DATA MINING
CLASSIFICATION

Nearest Neighbor Classification
Support Vector Machines
Logistic Regression

Naive Bayes Classifier




lllustrating Classification Task

Tid  Attribl Attrib2 Attrib3  Class Learning

1 Yes Large 125K No a Igorith m

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No | nd uction

5 No Large 95K Yes

6 No Medium 60K No

7 | Yes Large 220K No Learn

8 |No Small 85K Yes Model

9 No Medium 75K No \

10 | No Small 90K Yes

Training Set Model

Apply

Tid  Attribl Attrib2 Attrib3  Class MOdeI

11 | No Small 55K ?

12 | Yes Medium 80K ?

13 |Yes |Large 110K |2 Deduction

14 | No Small 95K ?

15 | No Large 67K ?

Test Set



NEAREST NEIGHBOR
CLASSIFICATION




Instance-Based Classifiers

Set of Stored Cases

Atrl

AtrN

Class

A
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« Store the training records

 Use training records to

predict the class label of
unseen cases

Unseen Case




Instance Based Classifiers

- Examples:

« Rote-learner

- Memorizes entire training data and performs classification only if attributes of record
match one of the training examples exactly

- Nearest neighbor classifier
- Uses k “closest” points (nearest neighbors) for performing classification



Nearest Neighbor Classifiers

- Basic idea:
- “If it walks like a duck, quacks like a duck, then it’s probably a duck”
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Nearest-Neighbor Classifiers

Unknown record
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0 Requires three things

The set of stored records

Distance Metric to compute
distance between records

The value of k, the number of
nearest neighbors to retrieve

o To classify an unknown record:

1.

2.
3.

Compute distance to other
training records

|dentify k nearest neighbors

Use class labels of nearest
neighbors to determine the
class label of unknown
record (e.g., by taking
majority vote)



Nearest Neighbor Classification

Compute distance between two points:
- Euclidean distance

d(p,q) = z(pi_CIi)z
\ T

Determine the class from nearest neighbor list
- take the majority vote of class labels among the k-nearest neighbors

- Weigh the vote according to distance
weight factor, w = 1/d?



Definition of Nearest Neighbor
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(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points
that have the k smallest distance to x



1 nearest-neighbor

Voronoi Diagram defines the classification boundary
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Nearest Neighbor Classification...

- Choosing the value of k:
- If kK Is too small, sensitive to noise points
- If k Is too large, neighborhood may include points from other classes

The value of k is the 3
complexity of the model + "= - -

o




Example

15-Nearest Neighbor Classifier
1-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (ELUE = 0, 0RANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.



Example

k - Number of Nearest Neighbors

Linear Regression of 0/1 Response 151 101 69 45 31 21 " 7T 5 3 1
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FIGURE 2.1. A classification example in two dimensions. The classes are coded 2 3 5 8 12 18 28 67 200

as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.

The line is the decision boundary defined by :.,"T,G' = 0.5. The orange shaded region

denotes that part of input space classified as DRANGE, while the blue region is

classified as BLUE. FIGURE 2.4. Miselassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000, The orange curves are test and the blue are training er-
ror for k-nearest-neighbor classification. The results for linear regression are the
bigger orange and blue squares at three degrees of freedom. The purple line is the
optimal Bayes error rate.

Degrees of Freedom — Nk



Nearest Neighbor Classification...

- Scaling Issues

- Attributes may have to be scaled to prevent distance measures from being
dominated by one of the attributes

- Example:
- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300Ib
- income of a person may vary from $10K to $1M



Nearest Neighbor Classification...

Problem with Euclidean measure:

- High dimensional data
curse of dimensionality

- Can produce counter-intuitive results

1111111111160 100000000000
VS
011111111111 000000000001
d=1.4142 d=1.4142

+ Solution: Normalize the vectors to unit length



Nearest neighbor Classification...

- k-NN classifiers are lazy learners
- It does not build models explicitly
- Unlike eager learners such as decision trees

- Classifying unknown records are relatively expensive
- Naive algorithm: O(n)
- Need for structures to retrieve nearest neighbors fast.

- The Nearest Neighbor Search problem.
- Also, Approximate Nearest Neighbor Search



SUPPORT VECTOR MACHINES




Support Vector Machines
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- Find a linear hyperplane (decision boundary) that will separate the data



Support Vector Machines

B1

O
O O
O
O
®
O
O
u
O
O
O
O
O O

- One Possible Solution



Support Vector Machines
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- Another possible solution



Support Vector Machines
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- Other possible solutions



e
Support Vector Machines
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- Which one is better? B1 or B2?
- How do you define better?
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Support Vector Machines
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- Find hyperplane maximizes the margin => B1 is better than B2



e
Support Vector Machines

Margin = —
Wi




Support Vector Machines

2

- We want to maximize: Margin = T

- Which is equivalent to minimizing:L(#) = 11

- But subjected to the following constraints:
w-x;+b<-—-1ify; =—1

- This is a constrained optimization problem
- Numerical approaches to solve it (e.g., quadratic programming)



Support Vector Machines

- What if the problem is not linearly separable?




e
Support Vector Machines

- What if the problem is not linearly separable?




Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables

« Minimize:
1wl -
Lw) = —— +c<2€i‘)

- Subject to:



- What if decision boundary is not linear?
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Nonlinear Support Vector Machines
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Nonlinear Support Vector Machines

- Trick: Transform data into higher dimensional space
O
005+ O i .'I.’% — 1 + I% — I = —.46.
01 % i
o~ | h D {I].*IE] I] 1’2, \""'l'_Il '\‘/I—mﬂs
>.< 0.15 O
N><N D - - - - -
ol O | wyr] + wars + u-gv@:ﬂl + u-lv@:rg + 1wy = 0.
02 D
-
025} O O ..
Decision boundary:
0.25 02 {].1I5 0.1 0.05 0 W . CD(J_C)) + b = 0



Learning Nonlinear SVM

- Optimization problem:

subject to yi(w- ®(x;) +b) = 1, (@i, vi)}
- Which leads to the same set of equations (but involve ®(x) instead
of x)

n

1 — .
Lp=) N~ 5 Z Aidjuai (%) - P(x;) W= Z: Ay ®(x;)
i

i=1

ﬁi{'ﬂiiz AjuiP(x5) - ©(x) +b) — 1} =0,

J

flz) = stgn(w - ®(z)+b) = s-ig-n{z Miyi®(x;) - B(z) + b).

i=1



-
Learning NonLinear SVM

- Issues:
- What type of mapping function ® should be used?

- How to do the computation in high dimensional space?
- Most computations involve dot product ®(x;) - ®(x;)
- Curse of dimensionality?



Learning Nonlinear SVM

- Kernel Trick:
- d(x,) - O(x;) = K(x;x;)

* K(x;,x;) 1s a kernel function (expressed in terms of the coordinates in the
original space)

- Examples:

Kix.y)=(x-y+1)"
K(x.y) = e Ix=v[/(20%)

X ¥
K(ix.y) =tanh(kx -y — d)



Example of Nonlinear SVM
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SVM with polynomial
degree 2 kernel
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03 K(xi’xj) = (xi X+ 1)
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Learning Nonlinear SVM

Advantages of using kernel:
- Don’t have to know the mapping function ®

- Computing dot product ®(x;) - ®(x;) in the original space avoids curse of
dimensionality

Not all functions can be kernels
- Must make sure there is a corresponding ® in some high-dimensional space
- Mercer’s theorem (see textbook)



LOGISTIC REGRESSION




Classification via regression

- Instead of predicting the class of a record we want to predict the
probability of the class given the record

- Transform the classification problem into a regression problem.
- But how do you define the probability that you want to predict?



e
Linear regression

- Glven a dataset of the form

{(x1,v1), ..., (%, v,,)} find a linear
function that given the vector x;

predicts the y; value as y; = w'x;

- Find a vector of weights w that
minimizes the sum of square errors

v, * -'l 5 .:' . "
r )2 .
yl. yl 1 i el L " L L 1 " L L L " i L L i L L L " L 1 " L " L
, 20 10 10 20 30 40 50 60
l

- Closed form solution:
w=(XTX)" XTy




Linear regression

- A simple approach: use linear regression to learn a linear function
that predicts 0/1 values

- Not good: It may produce negative probabilities, or probabilities that are
greater than 1.

*® SSseseeeee esee L L ] - -

Died 1 ® sssessssss
J 30 Day Mortalify-

Survived

15 20 25 30 35 40 45
APACHE Il Score at Baseline

Jeff Howbert Introduction to Machine Learning Winter 2012 12




-
Class probabilities

- Assume a linear classification boundary

For the positive class the bigger the value 7

of w - x, the further the point is from the / O

classification boundary, the higher our O

certainty for the membership to the positive O

class w-x=0 o

* Define P(C,|x) as an increasing function
of w-x -

For the negative class the smaller the O
value of w - x, the further the point is from
the classification boundary, the higher our O
certainty for the membership to the
negative class L
» Define P(C_|x) as a decreasing function

of w-x
w-x<0 /




Logistic Regression

The logistic function

ot

B
t) =
o 1+et
1 0.5
P(Cylx) = 1+ e-Wx—a
—-—WwWw-X—Qa
P(C_|x) = 1+ o-wx—a _=__/ ~
6 -4 =2 0 2 4 6

lo P(Cylx) =w-x+a

SP(C_%)

Logistic Regression: Find the
vector w that maximizes the

orobability of the observed data

Linear regression on the log-odds ratio



The logistic function

S controls the slope
a controls the position of the turning point

m(x) = exp(o+Px)/ (1+exp(o+ Px))

0 5 10 15 20 25 30 35 40

When x = -0/, o+px=0 and hence n(x)=1/(1+1) =05

Jeff Howbert Introduction to Machine Learning Winter 2012 13




Logistic Regression in one dimension

Data that has a sharp survival cut off point between patients who live
or die should have a large value of p.

Died 1] —-—.j——‘——
Survived 0
| DN BN B B BB BN En NN B i e NN B m L BN B B BN B R BN e m B mm e |
0 5 10 15 20 25 30 35 40

X

Data with a lengthy transition from surwvival to death should have a low

value of p.
Died 1 [ o eeee o o® oee eeeee oee
Survived ® & sse eese e e . ™ ae
| LB LN BN BN BN BN B he NN S B B LN B B R L BN N B BN N B A BN A |
0 5 10 15 20 25 30 35 40

x

Jeff Howbert Introduction to Machine Learning Winter 2012 14




Logistic Regression in one dimension
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Figure 10-3. The solid curved line is called a logistic regression curve. The
vertical axis measures the probability that an Old Testament passage is narra-
tive, based on the use of preterite verbs. The probability is zero for poetry and
unity or cne for narrative. Passages with high preterite verb counts, falling to
the right of the vertical dotted line, are likely narrative. The triangle on the up-
per right represents Genesis 1:1-2:3, which is clearly literal, narrative history.

Jeff Howbert Introduction to Machine Learning Winter 2012 15




Logistic regression in 2-d

Classification with Fisher Training Data
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Estimating the coefficients

- Maximum Likelihood Estimation:
- We have pairs of the form (x;, y;)

- Log Likelihood function
L(w) = Z[Yi log P(y;lx;, w) + (1 — y;) log(1 — P(y;|x;, w))]

l

- Unfortunately, it does not have a closed form solution
- Use gradient descend to find local minimum



Logistic Regression

- Produces a probability estimate for the class membership which is
often very useful.

- The weights can be useful for understanding the feature
Importance.

- Works for relatively large datasets

- Fast to apply.



INTRODUCTION TO NEURAL
NETWORKS

(Thanks to Philipp Koehn for the material borrowed from his slides)



Linear Classification

A simple model for classification is to take a linear combination of
the feature values and compute a score.

Input: Feature vector x = (xq, ..., Xy,)

Model: Weights w = (wy, ..., w,,)

Output: score(w, x) = ),; w;X;

Make a decision depending on the output score.

- E.g.: Decide “Yes” if score(w,x) > 0 and “No” if score(w,x) < 0
The perceptron classification algorithm



Linear Classification

- We can represent this as a network

Edges correspond to weights

Input nodes
correspond to
features

“Output’ node with
iIncoming edges computes
the score




L Inear models

- Linear models partition the space according to a
hyperplane

- But they cannot model everything



Multiple layers

We can add more layers:
- Each arrow has a weight
- Nodes compute scores from incoming edges and give input to outgoing edges

.O Did we gain anything?




Non-linearity

- Instead of computing a linear combination
score(w,x) = z Wi X;
i

- Apply a non-linear function on top:

score(w,x) = g (Z Wl-xl-)

i

- Popular functions:

1
14e=*

N

(sigmoid is also called the "logistic function”)

sigmoid(x) = relu(x) = max(0,x)

These functions play the role of a soft “switch” (threshold function)



Side note

- Logistic regression classifier:
- Single layer with a logistic function

O
O~



Deep learning

Networks with multiple layers

Each layer can be thought of as a processing step
Multiple layers allow for the computation of more complex functions



Example

- A network that implements XOR

Input zy Inputz; | Hidden hy Hidden h; | Output yg
0 0 0.12 0.02 018 =0
0 1 0.88 0.27 074 -1
1 0 0.73 0.12 074 -1
1 1 0.99 0.73 033 =0




Error

- The computed value is 0.76 but the correct value is 1
- There is an error in the computation

- How do we set the weights so as to minimize this error?



Gradient Descent

- The error is a function of the weights

- We want to find the weights that minimize the error

- Compute gradient: gives the direction to the minimum
- Adjust weights, moving at the direction of the gradient.



Gradient Descent

A

error(A)

>N
:A/g‘; A

optimal X current A




Gradient Descent
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Backpropagation

How can we compute the gradients? Backpropagation!
Main idea:

- Start from the final layer: compute the gradients for the weights of the final
layer.

- Use these gradients to compute the gradients of previous layers using the
chain rule

- Propagate the error backwards

Backpropagation essentially is an application of the chain rule for
differentiation.



Notation:

Activation function: g

Sy1 = b11h1 + b12h2 V1 = g(slﬁ)
Sy, = by1hy + byohy , Yy, = g(Syz)
Sp, = A11X1 + a.,%, , hy = g(shl)
Sh, = Q21X1 + Az%5 h, = g(shz)

OE  OE Osp, OF

017 a5, oy asy, — 21 T )Y (sy,)
oF _ 0E _ ,
3b, = 6y,hy 8y,= 35y, 2(y; — t3)g'(Sy,)
OE 0E s h
dby, Y12 db,, V2 ?
dE dsp, OF OF

= = X1 =
day,  Osy, 0y hq day, Odsp,0ay;

0E 6Sy2

h, X2 = Op, X2 dar, = Op,X1

azq

0E  OF oh, <6E ds,,

On = Gsn Oy dsp,  \s,, hy

Op, = (5y1b12 + 6y2b22)g’(5h2)

_|_

ds,, Oh;

>g’(5h1) = (5y1b11 + 5y2b21)g,(5h1)



Backpropagation

We have already computed the §,, s

Z Oy, bki g (Sh )xJ

aau

For the sigmoid activation function:

1
g(x) = 1+e™*
We want to compute
oFE The derivative is:
da;; Sh; 9'(x) =g(x)(1 - gx))

.. This makes it easy to compute it. We have:
L !
/ g'(sp,) = hi(1 — hy)

@ Therefore

aal]

Z it hi (1= ho);



Stochastic gradient descent

ldeally the loss should be the average loss over all training data.

We would need to compute the loss for all training data every time
we update the gradients.

- However, this is expensive.

Stochastic gradient descent: Consider one input point at the time.
Each point is considered only once.

Intermediate solution: Use mini-batches of data points.



WORD EMBEDDINGS

Thanks to Chris Manning for the slides



N -
Basic Idea

* You can get a lot of value by representing a word by means
of its neighbors

* “You shall know a word by the company it keeps”

(J. R. Firth 1957: 11)

 One of the most successful iIdeas of modern statistical NLP

government debt problems turning into banking crises as has happened in
saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 77



e
Basic iIdea

Define a model that aims to predict between a center word w, and
context words in some window of length m in terms of word vectors

P(We [We_m, oy Weo1, Weadq ooy Weym)

Pairwise probabilities
Independence assumption (bigram model)

P(W11 Wo, ..., Wn) - ?=2P(Wllwl—1)



oWl P | Cﬂﬁ}QV‘

coriex woAf Wovrd »Xo-ﬂ- wg

m werd window fosi‘h'ﬂ\ 1 M word window



. R
Word2Vec

Predict between every word and its context words
Two algorithms
1. Skip-grams (SG)
Predict context words given the center word
2. Continuous Bag of Words (CBOW)
Predict center word from a bag-of-words context

Position independent (do not account for distance from center)

Tomas Mikolov, llya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean: Distributed Representations of
Words and Phrases and their Compositionality. NIPS 2013: 3111-3119



CBOW

Use a window of context words to predict the center word

Learn two matrices (N size of embedding, |V| number of words)
Embedding of the i-th word when

W N y center word
| —
Embedding of
V] the i-th word
when context
word
V]|

N X |[V| center

V| x N context embeddings embeddings
when input when output



CBOW

Given window size m
x(©) one hot vector for context words, v one hot vector for the center word

1. Input: the one hot vectors for the 2m context words
x(€m) o ox(emD) (el - y(ctm)

2. Compute the embeddings of the context words
Voy = WxC€™ v, =WxC€D p, . oo=WxCErD oy = WxEtm™

3. Average these vectors
D= vc—m+vc—m+1+"'vc+m’ = RN
2m

4. Generate a score vector
z =W
dot product, (embedding of center word) similar vectors close to each other

Turn the score vector to probabilities We want this to be close to 1 for the center word

5.
y = softmax(z)



Exponentiate to Softmax

make positive T~

e Ui

pi — u.
Normalize to Zje J
. Lo —————
give probability




- E.g. “The cat sat on floor”
- Window size = 2

INPUT PROJECTION OUTPUT

the we2)

cat wen
L SUM

wt) sat
ON w1

floor we2




Input layer
Index of cat in vocabulary Hidden |
cat [ idden layer Ouotput layer
one-hot a = o h
vector — o one ot
= o sat vector

on

ofjofofofirfiojo o

ol




Input layer We must learn W and W
z : Output layer
cat B Wyun Hidden laye putiay
V'dlm (‘J’ ] Z
- Winxv |l sat
1 Wy N-dim a
on [z V-dim
V_d|m .(.J. N will be the size of word vector




T _
WVxN X Xcat = Veat
0.1/2.4/1.6/1.8/0.5(0.9|...|...|...|3.2 _g’__ 2.4
0.5(2.6/1.4[2.91.5(3.6...|...|...|6.1 ﬁ 2.6
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Q.
0
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0
1
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0 .
0] N-dim
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WVTxN X Xon = Von
0.12.41.61.80.50.9 ...]...|...3.2 % 1.8
0.52.61.42.9153.6.....|...6.1 % 2.9

0|
X [0 ]=
0|
0|
0.61.82.71.92.42.0...|...|...12 5o [1.9
Input layer
Xeot B 27
cat g V)(/V)(
¥
0 CEZf =
V-dim [2 cqp |-
+ [ 9_vcat+von
: _odt [ 2
- Lo
Xon 5] W%~ Hidden layer
g W N-dim
V-dim [©

Output layer

OIEIHIOIOIOIOIOIOIO

sat

V-dim



cat

V-dim

on

V-dim

of:

ut layer

WVXN

Wyxn

Hidden layer Output layer

Wiy x D=2z [19 = softmax(z)

of: I-Ielolol=]=]-]

dD

N-dim

N will be the size of word vector



Input layer

cat

V-dim

on

V-dim

of:

We would prefer y close to Jsq¢

W, Hidden layer Output layer
VXN

WI;XN X ﬁ =7
y = softmax(z)

)

OIEIHIOIOIOIOIOIOIO

Wyxn N-dim

N will be the size of word vector

0.00;

=



T
WVXN

01|24

1.6

1.8

0.5

09| ... | ... | ...

3.2

Input layer [y5]26

cat

V-dim

V-dim

ol

Ofofjofojjojof~ o

ol

Ofojofojrjofofo

14

2.9

15

36| ... ..

/ Contain word’s vectors
... |6.1

06|18

2.7

19

24

20| ... | | e

1.2

WVXN

WVXN

Output layer

sat

LI111
X
X
=
T IR

V-dim

Hidden layer
N-dim

We can consider either W (context) or W’ (center) as the word’s

representation.

Or even take the average.



Skipgram

Given the center word, predict (or, generate) the context words

W: N x |V|, input matrix, word representation as center word
W’ [V] x N, output matrix, word representation as context word

o Clutpaut layer
We must |&arn W and W .

yU) one hot vector for context words y

1. Get one hot vector of the center word x

2. Get the embedding of the center word
v =Wx

3. Generate a score vector for each context word
z = W'y,

5. Turn the score vector into probabilities
y = softmax(z)

We want this to be close to 1 for the context words
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Skipgram

« Foreachwordt=1 ... T, predict surrounding words in a window
of “radius” m of every word.

* Objective function: Maximize the probabillity of any context word

given the current center word:
T

likelihood ]'(9)=1_[ 1_[ p(Weyi|we; 6)

t=1 —msjs<m

Jj#0
Negative 0 ___2 2 lo W W,: 0
Log Likelihood J () - gp(Wesj|we; 6)
—m<j<m
Jj*0

where 0O represents all variables we will optimize



* The basic skipgram utilizes the softmax
function:

exp (vC’TvW)

T
i=1€xp(v;" )

p(clw) =

* Where:
— T — # of words in the corpus.
— v, - Input vector of w.
— v, - output vector of w.

Word Input Output

King |[0.2,0.9,0.1] | [0.5,0.4,0.5]
Queen | [0.2,0.8,0.2] | [0.4,0.5,0.5]
Apple |[0.9,0.5,0.8] | [0.3,0.9,0.1]
Orang

[0.9,0.4,0.9] | [0.1,0.7,0.2]
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These representations are very good at encoding similarity
and dimensions of similarity!

* Analogies testing dimensions of similarity can be solved
quite well just by doing vector subtraction in the
embedding space

Syntactically

— Xapple ~ Xapples ~ Xcar ~ X
— Similarly for verb and adjective morphological forms
Semantically (Semeval 2012 task 2)

car cars — Kfamily ~ Xtamilies

— Xshirt ~ Xclothing ~ Xchair ~ Xfurniture

— Xking ~ Xman = Xqueen ~ Xwoman



Test for linear relationships, examined by Mikolov et al.

— T
a:b:.c?? — d = arg max ('wb Wq + wc) Wy
T Hwb_wa—l—wcH
man:woman :: king:? 1
+ king 0.300.70 .
0.75 _
* king
- man 10.200.20
_ _ 0.5
+ woman 1 0.60 0.30 ]
«x woman
0.25 .
queen  [0.700.80] man
0

0 0.25 0.5 0.75 1



NAIVE BAYES CLASSIFIER




Bayes Classifier

A probabilistic framework for solving classification problems
A, C random variables
Joint probability: Pr(A=a,C=c)
Conditional probabillity: Pr(C=c | A=a)
Relationship between joint and conditional probability distributions
Pr(C,A) =Pr(C|A) P(A) = P(A|C)P(C)
Bayes Theorem:
P(A|C)P(C)
P(A)

P(C|A) =



Bayesian Classifiers

How to classify the new record X = ("Yes’, ‘Single’, 80K)

Tid Refund Marital Taxable _ _ _
Status Income Evade Find the class with the highest

probability given the vector values.

1 Yes Single 125K No
2 No Married |[100K No _ . -
_ Maximum Aposteriori Probability

3 No Single 70K No . .

_ estimate:
B VoS N 120K »  Find the value c for class C that
5 |No Divorced |95K Yes maximizes P(C=c| X)
6 No Married |60K No
7 |Yes Divorced | 220K No How do we estimate P(C|X) for the
8 |No Single  |85K Yes different values of C?
9 |No Married |75K NoO « We want to estimate P(C=Yes| X)
10 |[No Single 90K Yes * and P(C:NO| X)




Bayesian Classifiers

In order for probabilities to be well defined:
- Consider each attribute and the class label as random variables
- Probabilities are determined from the data

Tid Refund Marital Taxable
Status Income Evade Evade C
Event space: {Yes, No}
1 |Yes Single 125K No P(C) = (0.3,0.7)
2 |No Married |100K No Refund A,
3 [No Single 70K No Event space: {Yes, No}
4 |Yes Married |120K No P(A,) = (0.3,0.7)
5 No Divorced |95K Yes Martial Status A,
6 |No Married |60K No Event space: {Single, Married, Divorced}
7 |Yes Divorced |220K No P(4;) = (0.4,0.4,0.2)
8 |No Single  [85K Yes Taxable Income A,
0 In Married | 75K \ Event space: R
© arme ° P(A;) ~ Normal( , 2)
10 |No Single 90K Yes u = 104:sample mean, o> = 1874:sample var




e
Bayesian Classifiers

- Approach:
- compute the posterior probability P(C | A, 4,, ..., An) using the Bayes theorem

_ P(Ay, 4z, ., AnlOP(C)
P(Ay,A,, .., A)

P(C|Ay, Ay, ..., A)

- Maximizing
P(C|A,A,, .., An)

IS equivalent to maximizing
P(A, A, .., A |C)P(C)
- The value P(44, ..., A,) Is the same for all values of C.

- How to estimate P(A,, A,, ..., An | C)?



Naive Bayes Classifier

- Assume conditional independence among attributes A; when class C is given:
° P(Al,Az, ,An|C) — P(A1|C) P(Ale) P(An|C)

- We can estimate P(Ai| C) from the data.
- New point X = (4; = a4, ..., A,, = a,,) IS classified to class c if

P(C=c|lX)=P(C =c)][];P(A; = a;|c)
IS maximum over all possible values of C.



Example

- Record
X = (Refund = Yes, Status = Single, Income =80K)
- For the class C = 'Evade’, we want to compute:
P(C =Yes|X) and P(C = No| X)
- We compute:
- P(C =Yes|X) = P(C = Yes)*P(Refund = Yes |C = Yes)
*P(Status = Single |C = Yes)
*P(Income =80K |C= Yes)
- P(C = No|X) = P(C = No)*P(Refund = Yes |C = No)
*P(Status = Single |C = No)
*P(Income =80K |C= No)



S
How to Estimate Probabilities from Data?

wlass prior Probabiily:
Status Income Evade

1 Yes Single 125K No N
2 No Married |100K No P(C ) C) = <
3 No Single 70K No N
¢ |Yes  Maried 120K INo N_.: Number of records with
5 No Divorced [95K Yes
class c

6 N Married |60K N

° o " | N = Number of records
7 Yes Divorced |220K No
8 No Single 85K Yes
9 |No Married | 75K No P(C =No) =7/10
10 |No Single 90K Yes P(C — YeS) - 3/10



S
How to Estimate Probabilities from Data?

Tid Refund Marital Taxable
Status Income Evade

© 0O N oo o b~ W DN P

[EEN
o

Yes
No
No
Yes
No
No
Yes
No
No
No

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

No
No
No
No
Yes
No
No
Yes
No

Yes

Discrete attributes:
P(A; = alC =c) =

a,c
Nc
N, .: number of instances
having attribute A; = a and
belong to class ¢

N.: number of instances of
class c




S
How to Estimate Probabilities from Data?

Tid Refund Marital

Taxable

Status Income

1 |Yes Single  [125K No
2 No Married |100K No
3 No Single 70K No
4 |Yes Married |120K No
5 |[No Divorced | 95K Yes
6 |[No Married |60K No
7 |Yes Divorced | 220K No
8 No Single 85K Yes
9 No Married | 75K No
10 [No Single 90K Yes

Discrete attributes:
P(4; = alC = ¢) = o<
i — a =C) = NC
N, .: number of instances
having attribute A; = a and
belong to class ¢

N.: number of instances of
class c

P(Refund = Yes|No) = 3/7



S
How to Estimate Probabilities from Data?

Tid Refund Marital Taxable
Status Income Evade

1 Yes Single 125K No
2 No Married |100K No
3 No Single 70K No
4 |Yes Married |120K No
5 |[No Divorced | 95K Yes
6 |[No Married |60K No
7 |Yes Divorced |220K No
8 No Single 85K Yes
9 |[No Married | 75K No
10 [No Single 90K Yes

Discrete attributes:
P(A; =alC =c) = Na
l NC
N, .: number of instances

having attribute A; = a and
belong to class ¢

N.: number of instances of
class c

P(Refund = Yes|Yes) =0



S
How to Estimate Probabilities from Data?

Tid Refund Marital

Taxable

Status Income

1 |Yes Single  [125K No
2 No Married |100K No
3 No Single 70K No
4 |Yes Married |120K No
5 |[No Divorced | 95K Yes
6 |[No Married |60K No
7 |Yes Divorced |220K No
8 No Single 85K Yes
9 |[No Married | 75K No
10 [No Single 90K Yes

Discrete attributes:
P(4; = alC = ¢) = o<
i — a =C) = NC
N, .: number of instances
having attribute A; = a and
belong to class ¢

N.: number of instances of
class c

P(Status=Single|No) = 2/7



S
How to Estimate Probabilities from Data?

Tid Refund Marital Taxable
Status Income Evade

1 Yes Single 125K No
2 No Married |100K No
3 No Single 70K No
4 |Yes Married |120K No
5 |[No Divorced | 95K Yes
6 |[No Married |60K No
7 |Yes Divorced |220K No
8 No Single 85K Yes
9 |[No Married | 75K No
10 [No Single 90K Yes

Discrete attributes:
P(A; =alC=c) =

a,c
Nc
N, .: number of instances
having attribute A; = a and

belong to class ¢

N.: number of instances of
class c

P(Status=Single|Yes) = 2/3



S
How to Estimate Probabilities from Data?

Tid Refund Marital Taxable Normai distribution:
Status Income Evade
l _(51—#“')2
1 |y Singl 125K N )
2 Nes Mmg'ed 100K N0 P(A :alcj) - > © )
0 arrie 0
| 270
3 No Single 70K No .
4 |Yes Married [120K  |No - One for each (4;, Cj) pair
5 No Divorced [95K Yes
6 No Married |[60K No FOF ClaSS:NO
7 |Yes Divorced |220K No o Samp|e mean u = 110
i N e e - sample variance o?= 2975
9 No Married |75K No
10 [No Single 90K Yes For Income = 80

_ (80-110)°

e ™ =0.0062

1

P(Income =80| No) = J27 (5450




S
How to Estimate Probabilities from Data?

Tid Refund Marital Taxable Normai distribution:
Status Income Evade

_ _(51—#“')2
1 |Yes Slngie 125K |No P(A =a|c,) = 1 207
2 No Married |[100K No 272.0__?
3 No Single 70K No J .
4 |Yes Married [120K  |No - One for each(4;, cj)palr
5 No Divorced |95K Yes
6 No Married |60K No FOF ClaSS:YeS
7 |Yes Divorced |220K No o Sample mean [ = 90
i N e e - sample variance o?= 2975
9 No Married |75K No
10 [No Single 90K Yes For Income = 80

~ (80-90)*

29 =0.01

1

V27 (5) °

P(Income =80|Yes) =




Example

- Record
X = (Refund = Yes, Status = Single, Income =80K)
- We compute:
- P(C =Yes|X) = P(C = Yes)*P(Refund = Yes |C = Yes)
*P(Status = Single |C = Yes)
*P(Income =80K |C= Yes)
=3/10*0*2/3*0.01=0
- P(C = No|X) = P(C = No)*P(Refund = Yes |C = No)
*P(Status = Single |C = No)
*P(Income =80K |C= No)
=7/10 * 3/7 * 2/7 * 0.0062 = 0.0005



Example of Naive Bayes Classifier

- Creating a Naive Bayes Classifier, essentially means to compute
counts:

Total number of records: N = 10

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
Class No: Class Yes: P(Refund=No|No) = 4/7
) ) P(Refund=Yes|Yes) =0
Number of records: 7 Nur_nber of records: 3 P(Refund=No|Yes) = 1
Attribute Refund: Attribute Refund:
Yes: 3 Yes: O P(Marital Status=Single|No) = 2/7
) ) P(Marital Status=Divorced |No)=1/7
) No: _4 ] No: ) 3 P(Marital Status=Married|No) = 4/7
Attribute Marital Status: Attribute Marital Status: | |p(wviarital Status=Single|Yes) = 2/7
Single: 2 Single: 2 P(Marital Status=Divorced|Yes)=1/7
Divorced: 1 Divorced: 1 P(Marital Status=Married|Yes) =0
| Married: 4 | Married: O For taxable income:
Attribute Income: Attribute Income: If class=No: ~ sample mean=110
mean: 110 mean: 90 sample variance=2975
: _ : _ If class=Yes: sample mean=90
variance: 2975 variance: 25 sample variance=25




Example of Naive Bayes Classifier

Given a Test Record:

X = (Refund = Yes, Status = Single, Income =80K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) =0
P(Refund=No|Yes) =1

P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced |No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) =0

For taxable income:

If class=No:  sample mean=110
sample variance=2975

If class=Yes: sample mean=90
sample variance=25

o P(X|Class=No) = P(Refund=Yes|Class=No)
x P(Married| Class=No)
x P(Income=120K]| Class=No)
= 3/7 *2/7 * 0.0062 = 0.00075

o P(X|Class=Yes) = P(Refund=No| Class=Yes)
x P(Married| Class=Yes)
x P(Income=120K| Class=Yes)
=0*2/3*0.01=0

P(No) = 0.3, P(Yes) = 0.7
Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)
=> Class = No



Naive Bayes Classifier

- If one of the conditional probabilities is zero, then the entire
expression becomes zero

- Laplace Smoothing:

N, +1
N, + N,

P(A; =alC=c) =

- N.: number of attribute values for attribute A4,



Example of Naive Bayes Classifier

- Creating a Naive Bayes Classifier, essentially means to compute

counts: With Laplace Smoothing
naive Bayes Classifier:
Total number of records: N = 10
P(Refund=Yes|No) = 4/9
_ _ P(Refund=No|No) =5/9
Class No: Class Yes: P(Refund=Yes|Yes) = 1/5
Number of records: 7 Number of records: 3 P(Refund=No|Yes) = 4/5
Attribute Refund: Attribute Refund: o(Marital StatusSingle | No)  3/10
. . arital Status=Single|No) =
Yes: 3 Yes: O P(Marital Status=Divorced|No)=2/10
No: 4 No: 3 P(Marital Status=Married | No) = 5/10
Attribute Marital Status: Attribute Marital Status: P(Marital Status=Single|Yes) = 3/6/
: . - . P(Marital Status=Divorced|Yes)=2/6
[S):Cglried i gll?/glried i P(Marital Status=Married|Yes) = 1/6
Married: 4 Married: O For taxable income:
Attribute Income: Attribute Income: If class=No:  sample mean=110
. ] sample variance=2975
me_an' 110 me_an' 90 If class=Yes: sample mean=90
variance: 2975 variance: 25 sample variance=25




Example of Naive Bayes Classifier
Given a Test Record: _

X = (Refund = Yes, Status = Single, Income =80K)

naive Bayes Classifier:

P(Refund=Yes|No) = 4/9 o P(X|Class=No) = P(Refund=No|Class=No)
P(Refund=No|No) = 5/9 x P(Married| Class=No)
P(Refund=Yes|Yes) = 1/5 x P(Income=120K]| Class=No)

P(Refund=No|Yes) = 4/5 = 4/9 x 3/10 x 0.0062 = 0.00082

P(Marital Status=Single|No) = 3/10

P(Marital Status=Divorced |No)=2/10 o P(X|Class=Yes) = P(Refund=No| Class=Yes)
P(Marital Status=Married |No) = 5/10 x P(Married| Class=Yes)
P(Marital Status=SingIe|Yes) = 3/6 X P(|ncome:120K| CIaSS:YeS)
P(Marital Status=Divorced|Yes)=2/6 —1/5 % 3/6 x 0.01 = 0.001
P(Marital Status=Married|Yes) = 1/6 ' '
For taxable income: - P(No) =0.7, P(Yes) =0.3
If class=No:  sample mean=110 _

sample variance=2975 - P(X|No)P(No) = 0.0005
If class=Yes: sample mean=90 - P(X|Yes)P(Yes) = 0.0003

sample variance=25

=> Class = No




Implementation details

Computing the conditional probabilities involves multiplication of
many very small numbers

- Numbers get very close to zero, and there is a danger of numeric instability

We can deal with this by computing the logarithm of the conditional
probability

log P(C|A)~1log P(A|C) + log P(C)
= ZIOgP(AiIC) + log P(C)
i



-
Naive Bayes for Text Classification

- Nailve Bayes is commonly used for text classification
- For a document with k terms d = (t4, ..., t)

P(cld) = P©)P(dle) = P(e) | | PCtile)

Fraction of | t.ed
documents in c

- P(t;|c)= Fraction of terms from all documents in c that are ¢t;.

Number of times ti\\ Laplace Smoothin
E N+ — Lap g

appears in all

documents in ¢ J (t;lc) N, + T = Number of unique words
(vocabulary size)

‘Total number of terms in all documents in ¢

- Easy to implement and works relatively well

- Limitation: Hard to incorporate additional features (beyond words).
- E.g., number of adjectives used.



Multinomial document model

- Probability of document d = (t4, ..., t;) in class c:

P(dlc) = P(©) | [Pceile)
tiea
- This formula assumes a multinomial distribution for the document
generation:

- If we have probabllities p,, ..., p, for events t,, ..., t; the probability of a subset of

these is
N Nt Nt Nt
P d — 1 2 ,.. T
( ) Ntl!Ntz!”-NtT!pl pz pT _)@

- Equivalently: There is an automaton spitting words from the above
distribution




TRAINMULTINOMIALNB(C, D)
1 V «— EXTRACTVOCABULARY(D)
2 N < CounTtDocs(D)
3 for eachc e C
4 do N; +— COUNTDOCSINCLASS(ID, c)
prior[c] «— N¢/N
text, «— CONCATENATETEXTOFALLDOCSINCLASS(ID, ¢)
for eacht €V
do T;s +— COUNTTOKENSOFTERM(textc, t)
9 for eacht € V

10 do condprob|t][c] — %
r I:'f'r

11 return V, prior, condprob

o0 ~1 o~

APPLYMULTINOMIALNB(C, V, prior, condprob, d)
1 W «— EXTRACTTOKENSFROMDOC(V,d)

2 for eachc e C

3 do score(c| « log prior|c]

4 for eacht € W

5 do score|c] += log condprob|t][c]

6 return arg max__c score|c]

P Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.



News titles for Politics and Sports
Politics Sports
“Obama meets Merkel” “OSFP European basketball champion”
documents | “Obama elected again” “Miami NBA basketball champion”
“Merkel visits Greece again” “Greece basketball coach?”
P(p) =0.5 P(s)=0.5
terms obama:2, meets:1, merkel:2, OSFP:1, european:1, basketball:3,
Vocabulary | €lected:1, again:2, visits:1, champion:2, miami:1, nba:1,
size: 14 greece:1 greece:1, coach:1
Total terms: 10 Total terms: 11

New title: X = “Obama likes basketball”

P(Politics|X) ~ P(p)*P(obamalp)*P(likes|p)*P(basketball|p)
= 0.5 * 3/(10+14) *1/(10+14) * 1/(10+14) = 0.000108

P(Sports|X) ~ P(s)*P(obamal|s)*P(likes|s)*P(basketball|s)
=0.5* 1/(11+14) *1/(11+14) * 4/(11+14) = 0.000128



Naive Bayes (Summary)

Robust to isolated noise points

Handle missing values by ignoring the instance during probability
estimate calculations

Robust to irrelevant attributes

Independence assumption may not hold for some attributes
- Use other techniques such as Bayesian Belief Networks (BBN)

Naive Bayes can produce a probability estimate, but it is usually a very
biased one

- Logistic Regression is better for obtaining probabilities.



Generative vs Discriminative models

- Naive Bayes is a type of a generative model

- Generative process:
- First pick the category of the record

- Then given the category, generate the attribute values from the distribution of the
category

- Conditional independence given C

- We use the training data to learn the distribution of the values in a
class



Generative vs Discriminative models

Logistic Regression and SVM are discriminative models

- The goal is to find the boundary that discriminates between the two classes
from the training data

In order to classify the language of a document, you can

- Either learn the two languages and find which is more likely to have
generated the words you see

- Or learn what differentiates the two languages.



SUPERVISED LEARNING




Learning

- Supervised Learning: learn a model from the data using labeled

data.

- Classification and Regression are the prototypical examples of supervised
learning tasks. Other are possible (e.g., ranking)

- Unsupervised Learning: learn a model — extract structure from
unlabeled data.

- Clustering and Association Rules are prototypical examples of unsupervised
learning tasks.

- Semi-supervised Learning: learn a model for the data using both
labeled and unlabeled data.



Supervised Learning Steps

Model the problem
- What is you are trying to predict? What kind of optimization function do you need?
Do you need classes or probabilities?

Extract Features
- How do you find the right features that help to discriminate between the classes?

Obtain training data

- ODbtain a collection of labeled data. Make sure it is large enough, accurate and
representative. Ensure that classes are well represented.

Decide on the technique

- What is the right technique for your problem?

Apply in practice

- Can the model be trained for very large data? How do you test how you do in
practice? How do you improve?



-
Modeling the problem

- Sometimes it is not obvious. Consider the following three problems
- Detecting if an email is spam
- Categorizing the gueries in a search engine
- Ranking the results of a web search
- Predicting the reply to a question.



Feature extraction

Feature extraction, or feature engineering iIs the most tedious but also the

most important step
- How do you separate the players of the Greek national team from those of the Swedish
national team?

One line of thought: throw features to the classifier and the classifier will figure
out which ones are important

- More features, means that you need more training data

Another line of thought: Feature Selection: Select carefully the features using
various functions and techniques

- Computationally intensive

Deep Neural Networks
- They use raw data for classification
- They learn a representation from the data



Training data

An overlooked problem: How do you get labeled data for training your
model?

- E.g., how do you get training data for ranking?
- Chicken and egg problem

Usually requires a lot of manual effort and domain expertise and
carefully planned labeling

- Results are not always of high quality (lack of expertise)

- And they are not sufficient (low coverage of the space)

Recent trends:

- Find a source that generates the labeled data for you, or use the data themselves
for the prediction task

- Crowd-sourcing techniques



Dealing with small amounts of labeled data

Semi-supervised learning techniques have been developed for this
purpose.

Self-training: Train a classifier on the data, and then feed back the high-
confidence output of the classifier as input

Co-training: train two “independent” classifiers and feed the output of
one classifier as input to the other.

Regularization: Treat learning as an optimization problem where you
define relationships between the objects you want to classify, and you
exploit these relationships

- Example: Image restoration



Technique

The choice of technique depends on the problem requirements (do
we need a probability estimate?) and the problem specifics (does

Independence assumption hold? do we think classes are linearly
separable?)

For many cases finding the right technique may be trial and error
For many cases the exact technigue does not matter.



-
Big Data Trumps Better Algorithms

If you have enough data then the algorithms are not so important

The web has made this

possible.
Especially for text-related tasks
Search engine uses the collective  .**

human intelligence
Google lecture: Theorizing from
the Data

0.1 1 10 100 10040
Millions of Words

Figure 1. Learning Curves for Confusion Set
Disambiguation


http://www.youtube.com/watch?v=nU8DcBF-qo4

-
Apply-Test

How do you scale to very large datasets?

- Distributed computing — map-reduce implementations of machine learning
algorithms (Mahaut, over Hadoop)

How do you test something that is running online?
- You cannot get labeled data in this case
- A/B testing

How do you deal with changes in data?
- Active learning



