently insert/lookup/delete (key, value) pairs

§ Each peer stores a subset of (key, value) pairs in the
system

§ Core operation: Find node responsible for a key
§ Map key to node
§ Efficiently route insert/lookup/delete request to this node

§ Allow for frequent node arrivals/departures

DHT Desirable Properties

§ Keys should mapped evenly to all nodes in
the network (load balance)
§ Each node should maintain information

about only a few other nodes (scalability,
low update cost)
§ Messages should be routed to a node

efficiently (small number of hops)
§ Node arrival/departures should only affect

a few nodes

DHT Routing Protocols

§ DHT is a generic interface

§ There are several implementations of this interface
§ Chord [MIT]
§ Pastry [Microsoft Research UK, Rice University]
§ Tapestry [UC Berkeley]
§ Content Addressable Network (CAN) [UC Berkeley]

§ SkipNet [Microsoft Research US, Univ. of Washington]
§ Kademlia [New York University]
§ Viceroy [Israel, UC Berkeley]
§ P-Grid [EPFL Switzerland]
§ Freenet [Ian Clarke]

Basic Approach

In all approaches:
§ keys are associated with globally unique IDs
§ integers of size m (for large m)

§ key ID space (search space) is uniformly
populated - mapping of keys to IDs using
(consistent) hashing
§ a node is responsible for indexing all the keys in

a certain subspace (zone) of the ID space
§ nodes have only partial knowledge of other

node’s responsibilities

Consistent Hashing

§ The main idea: map both keys and nodes (node
IPs) to the same (metric) ID space

Consistent Hashing

§ The main idea: map both keys and nodes (node
IPs) to the same (metric) ID space

The ring is just a possibility.
Any metric space will do

Consistent Hashing

§ The main idea: map both keys and nodes (node
IPs) to the same (metric) ID space

§Each key is assigned to the
node with ID closest to the
key ID
§uniformly distributed
§at most logarithmic number
of keys assigned to each
node

Problem: Starting from a node, how do we locate the node
responsible for a key, while maintaining as little information
about other nodes as possible

Basic Approach Differences

§ Different P2P systems differ in:
§ the choice of the ID space
§ the structure of their network of nodes (i.e.

how each node chooses its neighbors)

Chord

§ Nodes organized in
an identifier circle
based on node
identifiers

§ Keys assigned to
their successor
node in the
identifier circle

§ Hash function
ensures even
distribution of
nodes and keys on
the circle

* All Chord figures from “Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications”, Ion Stoica et al., IEEE/ACM Transactions on Networking, Feb. 2003.

Chord Finger Table

§ O(logN) table
size

§ ith finger points
to first node that
succeeds n by at
least 2i-1

§ maintain also
pointers to
predecessors
(for correctness)

Chord Key Location

§ Lookup in
finger table
the furthest
node that
precedes
key

§ Query
homes in on
target in
O(logN)
hops

Chord node insertion

Insert node N40:
Locate node
Add fingers
Update successor
pointers and other
node’s fingers
(max in-degree
O(log2n) whp)

Time O(log2n)
Stabilization protocol for
refreshing links

N40

Chord Properties

§ In a system with N nodes and K keys, with high
probability…
§ each node receives at most K/N keys
§ each node maintains info. about O(logN) other nodes
§ lookups resolved with O(logN) hops
§ Insertions O(log2N)

§ In practice never stabilizes
§ No consistency among replicas
§ Hops have poor network locality

Network locality

§ Nodes close on ring can be far in the
network.

CA-T1
CCI
Aros
Utah

CMU

To vu.nl
Lulea.se

MIT
MA-Cable
Cisco

Cornell

NYU

OR-DSLN20

N41N80
N40

* Figure from http://project-iris.net/talks/dht-toronto-03.ppt

http://project-iris.net/talks/dht-toronto-03.ppt

Plaxton’s Mesh

§ map the nodes and keys to b-ary numbers
of m digits
§ assign each key to the node with which it

shares the largest prefix
§ e.g. b = 4 and m = 6

321302
321002

321333

Plaxton’s Mesh – Routing Table

§ for b = 4, m = 6, nodeID = 110223; routing table:

p = 5
p = 4
p = 3
p = 2
p = 1
p = 0

d = 3d = 2d = 1d = 0

3110222110221110220
1102322110212110200
1103102110122110031
1133311123011112100
1332331230111103002
3032132102311032130

Enforcing Network Locality

§ For the (i,j) entry of the table select the node that is
geographically closer to the current node.

p = 5
p = 4
p = 3
p = 2
p = 1
p = 0

110223 d = 3d = 2d = 1d = 0

3110222110221110220
1102322110212110200
1103102110122110031
1133311123011112100
1332331230111103002
3032132102311032130

Enforcing Network Locality

§ Critical property
§ for larger row numbers the number of possible

choices decreases exponentially
• in row i+1 we have 1/b the choices we had in row i

§ for larger row numbers the distance to the
nearest neighbor increases exponentially
§ the distance of the source to the target is

approximately equal to the distance in the last
step – as a result it is well approximated

Enforcing Network Locality

Plaxton algorithm: routing

p = 5
p = 4
p = 3
p = 2
p = 1
p = 0

d = 3d = 2d = 1d = 0

3110222110221110220
1102322110212110200
1103102110122110031
1133311123011112100
1332331230111103002
3032132102311032130

110223

locate
322210

Move closer to the target one digit at the time

Plaxton algorithm: routing

110223

locate
322210

p = 5
p = 4
p = 3
p = 2
p = 1
p = 0

d = 3d = 2d = 1d = 0

3110222110221110220
1102322110212110200
1103102110122110031
1133311123011112100
1332331230111103002
3032132102311032130

Move closer to the target one digit at the time

303213

Plaxton algorithm: routing

110223

locate
322210

Move closer to the target one digit at the time

303213 322001

Plaxton algorithm: routing

110223

locate
322210

Move closer to the target one digit at the time

303213 322001 322200

Plaxton algorithm: routing

110223

locate
322210

Move closer to the target one digit at the time

303213 322001 322200 322213

Pastry: Node Joins

§ Node X finds the closest (in network proximity)
node and makes a query with its own ID

§ Routing table of X
§ the i-th row of the routing table is the i-th row of the

i-th node along the search path for X

A

locate
X

B C D

Network Proximity

§ The starting node A is the closest one to node X,
so by triangular inequality the neighbors in first
row of the starting node A will also be close to X

§ For the remaining entries of the table the same
argument applies as before: the distance of the
intermediate node Y to its neighbors dominates
the distance from X to the intermediate node Y

CAN

§ Search space:
d-dimensional
coordinate space
(on a d-torus)

§ Each node owns a
distinct zone in the
space

§ Each node keeps
links to the nodes
responsible for
zones adjacent to
its zone (in the
search space) –
~2d on avg

§ Each key hashes to
a point in the space

* Figure from “A Scalable Content-Addressable Network”, S. Ratnasamy et al., In
Proceedings of ACM SIGCOMM 2001.

CAN Lookup

Node x wants to
lookup key K

x

K (a,b)

Move along neighbors
to the zone of the key
each time moving
closer to the key

expected time O(dn1/d)
can we do it in O(logn)?

CAN node insertion

Node y needs to be inserted
It has knowledge of node x x

IP of y (c,d)
zone belongs to z

z

Split z’s zone

y

Kleinberg’s small world

§ Consider a 2-dimensional grid
§ For each node u add edge (u,v) to a vertex v

selected with pb proportional to [d(u,v)]-r
§ Simple Greedy routing
§ If r=2, expected lookup time is O(log2n)
§ If 2, expected lookup time is (n), depends on r

§ The theorem generalizes in d-dimensions for r=d

Routing in the Small World

§ logn regions of
exponentially increasing
size

§ the routing algorithm
spends logn expected
time in each regionà
log2n expected routing
time

§ if logn long-range links
are added, the expected
time in each region
becomes constantà
logn expected routing
time

Symphony

§ Map the nodes and keys to the
ring

§ Link every node with its
successor and predecessor

§ Add k random links with
probability proportional to
1/(dlogn), where d is the
distance on the ring

§ Lookup time O(log2n)
§ If k = logn lookup time O(logn)
§ Easy to insert and remove

nodes (perform periodical
refreshes for the links)

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

level 1

level 2

level 4

level 3

Viceroy

§ Emulating the butterfly network

§ Logarithmic path lengths between any two
nodes in the network

level 1

level 2

level 4

level 3

Viceroy network

§ Arrange nodes and
keys on a ring, like in
Chord.

Viceroy network

§ Assign to each node
a level value, chosen
uniformly from the set
{1,…,logn}
§ estimate n by taking

the inverse of the
distance of the node
with its successor
§ easy to update

Viceroy network

§ Create a ring of
nodes within the
same level

Butterfly links

§ Each node x at level i has two downward links to level
i+1
§ a left link to the first node of level i+1 after position x on the ring
§ a right link to the first node of level i+1 after position x + (½)i

Downward links

Upward links

§ Each node x at level i has an upward link
to the next node on the ring at level i-1

Upward links

Lookup

§ Lookup is performed in a similar fashion
like the butterfly
§ expected time O(logn)

§ Viceroy was the first network with constant
number of links and logarithmic lookup
time

P2P Review

§ Two key functions of P2P systems
§ Sharing content
§ Finding content

§ Sharing content
§ Direct transfer between peers

• All systems do this
§ Structured vs. unstructured placement of data
§ Automatic replication of data

§ Finding content
§ Centralized (Napster)
§ Decentralized (Gnutella)
§ Probabilistic guarantees (DHTs)

Issues with P2P

§ Free Riding (Free Loading)
§ Two types of free riding

• Downloading but not sharing any data
• Not sharing any interesting data

§ On Gnutella
• 15% of users contribute 94% of content
• 63% of users never responded to a query
§ Didn’t have “interesting” data

§ No ranking: what is a trusted source?
§ “spoofing”

Acknowledgements

§ Thanks to Vinod Muthusamy, George
Giakkoupis, Jim Kurose, Brian, Levine,
Don Towsley

References

§ D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,
Z. Xu, Peer to Peer computing, HP technical report, 2002

§ G. Giakkoupis, Routing algorithms for Distributed Hash Tables, Technical Report,
Univeristy of Toronto, 2003

§ Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong, "Freenet: A
Distributed Anonymous Information Storage and Retrieval System," in Designing
Privacy Enhancing Technologies: International Workshop on Design Issues in
Anonymity and Unobservability, LNCS 2009

§ S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A Scalable Content-
Addressable Network. ACM SIGCOMM, 2001

§ I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. ACM SIGCOMM, 2001.

§ A. Rowstron, P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001).

§ Dalia Malkhi, Moni Naor, David Ratajczak. Viceroy: A Scalable and Dynamic
Emulation of the Butterfly. ACM Symposium on Principles of Distributed Computing,
2002.

§ Manku, Gurmeet; Bawa, Mayank; Raghavan, Prabhakar, Symphony: Distributed
Hashing in a Small World, USENIX Symposium on Internet Technologies and
Systems (USITS), 2003

