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Network Science

• A number of complex systems can be modeled as networks (graphs).
• The Web

• (Online) Social Networks

• Biological systems

• Communication networks (internet, email)

• The Economy

• We cannot truly understand such complex systems unless we 
understand the underlying network.
• Everything is connected, studying individual entities gives only a partial view of a 

system

• Data mining for networks is a very popular area
• Application to the Web is one of the success stories for network data mining.



A case study: Searching the web

• First try: Manually curated Web Directories



A case study: Searching the web

• Second try: Web Search

• Information Retrieval investigates:

• Find relevant docs in a small and trusted set e.g., Newspaper 

articles, Patents, etc. (“needle-in-a-haystack”)

• Limitation of keywords (synonyms, polysemy, etc)

• But: Web is huge, full of untrusted documents, random things, web 

spam, etc. 

▪ Everyone can create a web page of high production value

▪ Rich diversity of people issuing queries

▪ Dynamic and constantly-changing nature of web content



A case study: Searching the web

• Third try (the Google era): using the web graph

• Sift from relevance to authoritativeness

• It is not only important that a page is relevant, but that it is also important on 

the web

• For example, what kind of results would we like to get for the query 

“game of thrones”?



Link Analysis Ranking

• Use the graph structure to determine the 

relative importance of the nodes

• Applications: Ranking on graphs (Web, Twitter, 

FB, etc)

• Intuition: An edge from node p to node q 

denotes endorsement

• Node p endorses/recommends/confirms the 

authority/centrality/importance of node q

• Use the graph of recommendations to assign an 

authority value to every node
What is the simplest way to 

measure importance of a 

page on the web?



Rank by Popularity

• Rank pages according to the number of incoming edges (in-

degree, degree centrality)

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Popularity

• It is not important only how many link to you, but how important are 
the people that link to you.

• Good authorities are pointed by good authorities
• Recursive definition of importance



PAGERANK



PageRank

• Good authorities should be pointed by good authorities
• The value of a node is the value of the nodes that point to it.

• How do we implement that?
• Assume that we have a unit of authority to distribute to all nodes.

• Node 𝑖 gets a fraction 𝑤𝑖 of that authority weight

• Each node distributes the authority value they have to their neighbors

• The authority value of each node is the sum of the authority fractions it 

collects from its neighbors.

𝑤𝑖 = ෍

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑤𝑗 Recursive definition



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2 

𝑤𝑖 = ෍

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑤𝑗

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

w1 + w2 + w3 + w4 + w5 = 1 We can obtain the weights by solving this 

system of equations 



Computing PageRank weights

• A simpler way to compute the weights is by iteratively updating the 
weights using the equations

• PageRank Algorithm

• This process converges

Initialize all PageRank weights to 𝑤𝑖
0 =

1

𝑛

Repeat:

𝑤𝑖
𝑡 = ෍

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑤𝑗

𝑡−1

Until the weights do not change



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2 

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=0 0.2 0.2 0.2 0.2 0.2

t=1 0.16 0.36 0.16 0.1 0.2

t=2 0.13 0.28 0.11 0.1 0.36

t=3 0.22 0.22 0.1 0.18 0.28

t=4 0.2 0.27 0.17 0.14 0.22

Think of the weight as a fluid: there is 

constant amount of it in the graph, 

but it moves around until it stabilizes



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2 

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=25 0.18 0.27 0.13 0.13 0.27 Think of the weight as a fluid: there is 

constant amount of it in the graph, 

but it moves around until it stabilizes



The PageRank algorithm

Think of the nodes in the 

graph as containers of 

capacity of 1 liter.

We distribute a liter of 

liquid equally to all 

containers



The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The contents of each 

node are distributed to 

its neighbors.

The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The contents of each 

node are distributed to 

its neighbors.

The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The contents of each 

node are distributed to 

its neighbors.

The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The system will reach an 

equilibrium state where 

the amount of liquid in 

each node remains 

constant. 

The PageRank algorithm



The amount of liquid in 

each node determines 

the importance of the 

node.

Large quantity means 

large incoming flow from 

nodes with large quantity 

of liquid.

The PageRank algorithm



Random Walks on Graphs

• The algorithm defines a random walk on the graph

• Random walk:

• Start from a node chosen uniformly at random with probability 
1

𝑛
.

• Pick one of the outgoing edges uniformly at random

• Move to the destination of the edge

• Repeat.



Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 1

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 1

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 3

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 3

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 4…

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being at node 𝑖 after 𝑡 steps?

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝑝3
0 =

1

5

𝑝4
0 =

1

5

𝑝5
0 =

1

5

𝑝1
𝑡  =

1

3
𝑝4

𝑡−1 +
1

2
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𝑡−1

𝑝2
𝑡  =

1

2
𝑝1

𝑡−1
 
+ 𝑝3

𝑡−1 +
1

3
𝑝4

𝑡−1

𝑝3
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1

2
𝑝1
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1

3
𝑝4
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𝑝4
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1

2
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𝑡−1

𝑝5
𝑡  =  𝑝2
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𝑝1
0  =

1

5

𝑝2
0  =

1

5

The equations are the same as those for the 

PageRank iterative computation
𝑝𝑖

𝑡 = ෍

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑝𝑗

𝑡−1



Random walk

• At convergence:
𝑣2

𝑣3

𝑣4𝑣5

𝑣1

We get the same equation as for PageRank

𝑝𝑖 = ෍

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑝𝑗

The PageRank of node 𝑖 is the probability that the random walk is at node 𝑖 
after a very large (infinite) number of steps



Markov chains

• A Markov chain describes a discrete time stochastic process over a 
set of states

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}

according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗}
• 𝑃𝑖𝑗 = probability of moving from state 𝑖 to state 𝑗

• Matrix 𝑃 has the property that the entries of all rows sum to 1

෍

𝑗

𝑃 𝑖, 𝑗 = 1

A matrix with this property is called stochastic



Markov chains

• The stochastic process proceeds in steps and moves between the 

states:

• State probability distribution: The vector 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡 ) that stores the 

probability distribution of being at state 𝑠𝑖 after 𝑡 steps

• Memorylessness property: The next state of the chain depends only 
at the current state and not on the past of the process (first order MC)

• Higher order MCs are also possible

• We can compute the vector 𝑝𝑡 at step 𝑡 using a vector-matrix 

multiplication
𝑝𝑡 = 𝑝𝑡−1𝑃



Stationary distribution

• The stationary distribution of a random walk with transition matrix 𝑃, 
is a probability distribution 𝜋, such that 𝜋 = 𝜋𝑃

• The stationary distribution is an eigenvector of matrix 𝑃
• the principal left eigenvector of P – stochastic matrices have maximum 

eigenvalue 1

• Markov Chain Theory: The random walk converges to a unique 
stationary distribution independent of the initial vector under some 
conditions



Random walks

• Markov Chains are equivalent to random walks

• The set of states 𝑆 is the set of nodes of the graph 𝐺

• The transition probability matrix is the probability that we follow an edge 

from one node to another

𝑃 𝑖, 𝑗 =
1

|N𝑜𝑢𝑡 𝑖 |



The Pagerank random walk and Markov Chain
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The Pagerank random walk and Markov Chain
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𝑝𝑡 = 𝑝𝑡−1𝑃



Computing the stationary distribution

• The Power Method, same as the PageRank computation

• After many iterations 𝑝𝑡 → 𝜋 regardless of the initial vector 𝑝0 if the 
graph is strongly connected, and not bipartite. 

• Power method because it computes 𝑝𝑡 = 𝑝0𝑃𝑡

• The rate of convergence is determined by the second eigenvalue 𝜆2

Initialize 𝑝0 to some distribution 
Repeat  
 𝑝𝑡 = 𝑝𝑡−1𝑃
Until convergence



The stationary distribution

• 𝜋 is the left eigenvector of transition matrix 𝑃

• 𝜋(𝑖): the probability of being at node 𝑖 after very large (infinite)

number of steps

• 𝜋(𝑖): the fraction of times that the random walk visited

state 𝑖 as 𝑡 → ∞

• 𝜋 = 𝑝0𝑃∞, where 𝑃 is the transition matrix, 𝑝0 the original vector 
• 𝑃 𝑖, 𝑗 : probability of going from 𝑖 to 𝑗 in one step

• 𝑃2(𝑖, 𝑗): probability of going from 𝑖 to 𝑗 in two steps (sum of probabilities of all 
paths of length 2)

• 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from 𝑖 to 𝑗 in infinite steps – starting point 
does not matter.



The PageRank random walk

• Vanilla random walk

• make the adjacency matrix stochastic and run a random walk
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The PageRank random walk

• What about sink nodes?

• what happens when the random walk moves to a node without any outgoing 

inks?
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The PageRank random walk

• Replace these row vectors with a vector 𝑢

• typically, the uniform vector

𝑃’ =  𝑃 +  𝑑𝑢𝑇





=
otherwise0

sink is i if1
d

𝑢: The jump vector

Outer 

product 



The PageRank random walk

• What about loops?

• Spider traps
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The PageRank random walk

• At every step with (fixed) probability 𝛼 perform a random jump to a node 

selected according the distribution vector 𝑢
• Typically, to a uniform vector

• You can think of the random jump as a restart of the random walk

𝑃′′ =  (1 − 𝛼)𝑃′ +  𝛼𝟏𝑢𝑇,  where 1 is the vector of all 1s

Random walk with restarts𝑎: jump/restart probability



The PageRank weights 

• For the PageRank weights we have 

𝑝𝑖 = 1 − 𝛼 ෍

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑝𝑗 + 𝛼𝑢𝑖

• 𝛼 = 0.15 in most cases

• In matrix-vector terms, if 𝑝 is the stationary distribution:

𝑝𝑇 = 𝑝𝑇 1 − 𝛼 𝑃 + 𝛼𝑢𝑇

• Solving for 𝑝:

𝑝𝑇 = 𝛼𝑢𝑇 𝐼 − 1 − 𝛼 𝑃 −1



Stationary distribution with random jump

• If 𝑢 is the jump vector

• Explanation: From the last step trace the last restart :
• With probability 𝛼 we just restarted in the last step

• With probability 1 − 𝛼 𝛼 we restarted one step before and then did a random walk step

• With probability 1 − 𝛼 2𝛼 we restarted two steps before and then did two random walk steps

• Etc…

• Conclusion: you are not likely to walk very far
• The probability that you did 𝑘 steps after the last restart 1 − 𝛼 𝑘 drops exponentially with 𝑘
• When (re)starting from some node 𝑥, nodes close to 𝑥 have higher probability

• On average the random walk restarts every 1/𝛼 steps

𝑝0 = 𝑢 
𝑝1 = (1 − 𝛼)𝑝0𝑃 + 𝛼𝑢 = 1 − 𝛼 𝑢𝑃 + 𝛼𝑢 

𝑝2 = (1 − 𝛼)𝑝1𝑃 + 𝛼𝑢 = (1 − 𝛼)2𝑢𝑃2 + 1 − 𝛼 𝛼𝑢𝑃 + 𝛼𝑢 

𝑝3 = 1 − 𝛼 𝑝2𝑃 + 𝛼𝑢 = 1 − 𝛼 3𝑢𝑃3 + 1 − 𝛼 2𝛼𝑢𝑃2 + 1 − 𝛼 𝛼𝑢𝑃 +  𝛼𝑢 

𝑝𝑘 = 1 − 𝛼 𝑘𝑢𝑃𝑘 + 1 − 𝛼 𝑘−1𝛼𝑢𝑃𝑘−1 + ⋯ + 1 − 𝛼 𝛼𝑢𝑃 +  𝛼𝑢 

𝑝∞ = 𝛼𝑢 + 1 − 𝛼 𝛼𝑢𝑃 + 1 − 𝛼 2𝛼𝑢𝑃2 + ⋯ = 𝛼 𝐼 − (1 − 𝛼)𝑃 −1𝑢 



Random walks with restarts

• Restart vector:
• If 𝑢 is not uniform, we can bias the random walk towards the nodes that are 

close to the restart nodes

• Personalized Pagerank:
• Always restart to some node 𝑥, e.g., the home page of a user

• Topic-Specific Pagerank
• Restart to nodes about a specific topic, e.g., Greek pages, University home 

pages
• Anti-spam

• Random Walks with restarts is a general technique for measuring 
closeness on graphs.



Personalized Pagerank Example

• Global Pagerank vector (uniform jump vector 
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
)

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

1

2

5

4

3

6



Personalized Pagerank Example

• Global Pagerank vector (jump vector 
1
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6
) :

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

• Personalized Pagerank for node 1 (jump vector [1,0,0,0,0,0]):
[0.26, 0.20, 0.24, 0.14, 0.08, 0.07]
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Personalized Pagerank Example

• Global Pagerank vector (jump vector 
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
) :

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

• Personalized Pagerank from node 1 (jump vector [1,0,0,0,0,0]):
[0.26, 0.20, 0.24, 0.14, 0.08, 0.07]

• Personalized Pagerank for node 6 (jump vector [0,0,0,0,0,1]):
[0.07, 0.13, 0.19, 0.19, 0.15, 0.27]
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Personalized Pagerank Example

• Global Pagerank vector (jump vector 
1

6
,

1

6
,

1
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1
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,

1

6
,

1

6
) :

[0.14, 0.17, 0.21, 0.18, 0.15, 0.15]

• Personalized Pagerank from node 1 (jump vector [1,0,0,0,0,0]):
[0.55, 0.17, 0.18, 0.05, 0.03, 0.02]

• Personalized Pagerank for node 6 (jump vector [0,0,0,0,0,1]):
[0.02, 0.04, 0.07, 0.16, 0.15, 0.56]

With 𝑎 = 0.5
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Random walks on undirected graphs

• For undirected graphs, the stationary distribution is proportional to 

the degrees of the nodes

• In this case a random walk is the same as degree popularity

• This is no longer true if we do random jumps

• Now the short paths play a greater role, and the previous distribution does 

not hold.



Pagerank implementation

• Store the graph in adjacency list, or list of edges

• Keep current pagerank values and new pagerank values

• Go through edges and update the values of the destination nodes.

• Repeat until the difference (𝐿1 or 𝐿∞ difference) is below some 

small value ε. 



A (Matlab/Numpy-friendly) PageRank algorithm

• Performing vanilla power method is now too expensive – the matrix 

is not sparse

q0 = u

t = 1

repeat

 

 

     t = t +1 

until δ < ε

( ) 1tTt q'P'q −=
1tt qqδ −−=

Efficient computation of y = (P’’)T x

βuyy

yx β

xα)P1(y

11

T

+=

−=

−=

P = normalized adjacency matrix

P’’ = (1-α)P’ + α1uT,  where 1 is the vector of all 1s

P’ = P + duT, where di is 1 if i is sink and 0 o.w.



Pagerank history

• Huge advantage for Google in the early days
• It gave a way to get an idea for the value of a page, which was useful in many 

different ways

• Put an order to the web.

• After a while it became clear that the anchor text was probably more important for 
ranking

• Also, link spam became a new (dark) art

• Flood of research
• Numerical analysis got rejuvenated

• Huge number of variations

• Efficiency became a great issue.

• Huge number of applications in different fields 

• Random walk is often referred to as PageRank.



THE HITS ALGORITHM



The HITS algorithm

• Another algorithm proposed around the same time as Pagerank for 

using the hyperlinks to rank pages

• Kleinberg: then an intern at IBM Almaden

• IBM never made anything out of it



Query dependent input

Root Set

Root set obtained from a text-only search engine



Query dependent input

Root Set

IN OUT



Query dependent input

Root Set

IN OUT



Query dependent input

Root Set

IN OUT

Base Set



Hubs and Authorities [K98]

• Authority is not necessarily 
transferred directly between 
authorities

• Pages have double identity
• hub identity

• authority identity

• Good hubs point to good 
authorities

• Good authorities are pointed by 
good hubs

hubs authorities



Hubs and Authorities

• Two kind of weights:

• Hub weight

• Authority weight

• The hub weight is the sum of the authority weights of the 

authorities pointed to by the hub

• The authority weight is the sum of the hub weights that point to this 

authority.



HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
• O operation : hubs collect the weight of the authorities

• I operation: authorities collect the weight of the hubs

• Normalize weights under some norm

ℎ𝑖
𝑡 = ෍

𝑗:𝑖→𝑗

𝑎𝑗
𝑡−1

𝑎𝑖
𝑡 = ෍

𝑗:𝑗→𝑖

ℎ𝑗
𝑡−1

The order of updates does not matter after many iterations.



Example

hubs authorities
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Example

hubs authorities
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Step 1: O operation



Example

hubs authorities
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Step 1: I operation



Example

hubs authorities
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1
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Step 1: Normalization (Max norm)
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hubs authorities
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Step 2: O step



Example

hubs authorities
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Step 2: I step
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hubs authorities
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7/33
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1

7/16

1/16

Step 2: Normalization



Example

hubs authorities
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1

0.3

0

Convergence



HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector computation

• In vector terms 
• 𝑎𝑡 = 𝐴𝑇ℎ𝑡−1 and ℎ𝑡 = 𝐴𝑎𝑡−1

• 𝑎𝑡 = 𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 = 𝐴𝐴𝑇ℎ𝑡−1

• Repeated iterations will converge to the eigenvectors

• The authority weight vector 𝑎 is the eigenvector of 𝐴𝑇𝐴

• The hub weight vector ℎ is the eigenvector of 𝐴𝐴𝑇

• The vectors 𝑎 and ℎ are the singular vectors of the matrix A



Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

•
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Why does the Power Method work?

• If a matrix R is real and symmetric, it has real eigenvalues and 
eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 , … , (𝜆𝑟 , 𝑤𝑟)
• r is the rank of the matrix

• |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟

• For any matrix R, the eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R define a basis of 
the vector space
• For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 + ⋯ + 𝑎𝑟𝑤𝑟

• After t multiplications we have:
𝑅𝑡𝑥 = 𝜆1

𝑡−1𝛼1𝑤1 + 𝜆2
𝑡−1𝑎2𝑤2 + ⋯ + 𝜆2

𝑡−1𝑎𝑟𝑤𝑟

• Normalizing leaves only the term 𝑤1.



OTHER ALGORITHMS



The SALSA algorithm

• Perform a random walk on the bipartite 

graph of hubs and authorities alternating 

between the two

• What does this random walk converges to?
hubs authorities



• Start from an authority chosen uniformly at 

random

• e.g. the red authority

hubs authorities

The SALSA algorithm



• Start from an authority chosen uniformly at 

random

• e.g. the red authority

• Choose one of the in-coming links uniformly at 

random and move to a hub

• e.g. move to the yellow authority with probability 1/3 hubs authorities

The SALSA algorithm



• Start from an authority chosen uniformly at 

random

• e.g. the red authority

• Choose one of the in-coming links uniformly at 

random and move to a hub

• e.g. move to the yellow authority with probability 1/3

• Choose one of the out-going links uniformly at 

random and move to an authority

• e.g. move to the blue authority with probability 1/2

hubs authorities

The SALSA algorithm



The SALSA algorithm

• Formally we have probabilities:

• 𝑎𝑖: probability of being at authority 𝑖

• ℎ𝑗: probability of being at hub 𝑗

• The probability of being at authority i is computed as:

𝑎𝑖
𝑡 = ෍

𝑗∈𝑁𝑖𝑛(𝑖)

1

𝑑𝑜𝑢𝑡 𝑗
ℎ𝑗

𝑡−1

• The probability of being at hub 𝑗 is computed as

ℎ𝑗
𝑡 = ෍

𝑖∈𝑁𝑜𝑢𝑡(𝑗)

1

𝑑𝑖𝑛 𝑖
𝑎𝑖

𝑡−1

• Repeated computation converges



The SALSA algorithm

• In matrix terms

• 𝐴𝑐 = the matrix 𝐴 where columns are normalized 

to sum to 1

• 𝐴𝑟 = the matrix 𝐴 where rows are normalized to 

sum to 1

• The hub computation

• ℎ = 𝐴𝑐 𝑎

• The authority computation

• 𝑎 = 𝐴𝑟
𝑇 ℎ = 𝐴𝑟

𝑇 𝐴𝑐 𝑎

• In MC terms the transition matrix

• 𝑃 = 𝐴𝑟 𝐴𝑐
𝑇

hubs authorities

𝒂𝟏 =  𝒉𝟏 +  𝟏/𝟐 𝒉𝟐 +  𝟏/𝟑 𝒉𝟑

𝒉𝟐 =  𝟏/𝟑 𝒂𝟏 +  𝟏/𝟐 𝒂𝟐



Social network analysis

• Evaluate the centrality of individuals in social networks

• degree centrality

• the (weighted) degree of a node

• distance centrality

• the average (weighted) distance of a node to the rest in the graph

• betweenness centrality

• the average number of (weighted) shortest paths that use node v

( )
 
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Counting paths – Katz 53

• The importance of a node is measured by the weighted sum of 

paths that lead to this node

• Am[i,j] = number of paths of length m from i to j

• Compute 

• converges when b < λ1(A)

• Rank nodes according to the column sums of the matrix P

( ) IbAIAbAbbAP
1mm22 −−=++++=
−





Bibliometrics

• Impact factor (E. Garfield 72)

• counts the number of citations received for papers of the journal in the 

previous two years

• Pinsky-Narin 76

• perform a random walk on the set of journals

• Pij = the fraction of citations from journal i that are directed to journal j
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