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Absorbing Random Walks and Label Propagation



Network Science

• A number of complex systems can be modeled as networks (graphs).
• The Web

• (Online) Social Networks

• Biological systems

• Communication networks (internet, email)

• The Economy

• We cannot truly understand such complex systems unless we 
understand the underlying network.
• Everything is connected, studying individual entities gives only a partial view of a 

system

• Data mining for networks is a very popular area
• Applications to the Web is one of the success stories for network data mining.



How to organize the web

• First try: Manually curated Web Directories



How to organize the web

• Second try: Web Search

• Information Retrieval investigates:

• Find relevant docs in a small and trusted set e.g., Newspaper 

articles, Patents, etc. (“needle-in-a-haystack”)

• Limitation of keywords (synonyms, polysemy, etc)

• But: Web is huge, full of untrusted documents, random things, web 

spam, etc. 

▪ Everyone can create a web page of high production value

▪ Rich diversity of people issuing queries

▪ Dynamic and constantly-changing nature of web content



How to organize the web

• Third try (the Google era): using the web graph

• Sift from relevance to authoritativeness

• It is not only important that a page is relevant, but that it is also important on 

the web

• For example, what kind of results would we like to get for the query 

“game of thrones”?



Link Analysis Ranking

• Use the graph structure in order to 

determine the relative importance of the 

nodes

• Applications: Ranking on graphs (Web, Twitter, 

FB, etc)

• Intuition: An edge from node p to node q 

denotes endorsement

• Node p endorses/recommends/confirms the 

authority/centrality/importance of node q

• Use the graph of recommendations to assign an 

authority value to every node

What is the simplest way to 

measure importance of a 

page on the web?



Rank by Popularity

• Rank pages according to the number of incoming edges (in-

degree, degree centrality)

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Popularity

• It is not important only how many link to you, but how important are 
the people that link to you.

• Good authorities are pointed by good authorities
• Recursive definition of importance



PAGERANK



PageRank

• Good authorities should be pointed by good authorities
• The value of a node is the value of the nodes that point to it.

• How do we implement that?
• Assume that we have a unit of authority to distribute to all nodes.

• Node 𝑖 gets a fraction 𝑤𝑖 of that authority weight

• Each node distributes the authority value they have to their neighbors

• The authority value of each node is the sum of the authority fractions it 

collects from its neighbors.

𝑤𝑖 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑖 |
𝑤𝑗 Recursive definition



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑖 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑖 |
𝑤𝑗 𝑣2

𝑣3

𝑣4𝑣5

𝑣1

w1 + w2 + w3 + w4 + w5 = 1 We can obtain the weights by solving this 

system of equations 



Computing PageRank weights

• A simpler way to compute the weights is by iteratively updating the 
weights using the equations

• PageRank Algorithm

• This process converges

Initialize all PageRank weights to wi
0 =

1

𝑛

Repeat:

𝑤𝑖
𝑡 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑖 |
𝑤𝑗
𝑡−1

Until the weights do not change



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=0 0.2 0.2 0.2 0.2 0.2

t=1 0.16 0.36 0.16 0.1 0.2

t=2 0.13 0.28 0.11 0.1 0.36

t=3 0.22 0.22 0.1 0.18 0.28

t=4 0.2 0.27 0.17 0.14 0.22

Think of the weight as a fluid: there is 

constant amount of it in the graph, 

but it moves around until it stabilizes



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=25 0.18 0.27 0.13 0.13 0.27 Think of the weight as a fluid: there is 

constant amount of it in the graph, 

but it moves around until it stabilizes



The PageRank algorithm

Think of the nodes in the 

graph as containers of 

capacity of 1 liter.

We distribute a liter of 

liquid equally to all 

containers



The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The contents of each 

node are distributed to 

its neighbors.

The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The contents of each 

node are distributed to 

its neighbors.

The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The contents of each 

node are distributed to 

its neighbors.

The edges act like pipes 

that transfer liquid 

between nodes. 

The PageRank algorithm



The system will reach an 

equilibrium state where 

the amount of liquid in 

each node remains 

constant. 

The PageRank algorithm



The amount of liquid in 

each node determines 

the importance of the 

node.

Large quantity means 

large incoming flow from 

nodes with large quantity 

of liquid.

The PageRank algorithm



Random Walks on Graphs

• The algorithm defines a random walk on the graph

• Random walk:

• Start from a node chosen uniformly at random with probability 
1

𝑛
.

• Pick one of the outgoing edges uniformly at random

• Move to the destination of the edge

• Repeat.



Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 1

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 1

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 3

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 3

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 4…

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being at node 𝑖 after 𝑡 steps?

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝑝3
0 =

1

5

𝑝4
0 =

1

5

𝑝5
0 =

1

5

𝑝1
𝑡 =

1

3
𝑝4
𝑡−1 +

1

2
𝑝5
𝑡−1

𝑝2
𝑡 =

1

2
𝑝1
𝑡−1 + 𝑝3

𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =

1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =

1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝1
0 =

1

5

𝑝2
0 =

1

5

The equations are the same as those for the 

PageRank iterative computation

𝑤𝑖
𝑡 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑖 |
𝑤𝑗
𝑡−1



Random walk

• At convergence:
𝑣2

𝑣3

𝑣4𝑣5

𝑣1

We get the same equation as for PageRank

𝑝𝑖 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑖 |
𝑝𝑗
𝑡−1

The PageRank of node 𝑖 is the probability that the random walk is at node 

𝑖 after a very large number of steps



Markov chains

• A Markov chain describes a discrete time stochastic process over a 
set of states

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}

according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗}
• 𝑃𝑖𝑗 = probability of moving to state 𝑗 when at state 𝑖

• Matrix 𝑃 has the property that the entries of all rows sum to 1



𝑗

𝑃 𝑖, 𝑗 = 1

A matrix with this property is called stochastic



Markov chains

• The stochastic process proceeds in steps and moves between the 

states:

• State probability distribution: The vector 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡 ) that stores the 

probability of being at state 𝑠𝑖 after 𝑡 steps

• Memorylessness property: The next state of the chain depends only 
at the current state and not on the past of the process (first order 
MC)

• Higher order MCs are also possible

• We can compute the vector 𝑝𝑡 at step 𝑡 using a vector-matrix 

multiplication
𝑝𝑡+1 = 𝑝𝑡𝑃



Stationary distribution

• The stationary distribution of a random walk with transition matrix 𝑃, 
is a probability distribution 𝜋, such that 𝜋 = 𝜋𝑃

• The stationary distribution is an eigenvector of matrix 𝑃
• the principal left eigenvector of P – stochastic matrices have maximum 

eigenvalue 1

• Markov Chain Theory: The random walk converges to a unique 
stationary distribution independent of the initial vector if the graph is 
strongly connected, and not bipartite. 



Random walks

• Random walks on graphs correspond to Markov Chains

• The set of states 𝑆 is the set of nodes of the graph 𝐺

• The transition probability matrix is the probability that we follow an edge 

from one node to another

𝑃 𝑖, 𝑗 =
1

|N𝑜𝑢𝑡 𝑖 |

• The stationary distribution of the random walk gives the PageRank 

values



An example























=

0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=

01001

00111

00010

10000

00110

A



An example























=

0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝑝1
𝑡 =

1

3
𝑝4
𝑡−1 +

1

2
𝑝5
𝑡−1

𝑝2
𝑡 =

1

2
𝑝1
𝑡−1 + 𝑝3

𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =

1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =

1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝𝑡+1 = 𝑝𝑡𝑃



Computing the stationary distribution

• The Power Method, same as the PageRank computation

• After many iterations 𝑝𝑡 → 𝜋 regardless of the initial vector 𝑝0

• Power method because it computes 𝑝𝑡 = 𝑝0𝑃𝑡

• The rate of convergence is determined by the second eigenvalue 𝜆2

Initialize 𝑝0 to some distribution 
Repeat  

𝑝𝑡 = 𝑝𝑡−1𝑃
Until convergence



The stationary distribution

• 𝜋 is the left eigenvector of transition matrix 𝑃

• 𝜋(𝑖): the probability of being at node 𝑖 after very large (infinite)

number of steps

• 𝜋(𝑖): the fraction of times that the random walk visited

state 𝑖 as 𝑡 → ∞

• 𝜋 = 𝑝0𝑃
∞, where 𝑃 is the transition matrix, 𝑝0 the original vector 

• 𝑃 𝑖, 𝑗 : probability of going from i to j in one step

• 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps (sum of probabilities of all 
paths of length 2)

• 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in infinite steps – starting point 
does not matter.



The PageRank random walk

• Vanilla random walk

• make the adjacency matrix stochastic and run a random walk























=

0210021

00313131

00010

10000

0021210

P



The PageRank random walk

• What about sink nodes?

• what happens when the random walk moves to a node without any outgoing 

inks?























=

0210021

00313131

00010

00000

0021210

P

























=

0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• Replace these row vectors with a vector 𝑢

• typically, the uniform vector

𝑃’ = 𝑃 + 𝑑𝑢𝑇





=
otherwise0

sink is i if1
d

𝑢: The jump vector

Outer 

product 



The PageRank random walk

• What about loops?

• Spider traps
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−=

5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P'  )1(

The PageRank random walk
• At every step with (fixed) probability 𝛼 perform a random jump to a node selected 

according the distribution vector 𝑢
• Typically, to a uniform vector

• Guarantees irreducibility, convergence

• You can think of the random jump as a restart of the random walk

• Restart the walk from the chosen node (every 1/𝛼 steps in expectation)

𝑃′′ = (1 − 𝛼)𝑃′ + 𝛼𝟏𝑢𝑇,  where 1 is the vector of all 1s

Random walk with restarts𝑎: jump probability



The PageRank weights 

• For the PageRank weights we have 

𝑤𝑖 = 1 − 𝛼 

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑢 |
𝑤𝑗 + 𝛼𝑢𝑖

• 𝛼 = 0.15 in most cases

• In matrix-vector terms, if 𝑝 is the stationary distribution:

𝑝𝑇 = 𝑝𝑇 1 − 𝛼 𝑃 + 𝛼𝑢

• Solving for 𝑝:

𝑝𝑇 = 𝐼 − 1 − 𝛼 𝑃 −1𝛼𝑢



Stationary distribution with random jump

• If 𝑢 is the jump vector

• Explanation: From the last step trace the last restart :
• With probability 𝛼 you just restarted in the last step

• With probability 1 − 𝛼 𝛼 you restarted one step before and then did a random walk step

• With probability 1 − 𝛼 2𝛼 you restarted two steps before and then did two random walk steps

• Etc…

• Conclusion: you are not likely to walk very far
• The probability that you did multiple steps after the last restart drops exponentially

• On average the random walk restarts every 1/𝛼 steps

𝑝0 = 𝑢
𝑝1 = (1 − 𝛼)𝑝0𝑃 + 𝛼𝑢 = 1 − 𝛼 𝑢𝑃 + 𝛼𝑢
𝑝2 = (1 − 𝛼)𝑝1𝑃 + 𝛼𝑢 = (1 − 𝛼)2𝑢𝑃2 + 1 − 𝛼 𝛼𝑢𝑃 + 𝛼𝑢
𝑝3 = 1 − 𝛼 𝑝2𝑃 + 𝛼𝑢 = 1 − 𝛼 3𝑢𝑃3 + 1 − 𝛼 2𝛼𝑢𝑃2 + 1 − 𝛼 𝛼𝑢𝑃 + 𝛼𝑢
𝑝𝑘 = 1 − 𝛼 𝑘𝑢𝑃𝑘 + 1 − 𝛼 𝑘−1𝛼𝑢𝑃𝑘−1 +⋯+ 1 − 𝛼 𝛼𝑢𝑃 + 𝛼𝑢
𝑝∞ = 𝛼𝑢 + 1 − 𝛼 𝛼𝑢𝑃 + 1 − 𝛼 2𝛼𝑢𝑃2 + ⋯ = 𝛼 𝐼 − (1 − 𝛼)𝑃 −1𝑢



Random walks with restarts

• In Random walks with restarts the shorter paths are more important, 
since the weight decreases exponentially
• This changes the stationary distribution. When starting from some node 𝑥, nodes 

close to 𝑥 have higher probability

• Restart vector:
• If 𝑢 is not uniform, we can bias the random walk towards the nodes that are close

to the restart nodes

• Topic-Specific Pagerank
• Restart to nodes about a specific topic, e.g., Greek pages, University home pages

• Anti-spam

• Personalized Pagerank:
• Always restart to some node 𝑥, e.g., the home page of a user

• Random Walks with restarts is a general technique for measuring 
closeness on graphs.



Personalized Pagerank Example

• Global Pagerank vector (jump vector 
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
)

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

1

2

5

4

3

6



Personalized Pagerank Example

• Global Pagerank vector (jump vector 
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
) :

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

• Personalized Pagerank for node 1 (jump vector [1,0,0,0,0,0]):
[0.26, 0.20, 0.24, 0.14, 0.08, 0.07]

1

2

5

4

3

6



Personalized Pagerank Example

• Global Pagerank vector (jump vector 
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
) :

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

• Personalized Pagerank from node 1 (jump vector [1,0,0,0,0,0]):
[0.26, 0.20, 0.24, 0.14, 0.08, 0.07]

• Personalized Pagerank for node 6 (jump vector [0,0,0,0,0,1]):
[0.07, 0.13, 0.19, 0.19, 0.15, 0.27]

1

2

5

4

3

6



Personalized Pagerank Example

• Global Pagerank vector (jump vector 
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
) :

[0.14, 0.17, 0.21, 0.18, 0.15, 0.15]

• Personalized Pagerank from node 1 (jump vector [1,0,0,0,0,0]):
[0.55, 0.17, 0.18, 0.05, 0.03, 0.02]

• Personalized Pagerank for node 6 (jump vector [0,0,0,0,0,1]):
[0.02, 0.04, 0.07, 0.16, 0.15, 0.56]

With 𝑎 = 0.5

1

2

5

4

3

6



Random walks on undirected graphs

• For undirected graphs, the stationary distribution is proportional to 

the degrees of the nodes

• Thus in this case a random walk is the same as degree popularity

• This is no longer true if we do random jumps

• Now the short paths play a greater role, and the previous distribution does 

not hold.



Pagerank implementation

• Store the graph in adjacency list, or list of edges

• Keep current pagerank values and new pagerank values

• Go through edges and update the values of the destination nodes.

• Repeat until the difference (𝐿1 or 𝐿∞ difference) is below some 

small value ε. 



A (Matlab-friendly) PageRank algorithm

• Performing vanilla power method is now too expensive – the matrix 

is not sparse

q0 = u

t = 1

repeat

t = t +1

until δ < ε

( ) 1tTt q'P'q −=
1tt qqδ −−=

Efficient computation of y = (P’’)T x

βuyy

yx β

xα)P1(y

11

T

+=

−=

−=

P = normalized adjacency matrix

P’’ = (1-α)P’ + α1uT,  where 1 is the vector of all 1s

P’ = P + duT, where di is 1 if i is sink and 0 o.w.



Pagerank history

• Huge advantage for Google in the early days
• It gave a way to get an idea for the value of a page, which was useful in many 

different ways

• Put an order to the web.

• After a while it became clear that the anchor text was probably more important for 
ranking

• Also, link spam became a new (dark) art

• Flood of research
• Numerical analysis got rejuvenated

• Huge number of variations

• Efficiency became a great issue.

• Huge number of applications in different fields 

• Random walk is often referred to as PageRank.



THE HITS ALGORITHM



The HITS algorithm

• Another algorithm proposed around the same time as Pagerank for 

using the hyperlinks to rank pages

• Kleinberg: then an intern at IBM Almaden

• IBM never made anything out of it



Query dependent input

Root Set

Root set obtained from a text-only search engine



Query dependent input

Root Set

IN OUT



Query dependent input

Root Set

IN OUT



Query dependent input

Root Set

IN OUT

Base Set



Hubs and Authorities [K98]

• Authority is not necessarily 
transferred directly between 
authorities

• Pages have double identity
• hub identity

• authority identity

• Good hubs point to good 
authorities

• Good authorities are pointed by 
good hubs

hubs authorities



Hubs and Authorities

• Two kind of weights:

• Hub weight

• Authority weight

• The hub weight is the sum of the authority weights of the 

authorities pointed to by the hub

• The authority weight is the sum of the hub weights that point to this 

authority.



HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
• O operation : hubs collect the weight of the authorities

• I operation: authorities collect the weight of the hubs

• Normalize weights under some norm

ℎ𝑖
𝑡 = 

𝑗:𝑖→𝑗

𝑎𝑗
𝑡−1

𝑎𝑖
𝑡 = 

𝑗:𝑗→𝑖

ℎ𝑗
𝑡−1

The order of updates does not matter after many iterations.



Example

hubs authorities

1

1

1

1

1

1

1

1

1

1

Initialize



Example

hubs authorities

1

1

1

1

1

1

2

3

2

1

Step 1: O operation



Example

hubs authorities

6

5

5

2

1

1

2

3

2

1

Step 1: I operation



Example

hubs authorities

1

5/6

5/6

2/6

1/6

1/3

2/3

1

2/3

1/3

Step 1: Normalization (Max norm)



Example

hubs authorities

1

5/6

5/6

2/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: O step



Example

hubs authorities

33/6

27/6

23/6

7/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: I step



Example

hubs authorities

1

27/33

23/33

7/33

1/33

6/16

11/16

1

7/16
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Step 2: Normalization



Example

hubs authorities

1

0.8
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0.14

0

0.4
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1

0.3

0

Convergence



HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector computation

• In vector terms 
• 𝑎𝑡 = 𝐴𝑇ℎ𝑡−1 and ℎ𝑡 = 𝐴𝑎𝑡−1

• 𝑎𝑡 = 𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 = 𝐴𝐴𝑇ℎ𝑡−1

• Repeated iterations will converge to the eigenvectors

• The authority weight vector 𝑎 is the eigenvector of 𝐴𝑇𝐴

• The hub weight vector ℎ is the eigenvector of 𝐴𝐴𝑇

• The vectors 𝑎 and ℎ are the singular vectors of the matrix A



Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

•
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Why does the Power Method work?

• If a matrix R is real and symmetric, it has real eigenvalues and 
eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 , … , (𝜆𝑟 , 𝑤𝑟)
• r is the rank of the matrix

• |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟

• For any matrix R, the eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R define a basis of 
the vector space
• For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑟𝑤𝑟

• After t multiplications we have:
𝑅𝑡𝑥 = 𝜆1

𝑡−1𝛼1𝑤1 + 𝜆2
𝑡−1𝑎2𝑤2 +⋯+ 𝜆2

𝑡−1𝑎𝑟𝑤𝑟

• Normalizing leaves only the term 𝑤1.



OTHER ALGORITHMS



The SALSA algorithm

• Perform a random walk on the bipartite 

graph of hubs and authorities alternating 

between the two

• What does this random walk converges to?
hubs authorities



• Start from an authority chosen uniformly at 

random

• e.g. the red authority

hubs authorities

The SALSA algorithm



• Start from an authority chosen uniformly at 

random

• e.g. the red authority

• Choose one of the in-coming links uniformly at 

random and move to a hub

• e.g. move to the yellow authority with probability 1/3 hubs authorities

The SALSA algorithm



• Start from an authority chosen uniformly at 

random

• e.g. the red authority

• Choose one of the in-coming links uniformly at 

random and move to a hub

• e.g. move to the yellow authority with probability 1/3

• Choose one of the out-going links uniformly at 

random and move to an authority

• e.g. move to the blue authority with probability 1/2

hubs authorities

The SALSA algorithm



The SALSA algorithm

• Formally we have probabilities:

• 𝑎𝑖: probability of being at authority 𝑖

• ℎ𝑗: probability of being at hub 𝑗

• The probability of being at authority i is computed as:

𝑎𝑖
𝑡 = 

𝑗∈𝑁𝑖𝑛(𝑖)

1

𝑑𝑜𝑢𝑡 𝑗
ℎ𝑗
𝑡−1

• The probability of being at hub 𝑗 is computed as

ℎ𝑗
𝑡 = 

𝑖∈𝑁𝑜𝑢𝑡(𝑗)

1

𝑑𝑖𝑛 𝑖
𝑎𝑖
𝑡−1

• Repeated computation converges



The SALSA algorithm

• In matrix terms

• 𝐴𝑐 = the matrix 𝐴 where columns are normalized 

to sum to 1

• 𝐴𝑟 = the matrix 𝐴 where rows are normalized to 

sum to 1

• The hub computation

• ℎ = 𝐴𝑐 𝑎

• The authority computation

• 𝑎 = 𝐴𝑟
𝑇 ℎ = 𝐴𝑟

𝑇 𝐴𝑐 𝑎

• In MC terms the transition matrix

• 𝑃 = 𝐴𝑟 𝐴𝑐
𝑇

hubs authorities

𝒂𝟏 = 𝒉𝟏 + 𝟏/𝟐 𝒉𝟐 + 𝟏/𝟑 𝒉𝟑

𝒉𝟐 = 𝟏/𝟑 𝒂𝟏 + 𝟏/𝟐 𝒂𝟐



Social network analysis

• Evaluate the centrality of individuals in social networks

• degree centrality

• the (weighted) degree of a node

• distance centrality

• the average (weighted) distance of a node to the rest in the graph

• betweenness centrality

• the average number of (weighted) shortest paths that use node v
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Counting paths – Katz 53

• The importance of a node is measured by the weighted sum of 

paths that lead to this node

• Am[i,j] = number of paths of length m from i to j

• Compute 

• converges when b < λ1(A)

• Rank nodes according to the column sums of the matrix P

( ) IbAIAbAbbAP
1mm22 −−=++++=
−





Bibliometrics

• Impact factor (E. Garfield 72)

• counts the number of citations received for papers of the journal in the 

previous two years

• Pinsky-Narin 76

• perform a random walk on the set of journals

• Pij = the fraction of citations from journal i that are directed to journal j



ABSORBING RANDOM WALKS



Random walk with absorbing nodes

• Absorbing nodes: nodes from which the random walk cannot 

escape.

• Two absorbing nodes: the red and the blue.

P. G. Doyle, J. L. Snell. Random Walks and Electrical Networks. 1984



Absorption probability

• In a graph with more than one absorbing nodes a random walk that 

starts from a non-absorbing (transient) node t will be absorbed in 

one of them with some probability

• For node t we can compute the probabilities of absorption



Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in themselves and zero of 

being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of the absorption 
probabilities of your neighbors 

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝑅𝑒𝑑 = 1 , 𝑃 𝑅𝑒𝑑 𝐵𝑙𝑢𝑒 = 0



Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in themselves and 

zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of the absorption 
probabilities of your neighbors 

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

𝑃 𝐵𝑙𝑢𝑒 𝐵𝑙𝑢𝑒 = 1 , 𝑃 𝐵𝑙𝑢𝑒 𝑅𝑒𝑑 = 0



Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in themselves and 

zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of the absorption 
probabilities of your neighbors 

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝑎 𝑡 = 

𝑡,𝑥 ∈𝐸

𝑃 𝑡, 𝑥 𝑃(𝑎|𝑥)

2

2

1

1

1
2

1

General equation for the probability of transient 

node 𝑡 being absorbed at absorbing node 𝑎

The weighted average of the neighbors



Absorption probabilities

• The absorption probabilities for red and blue

0.52
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1
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Absorption probabilities

• The absorption probability has several practical uses.

• Given a graph (directed or undirected) we can choose to make 

some nodes absorbing.

• Simply direct all edges incident on the chosen nodes towards them and 

create a self-loop.

• The absorbing random walk provides a measure of proximity of 

transient nodes to the chosen nodes.

• Useful for understanding proximity in graphs

• Useful for propagation in the graph

• E.g, on a social network some nodes are malicious, while some are certified, to which 

class is a transient node closer?



Linear Algebra

• The transition matrix of the random walk looks like this

• 𝑃𝑇𝑇: transition probabilities between transient nodes

• 𝑃𝑇𝐴: transition probabilities from transient to absorbing nodes

• Computing the absorption probabilities corresponds to iteratively 

multiplying matrix 𝑃 with itself

𝑃 =
𝑃𝑇𝑇 𝑃𝑇𝐴
0 𝐼

T: transient

A: absorbing

T A



Linear algebra

• The transient-to-absorbing matrix 𝑄
• 𝑄 𝑖, 𝑘 = The probability of being absorbed in absorbing state 𝑎𝑘 when starting from transient 

state 𝑡𝑖
• The fundamental matrix

𝐹 = 𝐼 + 𝑃𝑇𝑇 + 𝑃𝑇𝑇
2 +⋯ =

𝑖=0

∞

𝑃𝑇𝑇
𝑖 = 𝐼 − 𝑃𝑇𝑇

−1

• 𝐹 𝑖, 𝑗 = The sum of probabilities of visiting transient state 𝑡𝑗 when starting from state 𝑡𝑖 after
any number of steps

Also: The expected number of visits to transient state 𝑡𝑗 when starting from state 𝑡𝑖 after any 
number of steps 

𝑄 = 𝐹𝑃𝑇𝐴 = 𝑃𝑇𝐴 + 𝑃𝑇𝑇𝑃𝑇𝐴 + 𝑃𝑇𝑇
2 𝑃𝑇𝐴 +⋯

𝑃∞ =
0 𝑄
0 𝐼



Penalizing long paths

• The orange node has the same probability of reaching red and 

blue as the yellow one

• Intuitively though it is further away
0.52

0.48

0.42

0.58

0.57

0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

0.57

0.43



Penalizing long paths

• Add an universal absorbing node to which each node gets 

absorbed with probability α. 

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

With probability α the random walk dies

With probability (1-α) the random walk 

continues as before

The longer the path from a node to an  

absorbing node the more likely the random 

walk dies along the way, the lower the 

absorbtion probability

e.g.



Absorbing Random Walks and Random walks with restarts

• Adding a jump with probability α to a  universal absorbing node seems similar 
to Pagerank

• The Random Walk With Restarts (RWS) and Absorbing Random Walk (ARW) 
are similar but not the same
• RWS computes the probability of paths from the starting node u to a node v, while AWR the 

probability of paths from a node v, to the absorbing node u.

• RWS defines a distribution over all nodes, while AWR defines a probability for each node

• An absorbing node blocks the random walk, while restarts simply bias towards starting 
nodes
• Makes a difference when having multiple (and possibly competing) absorbing nodes

• You can implement RWS as an absorbing walk, but not clear how to do the 
opposite



Propagating values

• Assume that Red has a positive value and Blue a negative value
• Positive/Negative class, Positive/Negative opinion

• We can compute a value for all the other nodes by repeatedly averaging the 
values of the neighbors
• The value of node u is the expected value at the point of absorption for a random walk 

that starts from u

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
−
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
−
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1

General equation for value propagation:

𝑣 𝑖 = 

𝑖,𝑗 ∈𝐸

𝑃 𝑖, 𝑗 𝑣(𝑗)

The value of 𝑖 is the weighted average of the values of its neighbors



Linear algebra

• Computation of values is essentially multiplication of the matrix 𝑄
with the vector of values of the absorbing nodes

• Recall: Matrix 𝑄 is the 𝑇 × 𝐴 matrix, and 𝑄[𝑡, 𝑎] is the probability of  transient 

node 𝑡 being absorbed at absorbing node 𝑎

𝒗 = 𝑄𝒔

• 𝒔: vector of values of the absorbing nodes

• 𝒗: vector of values of the transient nodes



Electrical networks and random walks

• Our graph corresponds to an electrical network

• There is a positive voltage of +1 at the Red node, and a negative voltage -1 at 
the Blue node

• There are resistances on the edges inversely proportional to the weights (or 
conductance proportional to the weights)

• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
−
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
−
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16



Springs and random walks

• Our graph corresponds to an spring system

• The Red node is pinned at position +1, while the Blue node is pinned at 
position -1 on a line. 

• There are springs on the edges with hardness proportional to the weights 

• The computed values are the positions of the nodes on the line



Springs and random walks

• Our graph corresponds to an spring system

• The Red node is pinned at position +1, while the Blue node is pinned at 
position -1 on a line. 

• There are springs on the edges with hardness proportional to the weights 

• The computed values are the positions of the nodes on the line

0.05-0.16

0.16



Opinion formation model (Friedkin and Johnsen)

• Opinions are values in [−1,+1]

• Every user 𝑖 has an intrinsic opinion 𝑠𝑖 ∈ [−1,+1] and an 

expressed opinion 𝑧𝑖 ∈ [−1,+1]

• The public opinion 𝑧𝑖 of each user in the network is iteratively

updated, each time taking the average of the expressed opinions 

of its neighbors and the intrinsic opinion of herself

𝑧𝑖
𝑡 =

𝑤𝑖𝑖𝑠𝑖 +σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗
𝑡−1

𝑤𝑖𝑗 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗



Opinion formation as a game

• Assume that network users are rational (selfish) agents

• Each user has a personal cost for expressing an opinion

𝑐 𝑧𝑖 = 𝑤𝑖𝑖 𝑧𝑖 − 𝑠𝑖
2 + 

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗 𝑧𝑖 − 𝑧𝑗
2

• Each user is selfishly trying to minimize her personal cost.

Inconsistency cost: The cost for 

deviating from one’s intrinsic opinion

Conflict cost: The cost for 

disagreeing with the opinions in 

one’s social network

D. Bindel, J. Kleinberg, S. Oren. How Bad is Forming Your Own Opinion?

Proc. 52nd IEEE Symposium on Foundations of Computer Science, 2011.



Opinion formation as a game

• The opinion 𝑧𝑖 that minimizes the personal cost of user 𝑖

𝑧𝑖 =
𝑤𝑖𝑗𝑠𝑖 +σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

𝑤𝑖𝑗 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗

• In linear algebra terms (assume 0/1 weights):

𝐿 + 𝐼 𝒛 = 𝒔 ⇒ 𝒛 = 𝐿 + 𝐼 −1𝒔
where 𝐿 is the Laplacian of the graph.

• The Laplacian is the negated adjacency matrix with the degree on the 
diagonal

𝐿 = 𝐷 − 𝐴
• 𝐷: diagonal matrix with the degrees on the diagonal

The Friedkin & Johnsen model



Example

• Social network with internal opinions

• There is a connection of this model with absorbing random walks 

and value propagation – can you see it?

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1s = +0.2

s = +0.8



Opinion formation and absorbing random walks

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1s = -0.5

s = +0.8

The expressed opinion for each node is 

computed using the value propagation we 

described

• Repeated averaging

Add to the network one absorbing node 

per user with value the intrinsic opinion of 

the user
z = +0.22z = +0.17

z = -0.03
z = 0.04

z = -0.01

Connect each transient node to her 

absorbing node with weight 𝑤𝑖𝑖

It is equal to the expected intrinsic opinion at the place of absorption

𝑣 𝑟𝑒𝑑 =
0.5 + 2 ⋅ 𝑣 𝑦𝑒𝑙𝑙𝑜𝑤 + 𝑣(𝑔𝑟𝑒𝑒𝑛)

4
𝑧𝑟𝑒𝑑 =

0.5 + 2 ⋅ 𝑧𝑦𝑒𝑙𝑙𝑜𝑤 + 𝑧𝑔𝑟𝑒𝑒𝑛

4



Opinion of a user

• For an individual user u

• u’s absorbing node is a stationary point 

• u’s transient node is connected to the absorbing node with a spring. 

• The neighbors of u pull with their own springs.





Hitting time

• A related quantity: Hitting time H(u,v)

• The expected number of steps for a random walk starting from node u to 

end up in v for the first time

• Make node v absorbing and compute the expected number of steps to reach v

• Assumes that the graph is strongly connected, and there are no other absorbing nodes.

• Commute time H(u,v) + H(v,u): often used as a distance metric

• Proportional to the total resistance between nodes u, and v



Transductive learning

• If we have a graph of relationships and some labels on some nodes we 
can propagate them to the remaining nodes 
• Make the labeled nodes to be absorbing and compute the probability for the rest of 

the graph

• E.g., a social network where some people are tagged as spammers

• E.g., the movie-actor graph where some movies are tagged as action or comedy. 

• This is a form of semi-supervised learning 
• We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not produce a 
model, but just labels the unlabeled data that is at hand.
• Contrast to inductive learning that learns a model and can label any new example



Implementation details

• Implementation is in many ways similar to the PageRank 

implementation

• For an edge (𝑢, 𝑣)instead of updating the value of v we update the value of 

u. 

• The value of a node is the average of its neighbors

• We need to check for the case that a node u is absorbing, in which case the 

value of the node is not updated.

• Repeat the updates until the change in values is very small.


