
DATA MINING

CLASSIFICATION
Neural Networks

Word Embeddings

Classification Issues

Classification Evaluation

Supervised Learning Pipeline

NEURAL NETWORKS
(Thanks to Philipp Koehn for the material borrowed from his slides)

2

Linear Classification

• A simple model for classification is to take a linear combination of

the feature values and compute a score.

• Input: Feature vector 𝒙 = (𝑥1, … , 𝑥𝑛)

• Model: Weights 𝒘 = (𝑤1, … , 𝑤𝑛)

• Output: 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = σ𝑖𝑤𝑖𝑥𝑖

• Make a decision depending on the output score.

• E.g.: Decide “Yes” if 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 > 0 and “No” if 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 < 0

• The perceptron classification algorithm

3

Linear Classification

• We can represent this as a network

4

Input nodes

correspond to

features

𝑥1

𝑥3

𝑥4

𝑥5

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

Edges correspond to weights

𝑠𝑐𝑜𝑟𝑒(𝒘, 𝒙)

“Output” node with

incoming edges computes

the score

Linear models

• Linear models partition the space according to a

hyperplane

• But they cannot model everything

5

Multiple layers

• We can add more layers:

• Each arrow has a weight

• Nodes compute scores from incoming edges and give input to outgoing edges

6

Did we gain anything?

Non-linearity

• Instead of computing a linear combination

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 =෍

𝑖

𝑤𝑖𝑥𝑖

• Apply a non-linear function on top:

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖

• Popular functions:

7

These functions play the role of a soft “switch” (threshold function)

Side note

• Logistic regression classifier:

• Single layer with a logistic function

8

Deep learning

• Networks with multiple layers

• Each layer can be thought of as a processing step

• Multiple layers allow for the computation of more complex functions

9

Example

• A network that implements XOR

10

Hidden node ℎ0 is OR

Bias term
Hidden node ℎ1 is AND

Output node ℎ1 − ℎ0

Error

• The computed value is 0.76 but the correct value is 1

• There is an error in the computation

• How do we set the weights so as to minimize this error?

11

Gradient Descent

• The error is a function of the weights

• We want to find the weights that minimize the error

• Compute gradient: gives the direction to the minimum

• Adjust weights, moving at the direction of the gradient.

12

Gradient Descent

13

Gradient Descent

14

Backpropagation

• How can we compute the gradients? Backpropagation!

• Main idea:

• Start from the final layer: compute the gradients for the weights of the final

layer.

• Use these gradients to compute the gradients of previous layers using the

chain rule

• Propagate the error backwards

• Backpropagation essentially is an application of the chain rule for

differentiation.

15

16

𝑥1

𝑥2 ℎ2 𝑦2

𝑦1ℎ1

𝑎11

𝑎22

𝑎21

𝑎12

𝑏11

𝑏22

𝑏21

𝑏12

Error: 𝐸 = 𝑦 − 𝑡 2 = 𝑦1 − 𝑡1
2 + 𝑦2 − 𝑡2

2

Notation:

Activation function: 𝑔

𝑠𝑦1 = 𝑏11ℎ1 + 𝑏12ℎ2 , 𝑦1 = 𝑔 𝑠𝑦1
𝑠𝑦2 = 𝑏21ℎ1 + 𝑏22ℎ2 , 𝑦2 = 𝑔(𝑠𝑦2)

𝑠ℎ1 = 𝑎11𝑥1 + 𝑎12𝑥2 , ℎ1 = 𝑔(𝑠ℎ1)

𝑠ℎ2 = 𝑎21𝑥1 + 𝑎22𝑥2 , ℎ2 = 𝑔(𝑠ℎ2)

𝜕𝐸

𝜕𝑏11
=

𝜕𝐸

𝜕𝑠𝑦1

𝜕𝑠𝑦1
𝜕𝑏11

= 𝛿𝑦1ℎ1

𝜕𝐸

𝜕𝑎11
=

𝜕𝐸

𝜕𝑠ℎ1

𝜕𝑠ℎ1
𝜕𝑎11

= 𝛿ℎ1𝑥1

𝛿𝑦1=
𝜕𝐸

𝜕𝑠𝑦1
=

𝜕𝐸

𝜕𝑦1

𝜕𝑦1

𝜕𝑠𝑦1
= 2 𝑦1 − 𝑡1 𝑔′(𝑠𝑦1)

𝜕𝐸

𝜕𝑏21
= 𝛿𝑦2ℎ1 𝛿𝑦2=

𝜕𝐸

𝜕𝑠𝑦2
= 2 𝑦2 − 𝑡2 𝑔′(𝑠𝑦2)

𝜕𝐸

𝜕𝑏12
= 𝛿𝑦1ℎ2

𝜕𝐸

𝜕𝑏22
= 𝛿𝑦2ℎ2

𝛿ℎ1 =
𝜕𝐸

𝜕𝑠ℎ1
=

𝜕𝐸

𝜕ℎ1

𝜕ℎ1
𝜕𝑠ℎ1

=
𝜕𝐸

𝜕𝑠𝑦1

𝜕𝑠𝑦1
𝜕ℎ1

+
𝜕𝐸

𝜕𝑠𝑦2

𝜕𝑠𝑦2
𝜕ℎ1

𝑔′ 𝑠ℎ1 = 𝛿𝑦1𝑏11 + 𝛿𝑦2𝑏21 𝑔′(𝑠ℎ1)

𝛿ℎ2 = 𝛿𝑦1𝑏12 + 𝛿𝑦2𝑏22 𝑔′(𝑠ℎ2)

𝜕𝐸

𝜕𝑎22
=

𝜕𝐸

𝜕𝑠ℎ2

𝜕𝑠ℎ2
𝜕𝑎22

= 𝛿ℎ2𝑥2
𝜕𝐸

𝜕𝑎21
= 𝛿ℎ1𝑥2

𝜕𝐸

𝜕𝑎12
= 𝛿ℎ2𝑥1

Backpropagation

17

𝑥𝑗

ℎ𝑖

𝑎𝑖𝑗

𝑦1 𝑦𝑘 𝑦𝑛

𝑏𝑘𝑖𝑏1𝑖 𝑏𝑛𝑖

𝑠𝑦1

𝑠𝑦𝑘 𝑠𝑦𝑛

𝛿𝑦1 =
𝜕𝐸

𝜕𝑠𝑦1
𝛿𝑦𝑘 =

𝜕𝐸

𝜕𝑠𝑦𝑘
𝛿𝑦𝑛 =

𝜕𝐸

𝜕𝑠𝑦𝑛
𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘𝑏𝑘𝑖 𝑔
′ 𝑠ℎ𝑖 𝑥𝑗

𝑠ℎ𝑖

For the sigmoid activation function:

𝑔 𝑡 =
1

1 + 𝑒−𝑡

The derivative is:

𝑔′ 𝑡 = 𝑔(𝑡)(1 − 𝑔 𝑡)

This makes it easy to compute it. We have:

𝑔′ 𝑠ℎ𝑖 = ℎ𝑖(1 − ℎ𝑖)

Therefore

𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘𝑏𝑘𝑖 ℎ𝑖(1 − ℎ𝑖)𝑥𝑗

We have already computed the 𝛿𝑦𝑘 ’s

We want to compute
𝜕𝐸

𝜕𝑎𝑖𝑗

Stochastic gradient descent

• Ideally the loss should be the average loss over all training data.

• We would need to compute the loss for all training data every time

we update the gradients.

• However, this is expensive.

• Stochastic gradient descent: Consider one input point at the time.

Each point is considered only once.

• Intermediate solution: Use mini-batches of data points.

18

WORD EMBEDDINGS
Thanks to Chris Manning for the slides

19

Basic Idea

20

• You can get a lot of value by representing a word by means

of its neighbors

• “You shall know a word by the company it keeps”
• (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

 These words will represent banking 

Basic idea

Define a model that aims to predict between a center word 𝑤𝑐 and

context words in some window of length 𝑚 in terms of word vectors

… turning into banking crises as …

Center word
context words context words

window of size 2 each side

𝑤𝑐𝑤𝑐−1𝑤𝑐−2 𝑤𝑐+2𝑤𝑐+1

Word2Vec

22

Predict between every word and its context words

Two algorithms

1. Skip-grams (SG)

Predict context words given the center word

𝑃 𝑤𝑐−1 𝑤𝑐 , 𝑃 𝑤𝑐−2 𝑤𝑐 , 𝑃 𝑤𝑐+1 𝑤𝑐 , 𝑃 𝑤𝑐+2 𝑤𝑐
2. Continuous Bag of Words (CBOW)

Predict center word from a bag-of-words context

𝑃 𝑤𝑐 𝑤𝑐−2 , 𝑤𝑐−1, 𝑤𝑐+1, 𝑤𝑐+2

Position independent (do not account for distance from center)

CBOW

23

Use a window of context words to predict the center word

Learn two matrices (𝑁 size of embedding, |𝑉| number of words)

|𝑉|

Embedding of the 𝑖-th word when

center word

𝑖

𝑁

𝑊
𝑊’

𝑁

|𝑉|

𝑖

Embedding of

the i-th word

when context

word

|𝑉| 𝑥 𝑁 context embeddings

when input

𝑁 𝑥 |𝑉| center

embeddings

when output

CBOW

24

Given window size m, 𝑥(𝑐) one hot vector for context words, y one hot vector for the

center word

1. Input: the one hot vectors for the 2m context words

𝑥(𝑐−𝑚), …, 𝑥(𝑐−1), 𝑥(𝑐+1), …, 𝑥(𝑐+𝑚)

2. Compute the embeddings of the context words

𝑣𝑐−𝑚 = 𝑊𝑥(𝑐−𝑚), …, 𝑣𝑐−1 = 𝑊𝑥(𝑐−1), 𝑣𝑐+1 = 𝑊𝑥(𝑐+1), …, 𝑣𝑐+𝑚= 𝑊𝑥(𝑐+𝑚)

3. Average these vectors: ො𝑣 =
𝑣𝑐−𝑚+𝑣𝑐−𝑚+1+⋯𝑣𝑐+𝑚

2𝑚
, ො𝑣 ∈ 𝑅𝑁

4. Generate a score vector: 𝑧 = 𝑊′ ො𝑣

5. Turn the score vector to probabilities: ො𝑦 = softmax(z) We want this to be close

to 1 for the center word

Softmax

𝑝𝑖 =
𝑒𝑣𝑖

σ𝑗 𝑒
𝑣𝑗

• E.g. “The cat sat on floor”

• Window size = 2

25

the

cat

on

floor

sat

26

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector one-hot

vector

Index of cat in vocabulary

27

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector one-hot

vector

Index of cat in vocabulary

𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

V-dim

We must learn W and W’

𝑊′𝑁×𝑉

28

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0
1
0
0
0
0
0
0
…
0

𝑊𝑉×𝑁
𝑇 × 𝑥𝑐𝑎𝑡 = 𝑣𝑐𝑎𝑡

2.4

2.6

…

…

1.8

=

29

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector
one-hot

vector

V-dim

V-dim

N-dim

V-dim

ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

𝑊𝑉×𝑁
𝑇 × 𝑥𝑜𝑛 = 𝑣𝑜𝑛

1.8

2.9

…

…

1.9

=

30

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

cat

on

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer

sat

Output layer

one-hot

vector

V-dim

V-dim

N-dim
V-dim

𝑊𝑉×𝑁
′ × ො𝑣 = 𝑧

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00ො𝑦sat

ො𝑣

We want ො𝑦 close to ො𝑦𝑠𝑎𝑡

31

0
1
0
0
0
0
0
0
…
0

0
0
0
1
0
0
0
0
…
0

0
0
0
0
0
0
0
1
…
0

Input layer

Hidden layer Output layer

𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

V-dim

𝑊′𝑁×𝑉

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

𝑊𝑉×𝑁

The word embeddings

We can consider either 𝑊 (context) or 𝑊’ (center)

as the word’s representation.

Or even take the average.

Skipgram

32

Given the center word, predict (or, generate) the context words

𝑊: 𝑁 × |𝑉|, input matrix, word representation as center word

𝑊’: 𝑉 × 𝑁, output matrix, word representation as context word

𝑦(𝑗) one hot vector for context words

1. Get one hot vector of the center word 𝑥𝑐

2. Get the embedding of the center word: 𝑣𝑐 = 𝑊 𝑥c

3. Get the embedding of all context words: 𝑧 = 𝑊′ 𝑣𝑐

5. Turn the score vector into probabilities: ො𝑦 = softmax(z)

We want this to be close to 1 for the context words

Skipgram

33

• For each word t = 1 … T, predict surrounding words in a window

of “radius” m of every word.

• Objective function: Maximize the probability of any context word

given the current center word:

where θ represents all variables we will optimize

𝐽′ 𝜃 =ෑ

𝑡=1

𝑇

ෑ
−𝑚≤𝑗≤𝑚

𝑗≠0

𝑝 𝑤𝑡+𝑗 𝑤𝑡; 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑝 𝑤𝑡+𝑗 𝑤𝑡; 𝜃

likelihood

Negative

Log Likelihood

34

7.3

9.2

2.2

0.5

2.1

0.9

5.2

2.1

…

1.2

cat

on

0
0
0
0
0
0
0
1
…
0

Output layer

Hidden layer

sat

Input layer

one-hot

vector of

context

words 𝑐

one-hot

vector of

word 𝑤

𝑊𝑁×𝑉

V-dim

N-dim

V-dim

𝑊′𝑉×𝑁

0.12.41.61.80.5 0.9 … … … 3.2

0.52.61.42.91.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.4 2.0 … … … 1.2

0.12.41.61.80.50.9 … … … 3.2

0.52.61.42.91.53.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.42.0 … … … 1.2

0.12.41.61.80.50.9 … … … 3.2

0.52.61.42.91.53.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.61.82.71.92.42.0 … … … 1.2

0
0
0
1
0
0
0
0
…
0

0
1
0
0
0
0
0
0
…
0

The product 𝑊′𝑣𝑤 gives the dot product 𝑣𝑐
′𝑣𝑤

between the input presentation of 𝑤 and output

representation of 𝑐, for all 𝑐

𝑊′𝑉×𝑁

The rows of 𝑊′ contain the output

representation 𝑣𝑐
′of all words

The columns of W contain the

input representation of all words

7.3

9.2

2.2

0.5

2.1

0.9

5.2

2.1

…

1.2

The product 𝑊𝑤 = 𝑣𝑤
gives the 𝑁-dimensional

input representation of 𝑤

0.2

0.7

0.01

0.01

0.01

0.00

0.02

0.01

…

0.00

softmax

softmax

0.2

0.7

0.01

0.01

0.01

0.00

0.02

0.01

…

0.00

We want

these to

be close

35

• The basic skipgram utilizes the softmax

function:

𝑝 𝑐 𝑤 =
exp 𝑣𝑐

′𝑇𝑣𝑤

σ𝑖=1
𝑇 exp(𝑣𝑖

′𝑇𝑣𝑤)

• Where:

– T – # of words in the corpus.

– 𝑣𝑤 - input vector of w.

– 𝑣′𝑤 - output vector of w. Word Input Output

King [0.2,0.9,0.1] [0.5,0.4,0.5]

Queen [0.2,0.8,0.2] [0.4,0.5,0.5]

Apple [0.9,0.5,0.8] [0.3,0.9,0.1]

Orang

e
[0.9,0.4,0.9] [0.1,0.7,0.2]

36

An example

37

These representations are very good at encoding similarity

and dimensions of similarity!

• Analogies testing dimensions of similarity can be solved

quite well just by doing vector subtraction in the

embedding space

Syntactically

– xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

– Similarly for verb and adjective morphological forms

Semantically (Semeval 2012 task 2)

– xshirt − xclothing ≈ xchair − xfurniture

– xking − xman ≈ xqueen − xwoman

38

king

man

woman

Test for linear relationships, examined by Mikolov et al.

man

woman

[0.20 0.20]

[0.60 0.30]

king [0.30 0.70]

[0.70 0.80]

−

+

+

man:woman :: king:?

a:b :: c:?

queen

OTHER CLASSIFICATION ISSUES
Expressiveness

Overfitting

Evaluation

GENERALIZATION

Generalization

• Generalization refers to the ability of the classifier to correctly classify
data that it has not already seen.
• The assumption is that the new data come from the same distribution/model as the

training data

• How do we measure how well a model generalizes?

• Classification errors:
• Training errors (apparent errors): Errors committed on the training set

• This is what we can control when creating the classifier. We hope that the training error is
indicative of the generalization error, but as we will see this is not always the case

• Test errors: Errors committed on the test set

• This is a true measure of generalization, and this is what we want to be small, but we do not
have access to the test error at training time.

Example Data Set
Two class problem:

+ : 5400 instances

• 5000 instances generated

from a Gaussian centered at

(10,10)

• 400 noisy instances added

o : 5400 instances

• Generated from a uniform

distribution

10 % of the data used for

training and 90% of the

data used for testing

Increasing number of nodes in Decision Trees

Decision Tree with 4 nodes

Decision Tree

Decision boundaries on Training data

Decision Tree with 50 nodes

Decision TreeDecision Tree

Decision boundaries on Training data

Which tree is better?

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better ?

Generalization

When model is too simple, both training and test errors are large: Underfitting

When model is too complex, training error is small but test error is large: Overfitting

Bias – Variance tradeoff

• Bias: Measures how good the model is with respect to the training data
• High Bias: Underfitting.

• We have a poor model, for example, a tree with a single decision node, or a linear
function when modeling a more complex curve

• Variance: Measures how sensitive the model error is with respect to
changes in the training data
• High Variance: Overfitting.

• We have a very complex model, for example, a tree with a single sample per leaf,
or a very high-degree polynomial curve. Small changes in the data cause errors in
the model

• There is a tradeoff between these two: decreasing one will increase the
other.

Reasons for poor Generalization

• Not enough training data

• Not representative training data

• Erroneus training data

• A model that is too complex for the data we have.

• Multiple Comparison Procedure

Model Overfitting

Using twice the number of data instances

• Increasing the size of training data reduces the difference between training and

testing errors at a given size of model

Model Overfitting

Using twice the number of data instances

• Increasing the size of training data reduces the difference between training and

testing errors at a given size of model

Decision Tree with 50 nodes Decision Tree with 50 nodes

Effect of Multiple Comparison Procedure

• Consider the task of predicting whether

stock market will rise/fall in the next 10

trading days

• Random guessing:

P(correct) = 0.5

• Make 10 random guesses in a row:

Day 1 Up

Day 2 Down

Day 3 Down

Day 4 Up

Day 5 Down

Day 6 Down

Day 7 Up

Day 8 Up

Day 9 Up

Day 10 Down

0547.0
2

10

10

9

10

8

10

)8(#
10

=








+








+









=correctP

Effect of Multiple Comparison Procedure

• Approach:

• Get 50 analysts

• Each analyst makes 10 random guesses

• Choose the analyst that makes the most number of correct predictions

• Probability that at least one analyst makes at least 8 correct

predictions

9399.0)0547.01(1)8(# 50 =−−=correctP

Effect of Multiple Comparison Procedure

• Many algorithms employ the following greedy strategy:

• Initial model: 𝑀

• Alternative model: 𝑀′ = 𝑀 + 𝛾,
where  is a component to be added to the model (e.g., a test condition of a
decision tree)

• Keep 𝑀′ if improvement, (𝑀,𝑀′) > 

• Often times,  is chosen from a set of alternative components,  = {1, 2, … , 𝑘}

• If many alternatives are available, one may inadvertently add irrelevant
components to the model, resulting in model overfitting

Effect of Multiple Comparison - Example

Use additional 100 noisy variables generated from a

uniform distribution along with X and Y as attributes.

Use 30% of the data for training and 70% of the data for

testing
Using only X and Y as attributes

In summary

• When we have a small number of samples, and a very large

number of features then it is likely that we will create a model that

overfits the data and does not generalize well.

Notes on Overfitting

• Overfitting results in decision trees that are more complex than

necessary

• Training error no longer provides a good estimate of test error, that

is, how well the tree will perform on previously unseen records

• We say that the model does not generalize well

• Need ways for estimating the generalization error and select the

model.

Model Selection

• Performed during model building

• Purpose is to ensure that model is not overly complex (to avoid
overfitting)

• Need to estimate generalization error

• Using Validation Set

• Incorporating Model Complexity

Model Selection: Using Validation Set

• Divide training data into two parts:

• Training set:

• Use for model building

• Validation set:

• Use for estimating generalization error

• Note: validation set is not the same as test set since it affects the creation of the model

(e.g. in tuning the size of the decision tree)

• Drawback:

• Less data available for training

Model Selection: Incorporating Model Complexity

• Occam’s razor: All other things being equal, the simplest explanation/solution
is the best.
• A good principle for life as well

• Given two models of similar generalization errors, one should prefer the
simpler model over the more complex model

• For complex models, there is a greater chance that it was fitted accidentally

• Therefore, one should include model complexity when evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data)

+ 𝛼 × Complexity(Model)

Estimating the Complexity of Decision Trees

• Resubstitution Estimate:

• Using training error as an optimistic estimate of generalization error

• Referred to as optimistic error estimate

+: 5

-: 2

+: 1

-: 4

+: 3

-: 0

+: 3

-: 6

+: 3

-: 0

+: 0

-: 5

+: 3

-: 1
+: 1

-: 2

+: 0

-: 2

+: 2

-: 1

+: 3

-: 1

Decision Tree, T
L

Decision Tree, T
R

𝑒(𝑇𝐿) = 4/24

𝑒(𝑇𝑅) = 6/24

Estimating the Complexity of Decision Trees

• Pessimistic Error Estimate of decision tree T with k leaf nodes:

𝑒𝑟𝑟𝑔𝑒𝑛 𝑇 = 𝑒𝑟𝑟 𝑇 + Ω ×
𝑘

𝑁𝑡𝑟𝑎𝑖𝑛

• 𝑒𝑟𝑟(𝑇): error rate on all training records

• Ω: trade-off hyper-parameter (similar to 𝛼)

• Relative cost of adding a leaf node

• 𝑘: number of leaf nodes

• 𝑁𝑡𝑟𝑎𝑖𝑛: total number of training records

Estimating the Complexity of Decision Trees: Example

+: 5

-: 2

+: 1

-: 4

+: 3

-: 0

+: 3

-: 6

+: 3

-: 0

+: 0

-: 5

+: 3

-: 1
+: 1

-: 2

+: 0

-: 2

+: 2

-: 1

+: 3

-: 1

Decision Tree, T
L

Decision Tree, T
R

𝑒(𝑇𝐿) = 4/24

𝑒(𝑇𝑅) = 6/24

 = 1

𝑒𝑔𝑒𝑛(𝑇𝐿) = 4/24 + 1 ∗ 7/24 = 11/24 = 0.458

𝑒𝑔𝑒𝑛(𝑇𝑅) = 6/24 + 1 ∗ 4/24 = 10/24 = 0.417

Minimum Description Length (MDL)

• Cost(Model,Data) = Cost(Model) + Cost(Data|Model)

• Cost is the number of bits needed for encoding.

• Search for the least costly model.

• Cost(Model) encodes the decision tree
• node encoding (number of children) plus splitting condition encoding.

• Cost(Data|Model) encodes the misclassification errors.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?

Example

• Regression: find a polynomial for describing a set of values
• Model complexity (model cost): polynomial coefficients

• Goodness of fit (data cost): difference between real value and the polynomial value

65

Source: Grunwald et al. (2005) Tutorial on MDL.

Minimum model cost

High data cost

High model cost

Minimum data cost

Low model cost

Low data cost

MDL avoids overfitting automatically!

Model selection for Decision Trees

• Pre-Pruning (Early Stopping Rule)

• Stop the algorithm before it becomes a fully-grown tree

• Typical stopping conditions for a node:

• Stop if all instances belong to the same class

• Stop if all the attribute values are the same

• More restrictive conditions:

• Stop if number of instances is less than some user-specified threshold

• Stop if class distribution of instance classes are independent of the available features

(e.g., using  2 test)

• Stop if expanding the current node does not improve impurity measures (e.g., Gini or

information gain).

Model selection for Decision Trees

• Post-pruning

• Grow decision tree to its entirety

• Trim the nodes of the decision tree in a bottom-up fashion

• If generalization error improves after trimming, replace sub-tree by a leaf

node (subtree pruning) or by the most probable subtree (subtree raising).

• Class label of leaf node is determined from majority class of instances in the

sub-tree

• Can use MDL for post-pruning

• NP hard problem

Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Optimistic (Training) Error (Before splitting) = 10/30

Pessimistic Error = (10 + 0.5)/30 = 10.5/30

Optimistic (Training) Error (After splitting) = 9/30

Pessimistic Error (After splitting) = (9 + 4  0.5)/30 = 11/30

PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1

Examples of Post-pruning

Simplified Decision Tree:

depth = 1 :

| ImagePages <= 0.1333 : class 1

| ImagePages > 0.1333 :

| | breadth <= 6 : class 0

| | breadth > 6 : class 1

depth > 1 :

| MultiAgent = 0: class 0

| MultiAgent = 1:

| | totalPages <= 81 : class 0

| | totalPages > 81 : class 1

Decision Tree:

depth = 1 :

| breadth > 7 : class 1

| breadth <= 7 :

| | breadth <= 3 :

| | | ImagePages > 0.375 : class 0

| | | ImagePages <= 0.375 :

| | | | totalPages <= 6 : class 1

| | | | totalPages > 6 :

| | | | | breadth <= 1 : class 1

| | | | | breadth > 1 : class 0

| | width > 3 :

| | | MultiIP = 0:

| | | | ImagePages <= 0.1333 : class 1

| | | | ImagePages > 0.1333 :

| | | | | breadth <= 6 : class 0

| | | | | breadth > 6 : class 1

| | | MultiIP = 1:

| | | | TotalTime <= 361 : class 0

| | | | TotalTime > 361 : class 1

depth > 1 :

| MultiAgent = 0:

| | depth > 2 : class 0

| | depth <= 2 :

| | | MultiIP = 1: class 0

| | | MultiIP = 0:

| | | | breadth <= 6 : class 0

| | | | breadth > 6 :

| | | | | RepeatedAccess <= 0.0322 : class 0

| | | | | RepeatedAccess > 0.0322 : class 1

| MultiAgent = 1:

| | totalPages <= 81 : class 0

| | totalPages > 81 : class 1

Subtree

Raising

Subtree

Replacement

EVALUATION

Model Evaluation

• Metrics for Performance Evaluation

• How to evaluate the performance of a model?

• Methods for Performance Evaluation

• How to obtain reliable estimates?

• Methods for Model Comparison

• How to compare the relative performance among competing models?

Metrics for Performance Evaluation

• Focus on the predictive capability of a model

• Rather than how fast it takes to classify or build models, scalability, etc.

• Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation…

• Most widely-used metric:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

FNFPTNTP

TNTP

dcba

da

+++

+
=

+++

+
=Accuracy

Precision-Recall

FNFPTP

TP

cba

a

pr

rp

pr

FNTP

TP

ba

a

FPTP

TP

ca

a

++
=

++
=

+
=








 +
=

+
=

+
=

+
=

+
=

2

2

2

22

2

/1/1

1
(F) measure-F

(r) Recall

 (p) Precision

Precision is biased towards C(Yes|Yes) & C(Yes|No)

Recall is biased towards C(Yes|Yes) & C(No|Yes)

F-measure is biased towards all except C(No|No)

Count PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Assumption: The class YES is the one we care about.

More Measures of Classification Performance

PREDICTED CLASS

ACTUAL

CLASS

Yes No

Yes TP FN

No FP TN

 is the probability that we reject the

null hypothesis when it is true.

This is a Type I error or a false

positive (FP).

 is the probability that we accept

the null hypothesis when it is false.

This is a Type II error or a false

negative (FN).

(recall for negative class)

ROC (Receiver Operating Characteristic)
• Developed in 1950s for signal detection theory to analyze noisy

signals
• Characterize the trade-off between positive hits and false alarms

• ROC curve plots TPR (true positive rate) (on the y-axis) against FPR
(false positive rate) (on the x-axis)

FNTP

TP
TPR

+
=

TNFP

FP
FPR

+
=

PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)

What fraction of true positive instances are predicted correctly?

(1-Type II error rate)

What fraction of true negative instances were predicted incorrectly? (Type I error rate)

Look at the positive predictions of the classifier and compute:

We want to strike a balance between these two

ROC (Receiver Operating Characteristic)

• Performance of a classifier represented as a point on the ROC
curve

• Changing some parameter of the algorithm, sample distribution, or
cost matrix changes the location of the point

ROC Curve

At threshold t:

TP=0.5, FN=0.5, FP=0.12, FN=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

• (0,0): declare everything

to be negative class

• (1,1): declare everything

to be positive class

• (1,0): ideal

• Diagonal line:

• Random guessing

• Below diagonal line:

• prediction is opposite of the true

class

PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)

Using ROC for Model Comparison
No model consistently

outperform the other

M1 is better for

small FPR

M2 is better for

large FPR

Area Under the ROC

curve (AUC)

Ideal: Area = 1

Random guess:

▪ Area = 0.5

Precision-Recall plot

• Usually for parameterized models, it controls the precision/recall

tradeoff

ROC curve vs Precision-Recall curve

Area Under the Curve (AUC) as a single number for evaluation

Methods of Performance Estimation

• Holdout
• Reserve 2/3 for training and 1/3 for testing

• Random subsampling
• One sample may be biased -- Repeated holdout

• Cross validation
• Partition data into k disjoint subsets

• k-fold: train on k-1 partitions, test on the remaining one

• Leave-one-out: k=n

• Guarantees that each record is used the same number of times for
training and testing

• Bootstrap
• Sampling with replacement

• ~63% of records used for training, ~27% for testing

Class imbalance

• Consider a 2-class problem

• Number of Class 0 examples = 9990

• Number of Class 1 examples = 10

• If model predicts everything to be class 0, accuracy is 9990/10000

= 99.9 %

• Accuracy is misleading because model does not detect any class 1 example

• Precision and recall are better measures

Dealing with class Imbalance

• Class imbalance is a problem in training:

• If the class we are interested in is very rare, then the classifier will ignore it.

• Solution

• We can balance the class distribution

• Sample from the larger class so that the size of the two classes is the same

• Replicate the data of the class of interest so that the classes are balanced

• Over-fitting issues

• We can modify the optimization criterion by using a cost sensitive metric

Cost Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of classifying class j example as class i

Weighted

Accuracy

COST

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes 𝑤1

C(Yes|Yes)

𝑤2

C(No|Yes)

Class=No 𝑤3

C(Yes|No)

𝑤4

C(No|No)

CONFUSION

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

Weighted Accuracy =
𝑤1𝑎+𝑤4𝑑

𝑤1𝑎+𝑤2𝑏+𝑤3𝑐+𝑤4𝑑

Computing Cost of Classification
Cost

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ 1 100

- 1 1

Model

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Weighted Accuracy = 8.9%

Accuracy = 90%

Weighted Accuracy= 9%

Classification

Cost
COST

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes 𝑤1

C(Yes|Yes)

𝑤2

C(No|Yes)

Class=No 𝑤3

C(Yes|No)

𝑤4

C(No|No)

CONFUSION

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

Classification Cost = 𝑤1𝑎 + 𝑤2𝑏 + 𝑤3𝑐 + 𝑤4𝑑

Some weights can also be negative

Computing Cost of Classification

Cost

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ -1 100

- 1 0

Model

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)

= p (a + d) + q (N – a – d)

= q N – (q – p)(a + d)

= N [q – (q-p)  Accuracy]

Accuracy is proportional to cost if

1. C(Yes|No)=C(No|Yes) = q

2. C(Yes|Yes)=C(No|No) = p

SUPERVISED LEARNING

Learning

• Supervised Learning: learn a model from the data using labeled

data.

• Classification and Regression are the prototypical examples of supervised

learning tasks. Other are possible (e.g., ranking)

• Unsupervised Learning: learn a model – extract structure from

unlabeled data.

• Clustering and Association Rules are prototypical examples of unsupervised

learning tasks.

• Semi-supervised Learning: learn a model for the data using both

labeled and unlabeled data.

Supervised Learning Steps

• Model the problem
• What is you are trying to predict? What kind of optimization function do you need?

Do you need classes or probabilities?

• Extract Features
• How do you find the right features that help to discriminate between the classes?

• Obtain labeled data
• Obtain a collection of labeled data. Make sure it is large enough, accurate and

representative. Ensure that classes are well represented.

• Decide on the technique
• What is the right technique for your problem?

• Apply in practice
• Can the model be trained for very large data? How do you test how you do in

practice? How do you improve?

Modeling the problem

• Sometimes it is not obvious. Consider the following three problems

• Detecting if an email is spam

• Categorizing the queries in a search engine

• Ranking the results of a web search

• Predicting the reply to a question.

Feature extraction

• Feature extraction, or feature engineering is the most tedious but also the
most important step
• How do you separate the players of the Greek national team from those of the Swedish

national team?

• One line of thought: throw features to the classifier and the classifier will figure
out which ones are important
• More features, means that you need more training data

• Another line of thought: Feature Selection: Select carefully the features using
various functions and techniques
• Computationally intensive

• Deep Neural Networks
• They use raw data for classification

• They learn a representation from the data

Training data

• An overlooked problem: How do you get labeled data for training your
model?
• E.g., how do you get training data for ranking web search results?

• Chicken and egg problem

• Usually requires a lot of manual effort and domain expertise and
carefully planned labeling
• Results are not always of high quality (lack of expertise)

• And they are not sufficient (low coverage of the space)

• Recent trends:
• Find a source that generates the labeled data for you, or use the data themselves

for the prediction task

• Crowd-sourcing techniques

Dealing with small amounts of labeled data

• Semi-supervised learning techniques have been developed for this
purpose.

• Self-training: Train a classifier on the data, and then feed back the high-
confidence output of the classifier as input

• Co-training: train two “independent” classifiers and feed the output of
one classifier as input to the other.

• Regularization: Treat learning as an optimization problem where you
define relationships between the objects you want to classify, and you
exploit these relationships
• Example: Image restoration

Technique

• The choice of technique depends on the problem requirements (do

we need a probability estimate?) and the problem specifics (does

independence assumption hold? do we think classes are linearly

separable?)

• For many cases finding the right technique may be trial and error

• For many cases the exact technique does not matter.

Big Data Trumps Better Algorithms

• The web has made this

possible.

• Especially for text-related tasks

• Search engine uses the collective

human intelligence

Google lecture: Theorizing from

the Data

• If you have enough data then the algorithms are not so important

http://www.youtube.com/watch?v=nU8DcBF-qo4

Apply-Test

• How do you scale to very large datasets?

• Distributed computing – map-reduce implementations of machine learning

algorithms (Mahaut, over Hadoop)

• How do you test something that is running online?

• You cannot get labeled data in this case

• A/B testing

• How do you deal with changes in data?

• Active learning

