# DATA MINING THE EM ALGORITHM

Maximum Likelihood Estimation

# MIXTURE MODELS AND THE EM ALGORITHM

# Model-based clustering

- In order to understand our data, we will assume that there is a generative process (a model) that creates/describes the data, and we will try to find the model that best fits the data.
  - Models of different complexity can be defined, but we will assume that our model is a distribution from which data points are sampled
  - Example: the data is the height of all people in Greece
- In most cases, a single distribution is not good enough to describe all data points: different parts of the data follow a different distribution
  - Example: the data is the height of all people in Greece and China
  - We need a mixture model
  - Different distributions correspond to different clusters in the data.

# **Gaussian Distribution**

- Example: the data is the height of all people in Greece
  - Experience has shown that this data follows a Gaussian (Normal) distribution
  - Reminder: Normal distribution:

$$P(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

•  $\mu$  = mean,  $\sigma$  = standard deviation

# **Gaussian Model**

- What is a model?
  - A Gaussian distribution is fully defined by the mean  $\mu$  and the standard deviation  $\sigma$
  - We define our model as the pair of parameters  $\theta = (\mu, \sigma)$
- This is a general principle: a model is defined as a vector of parameters  $\boldsymbol{\theta}$

# Fitting the model

- We want to find the normal distribution that best fits our data
  - Find the best values for  $\mu$  and  $\sigma$
  - But what does best fit mean?

# Maximum Likelihood Estimation (MLE)

- Find the most likely parameters given the data. Given the data observations X, find  $\theta$  that maximizes  $P(\theta|X)$ 
  - Problem: We do not know how to compute  $P(\theta|X)$
- Using Bayes Rule:

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

• If we have no prior information about  $\theta$ , or X, we can assume uniform. Maximizing  $P(\theta|X)$  is now the same as maximizing  $P(X|\theta)$ 

# Maximum Likelihood Estimation (MLE)

• We have a vector  $X = (x_1, ..., x_n)$  of values and we want to fit a Gaussian  $N(\mu, \sigma)$  model to the data

- Our parameter set is  $\theta = (\mu, \sigma)$
- Probability of observing point  $x_i$  given the parameters  $\theta$

$$P(x_i|\theta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

We cheated a little here. More accurately we look at:  $P(x_i \le x \le x_i + dx)$ 

Probability of observing all points (assume independence)

$$P(X|\theta) = \prod_{i=1}^{n} P(x_i|\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

• We want to find the parameters  $\theta = (\mu, \sigma)$  that maximize the probability  $P(X|\theta)$ 

## Maximum Likelihood Estimation (MLE)

• The probability  $P(X|\theta)$  as a function of  $\theta$  is called the Likelihood function

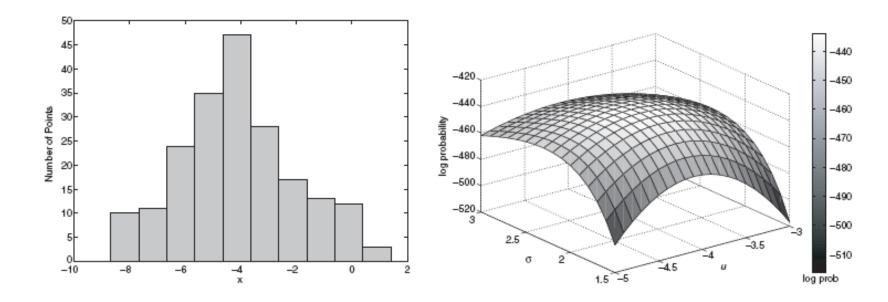
$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

It is usually easier to work with the Log-Likelihood function

$$LL(\theta) = -\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} - \frac{1}{2}n\log 2\pi - n\log \sigma$$

- Maximum Likelihood Estimation
  - Find parameters  $\mu, \sigma$  that maximize  $LL(\theta)$

$$u = \frac{1}{n} \sum_{i=1}^{n} x_i = \mu_X$$
Sample Mean
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \sigma_X^2$$
Sample Variance

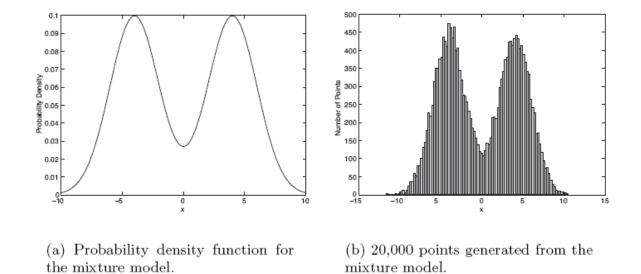


- (a) Histogram of 200 points from a Gaussian distribution.
- (b) Log likelihood plot of the 200 points for different values of the mean and standard deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter values.

### **Mixture of Gaussians**

 Suppose that you have the heights of people from Greece and China and the distribution looks like the figure below (dramatization)

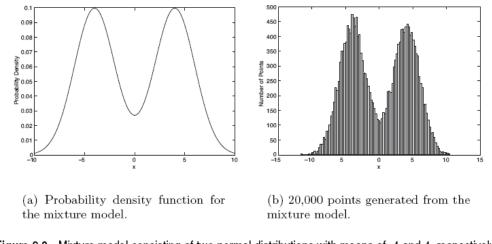


**Figure 9.2.** Mixture model consisting of two normal distributions with means of -4 and 4, respectively. Both distributions have a standard deviation of 2.

#### **Mixture of Gaussians**

In this case the data is the result of the mixture of two Gaussians

- One for Greek people, and one for Chinese people
- Identifying for each value which Gaussian is most likely to have generated it will give us a clustering.



**Figure 9.2.** Mixture model consisting of two normal distributions with means of -4 and 4, respectively. Both distributions have a standard deviation of 2.

#### Mixture model

#### • A value $x_i$ is generated according to the following process:

- First select the nationality
  - With probability  $\pi_G$  select Greece, with probability  $\pi_C$  select China  $(\pi_G + \pi_C = 1)$

We can also think of this as a Hidden Variable Z that takes two values: Greece and China  $\pi_G = P(Z = \text{Greece}), \pi_C = P(Z = \text{China})$ 

- Given the nationality, generate the point from the corresponding Gaussian
  - $P(x_i|\theta_G) \sim N(\mu_G, \sigma_G)$  if Greece
  - $P(x_i | \theta_C) \sim N(\mu_C, \sigma_C)$  if China

 $\theta_G$ : parameters of the Greek distribution  $\theta_C$ : parameters of the China distribution

Using the Hidden Variable Z:

 $P(x_i|Z = \text{Greece}) = P(x_i|\theta_G) \sim N(\mu_G, \sigma_G)$  $P(x_i|Z = \text{China}) = P(x_i|\theta_C) \sim N(\mu_C, \sigma_C)$ 

# Mixture Model

#### • Our model has the following parameters

$$\Theta = (\pi_G, \pi_C, \mu_G, \sigma_G, \mu_C, \sigma_C)$$

Mixture probabilities

 $\theta_G$ : parameters of the Greek distribution

 $\theta_C$ : parameters of the China distribution

# **Mixture Model**

• Our model has the following parameters

$$\Theta = (\pi_G, \pi_C, \mu_G, \sigma_G, \mu_C, \sigma_C)$$

Mixture probabilities Distribution Parameters

• For value  $x_i$ , we have:  $P(x_i|\Theta) = \pi_G P(x_i|\theta_G) + \pi_C P(x_i|\theta_C)$ • For all values  $X = (x_1, \dots, x_n)$  $P(X|\Theta) = \prod_{i=1}^n P(x_i|\Theta)$ 

 We want to estimate the parameters that maximize the Likelihood of the data

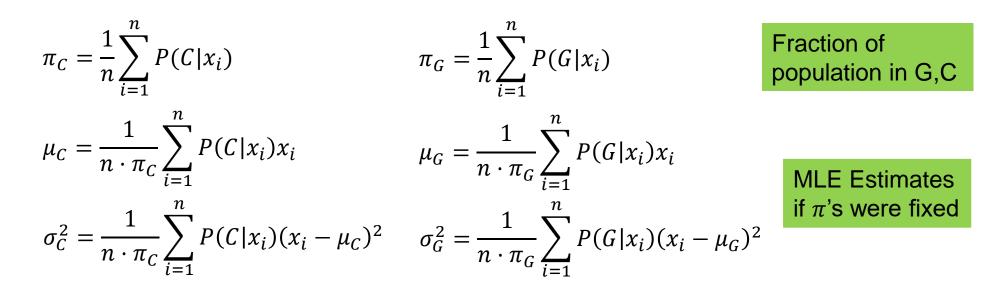
### Mixture Models

- Once we have the parameters  $\Theta = (\pi_G, \pi_C, \mu_G, \mu_C, \sigma_G, \sigma_C)$  we can estimate the membership probabilities  $P(G|x_i)$  and  $P(C|x_i)$  for each point  $x_i$ :
  - This is the probability that point  $x_i$  belongs to the Greek or the Chinese population (cluster)
  - Using Bayes Rule:

$$P(G|x_i) = \frac{P(x_i|G)P(G)}{P(x_i|G)P(G) + P(x_i|C)P(C)}$$
$$= \frac{P(x_i|\theta_G)\pi_G}{P(x_i|\theta_G)\pi_G + P(x_i|\theta_C)\pi_C}$$

# EM (Expectation Maximization) Algorithm

- Initialize the values of the parameters in  $\Theta$  to some random values
- Repeat until convergence
  - E-Step: Given the parameters  $\Theta$  estimate the membership probabilities  $P(G|x_i)$  and  $P(C|x_i)$
  - M-Step: Compute the parameter values that (in expectation) maximize the data likelihood  $LL(\Theta) = \sum_{x_i} \log(\pi_C P(x_i | \theta_C) + \pi_G P(x_i | \theta_G))$



# **Relationship to K-means**

- E-Step: Assignment of points to clusters
  - K-means: hard assignment, EM: soft assignment
- M-Step: Computation of centroids
  - K-means assumes common fixed variance (spherical clusters)
  - EM: can change the variance for different clusters or different dimensions (ellipsoid clusters)
- If the variance is fixed then both minimize the same error function

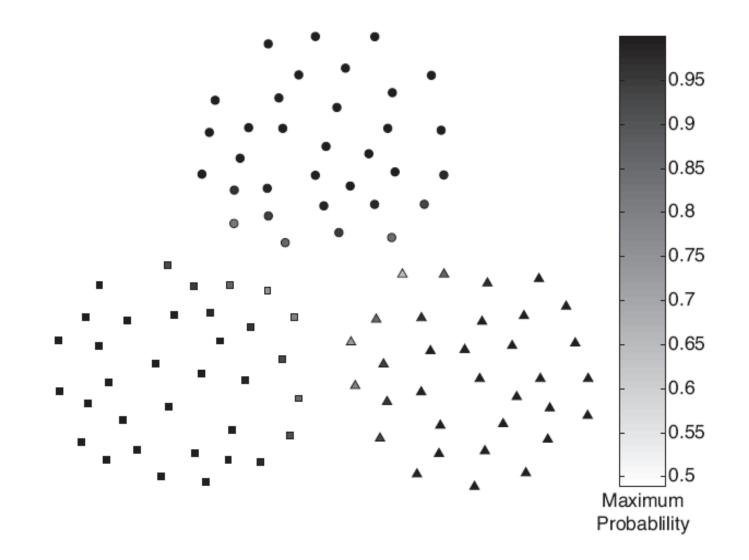


Figure 9.4. EM clustering of a two-dimensional point set with three clusters.

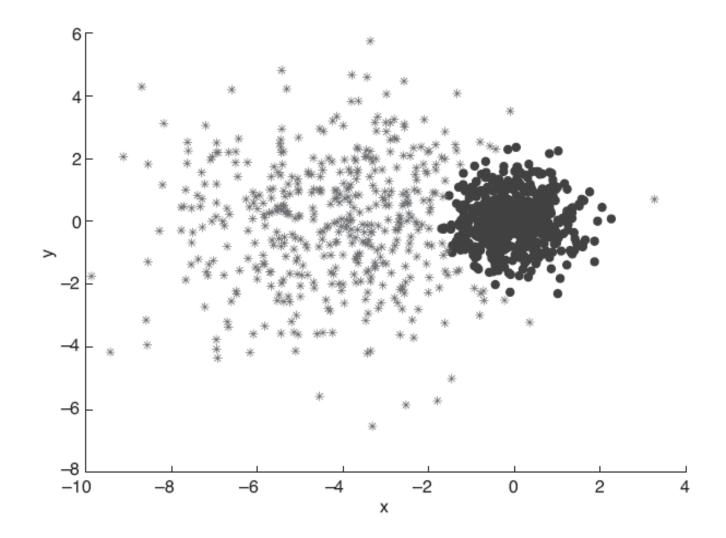
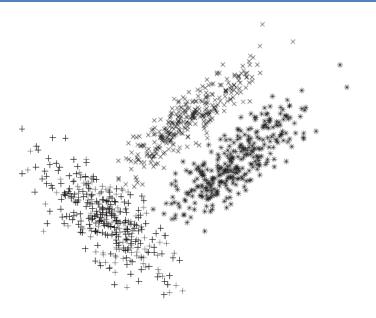
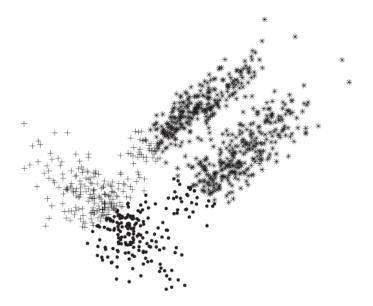


Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.



(a) Clusters produced by mixture model clustering.



(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.