
1

Online Social Networks and
Media

Graph Embeddings

Graph embeddings: what are they?

2

vec

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, embedding

node
u

Map nodes to d-dimensional vectors so that:
“similar” nodes in the graph have embeddings that are
close together.

Example

3

Output

Zachary’s Karate Club Network:

Image from: Perozzi et al.. DeepWalk: Online Learning of Social Representations. KDD 2014.

Input

4

Graph embeddings: why?

Raw
Data

Structured
Data

Learning
Algorithm

Model

Downstream
prediction task

Feature Engineering

Machine learning lifecycle

degree, PageRank, motifs,
degrees of neighbors,
Pagerank of neighbors, etc

5

Graph embeddings: why?

Raw
Data

Structured
Data

Learning
Algorithm

Model

Downstream
prediction task

Feature Engineering

Automatically learn the features (embeddings)

Machine learning lifecycle

degree, PageRank, motifs,
degree of neighbors,
Pagerank of neighbors, etc

Embedding nodes

6

Input: Graph G(V, E)
Goal: encode nodes so that similarity in the embedding
space approximates similarity in the original network.

Based on: W. L. Hamilton, R. Ying, J. Leskovec: Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40(3): 52-74 (2017)

i

j

𝑧𝑖

𝑧𝑗

G: original network embedding space

ENC(i)

ENC(j)

Embedding nodes

7

Goal: similarity(i, j) ≈ 𝑧𝑖 ∙ 𝑧𝑗

Based on: W. L. Hamilton, R. Ying, J. Leskovec: Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40(3): 52-74 (2017)

i

j

𝑧𝑖

𝑧𝑗

G: original network embedding space

ENC(i)

ENC(j)

to be defined
how relationships in vector space
map to relationships in the original
network
encode structure

dot product (other
definitions possible)

Learning node embeddings

8

1. Define an encoder that maps nodes to low
dimensional spaces

2. Define a node similarity function in the original
network.

3. Optimize the parameters of the encoder so that we
minimize a loss function L that looks (roughly) like:

𝑳 = σ 𝑖,𝑗 ∈ 𝑉(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖, 𝑗 − 𝑧𝑖 ∙ 𝑧𝑗)2

When are two nodes similar? Any ideas?

Shallow embeddings(*)

9

d

|V|

Z

𝑧𝑖

i

Each node is assigned a single d-dimensional vector
Learn embedding matrix Z: each column i is the embedding 𝑧𝑖 of
node i

Dimension/size
of the embedding

(*) As opposed to deep learning in graphs (neural networks embeddings)

Shallow embeddings

10

Z

𝑧𝑖

i

𝐸𝑁𝐶 𝑖 = 𝑍 𝐼𝑖

0 0 1 0

i

One-hot or indicator vector, all 0s
but position i

𝐼𝑖

Encoder is an embedding lookup

Node embeddings

11

Three approaches based on:
▪ Adjacency matrix
▪ Multi-hop neighborhoods
▪ HOPE
▪ GraRep
Background on word2vec

▪ Random-walks
▪ DeepWalk
▪ Node2Vec

12

Adjacency-based approach

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=

00020

00231

02002

23003

01230

A

▪ Similarity function is just the edge (weight) between u and v in
the original network.

▪ Dot products between node embeddings approximate edge
existence.

A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, A. J. Smola: Distributed large-scale natural graph factorization.
WWW 2013

13

𝐿 = σ𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗 ||
2

sum over all node pairs

The loss that what we want to minimize

(weighted) adjacency
matrix for the graph

embedding similarity

Adjacency-based approach

14

1. Matrix decomposition (for example, SVD decomposition)
1. Scalability issues
2. Produced matrices that are very dense

2. Stochastic gradient descent

How to minimize loss

Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eigenvals AAT, ATA)

• : left singular vectors (eigenvectors of AAT)

• : right singular vectors (eigenvectors of ATA)

 





































==

r

2

1

r

2

1

r21

T

v

v

v

σ

σ

σ

uuuVΣUA















[n×r] [r×r] [r×n]

r21 u,,u,u





r21 v,,v,v





T

rrr

T

222

T

111r vuσvuσvuσA





+++=

16

𝐿 = σ 𝑖,𝑗 ∈ 𝐸(𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗)2

𝐿 = σ 𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗 ||
2

sum over all edges

𝐿 =
1

2
σ 𝑖,𝑗 ∈ 𝐸(𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗)2 +

𝜆

2
σ𝑖 ||𝑧𝑖 ||

2

Adjacency-based approach –
stochastic gradient descent

regularization factor

A few manipulations

sum over all node pairs

Adjacency-based approach

17

𝐿 =
1

2
σ 𝑖,𝑗 ∈ 𝐸(𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑖)

2 +
𝜆

2
σ𝑖 ||𝑧𝑖 ||

2

Gradient of L with respect to each row (column) of Z (learn one
vector per node)

𝜕𝐿

𝜕𝑧𝑖
= - σ𝑗 ∈ 𝑁(𝑖) 𝐴𝑖𝑗 − 𝑧𝑗 ∙ 𝑧𝑖 𝑧𝑗 + λ 𝑧𝑖

For each edge (i, j) ∈ 𝐸 this amounts for

𝜕𝐿

𝜕𝑧𝑖
= - (𝐴𝑖𝑗 − 𝑧𝑖 ∙ 𝑧𝑗) 𝑧𝑗 + λ 𝑧𝑖

Taking the gradient

Adjacency-based approach

18

Requires: Adjacency matrix A, rank d, accuracy ε
Ensures: Local minimum
1: Initialize Z’ at random
2: t  1
3; repeat
4: Z  Z’
5: for all edges (i, j)  E do

6: η  1/ 𝑡
7: t  t +1
8: Zi  Zi + η ((Aij – <Zi ∙ Zj>Zj) + λ Ζi)
9: end for
10: until ||Z- Z’||2 <= ε
11: return Z

▪ Complexity O(|E|)
▪ Can be parallelized

η: learning rate, captures the extent at which
newly acquired information overrides old

Node embeddings

19

Three approaches based on:
▪ Adjacency matrix
▪ Multi-hop neighborhoods
▪ HOPE
▪ GraRep

▪ Random-walks
▪ DeepWalk
▪ Node2Vec

Multi-hop approaches

20

Only considers direct connections

What about further neighbors?

Look further than the 1-step neighbors and learn by using information
from/for k-step neighbors

We will see two approaches
▪ GraRep: looks at probabilities of reaching a node
▪ HOPE: various metrics of similarity based on neighbors and paths

High-order Proximity Preserved
Embeddings (HOPE)

21

Learn two embeddings vectors
Z = |Zs , Zt|

Based on a high order proximity matrix S,

Sij = proximity(i j)

𝐿 = σ 𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝑆𝑖𝑗 - 𝑧𝑖
𝑠 ∙ 𝑧𝑗

𝑡||2

M. Ou, P. Cui, J. Pei, Z.i Zhang, W. Zhu: Asymmetric Transitivity Preserving Graph Embedding. KDD 2016

HOPE

22

Local High Order Proximity

Common Neighbors (for directed
graphs, source-target)

SCN = A2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=













































00221

10120

10000

01001

10010

01001

00111

00010

10000

00110

*

01001

00111

00010

10000

00110

A2 =

Adamic-Adar

SAA = A D A
Similar but assigns a weight to the
neighbor = reciprocal of its degree
The more vertexes a node is connected
to, the less important it is on evaluating
the proximity between a pair of nodes

HOPE

23

Global High Order Proximity

Katz
Sum over all paths of length l, using a decay parameter

𝑆𝐾𝑎𝑡𝑧 = ෍

𝑙=1

∞

𝛽𝑙 𝐴𝑙

Rooted Pagerank

SVD with some tricks to save computations

INTRODUCTION TO NEURAL
NETWORKS

(Thanks to Philipp Koehn for the material borrowed from his slides)

24

Classification
• Classification is the task of learning a target function f that maps attribute set x

to one of the predefined class labels y

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

One of the attributes is the class attribute
In this case: Cheat

Two class labels (or classes): Yes (1), No (0)

Illustrating Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning
algorithm

Training Set

Example of a Model

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Training Data Model: Decision Tree

Classification in Networks

• There are various problems in network analysis that
can be mapped to a classification problem:
– Link prediction: Predict 0/1 for missing edges, whether

they will appear or not in the future.
– Node classification: Classify nodes as democrat-

republican/spammers-legitimate/other categories
• Use node features but also neighborhood and structural features
• Label propagation

– Edge classification: Classify edges according to type
(professional/family relationships), or according to
strength.

– More…

• Recently all of this is done using Neural Networks.

28

Linear Classification

• A simple model for classification is to take a linear
combination of the feature values and compute a
score.

• Input: Feature vector 𝒙 = (𝑥1, … , 𝑥𝑛)
• Model: Weights 𝒘 = (𝑤1, … , 𝑤𝑛)
• Output: 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = σ𝑖𝑤𝑖𝑥𝑖
• Make a decision depending on the output score.

– E.g.: Decide “Yes” if 𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 > 0 and “No” if
𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 < 0

• The perceptron classification algorithm

29

Linear Classification

• We can represent this as a network

30

Input nodes
correspond to features

𝑥1

𝑥3

𝑥4

𝑥5

𝑥2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

Edges correspond to weights

𝑠𝑐𝑜𝑟𝑒(𝒘, 𝒙)

“Output” node with incoming
edges computes the score

Linear models

• Linear models partition the space according to a
hyperplane

• But they cannot model everything
31

Multiple layers

• We can add more layers:
– Each arrow has a weight

– Nodes compute scores from incoming edges and give input to
outgoing edges

32

Did we gain anything?

Non-linearity

• Instead of computing a linear combination

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 =෍

𝑖

𝑤𝑖𝑥𝑖

• Apply a non-linear function on top:

𝑠𝑐𝑜𝑟𝑒 𝒘, 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖

• Popular functions:

33
These functions play the role of a soft “switch” (threshold function)

Side note

• Logistic regression classifier:

– Single layer with a logistic function

34

Deep learning

• Networks with multiple layers

• Each layer can be thought of as a processing step

• Multiple layers allow for the computation of more
complex functions

35

Example

• A network that implements XOR

36

Hidden node ℎ0 is OR

Bias term
Hidden node ℎ1 is AND

Output node ℎ1 − ℎ0

Error

• The computed value is 0.76 but the correct value
is 1
– There is an error in the computation

– How do we set the weights so as to minimize this
error?

37

Gradient Descent

• The error is a function of the weights

• We want to find the weights that minimize the
error

• Compute gradient: gives the direction to the
minimum

• Adjust weights, moving at the direction of the
gradient.

38

Gradient Descent

39

Gradient Descent

40

Backpropagation

• How can we compute the gradients?
Backpropagation!

• Main idea:
– Start from the final layer: compute the gradients for

the weights of the final layer.

– Use these gradients to compute the gradients of
previous layers using the chain rule

– Propagate the error backwards

• Backpropagation essentially is an application of
the chain rule for differentiation.

41

42

𝑥1

𝑥2 ℎ2 𝑦2

𝑦1ℎ1

𝑎11

𝑎22

𝑎21

𝑎12

𝑏11

𝑏22

𝑏21

𝑏12

Error: 𝐸 = 𝑦 − 𝑡 2 = 𝑦1 − 𝑡1
2 + 𝑦2 − 𝑡2

2

Notation:
Activation function: 𝑔

𝑠𝑦1 = 𝑏11ℎ1 + 𝑏12ℎ2 , 𝑦1 = 𝑔 𝑠𝑦1
𝑠𝑦2 = 𝑏21ℎ1 + 𝑏22ℎ2 , 𝑦2 = 𝑔(𝑠𝑦2)

𝑠ℎ1 = 𝑎11𝑥1 + 𝑎12𝑥2 , ℎ1 = 𝑔(𝑠ℎ1)

𝑠ℎ2 = 𝑎21𝑥1 + 𝑎22𝑥2 , ℎ2 = 𝑔(𝑠ℎ2)

𝜕𝐸

𝜕𝑏11
=

𝜕𝐸

𝜕𝑠𝑦1

𝜕𝑠𝑦1
𝜕𝑏11

= 𝛿𝑦1ℎ1

𝜕𝐸

𝜕𝑎11
=

𝜕𝐸

𝜕𝑠ℎ1

𝜕𝑠ℎ1
𝜕𝑎11

= 𝛿ℎ1𝑥1

𝛿𝑦1=
𝜕𝐸

𝜕𝑠𝑦1
=

𝜕𝐸

𝜕𝑦1

𝜕𝑦1

𝜕𝑠𝑦1
= 2 𝑦1 − 𝑡1 𝑔′(𝑠𝑦1)

𝜕𝐸

𝜕𝑏21
= 𝛿𝑦2ℎ1 𝛿𝑦2=

𝜕𝐸

𝜕𝑠𝑦2
= 2 𝑦2 − 𝑡2 𝑔′(𝑠𝑦2)

𝜕𝐸

𝜕𝑏12
= 𝛿𝑦1ℎ2

𝜕𝐸

𝜕𝑏22
= 𝛿𝑦2ℎ2

𝛿ℎ1 =
𝜕𝐸

𝜕𝑠ℎ1
=

𝜕𝐸

𝜕ℎ1

𝜕ℎ1
𝜕𝑠ℎ1

=
𝜕𝐸

𝜕𝑠𝑦1

𝜕𝑠𝑦1
𝜕ℎ1

+
𝜕𝐸

𝜕𝑠𝑦2

𝜕𝑠𝑦2
𝜕ℎ1

𝑔′ 𝑠ℎ1 = 𝛿𝑦1𝑏11 + 𝛿𝑦2𝑏21 𝑔′(𝑠ℎ1)

𝛿ℎ2 = 𝛿𝑦1𝑏12 + 𝛿𝑦2𝑏22 𝑔′(𝑠ℎ2)

𝜕𝐸

𝜕𝑎22
=

𝜕𝐸

𝜕𝑠ℎ2

𝜕𝑠ℎ2
𝜕𝑎22

= 𝛿ℎ2𝑥2
𝜕𝐸

𝜕𝑎21
= 𝛿ℎ1𝑥2

𝜕𝐸

𝜕𝑎12
= 𝛿ℎ2𝑥1

Backpropagation

43

𝑥𝑗

ℎ𝑖

𝑎𝑖𝑗

𝑦1 𝑦𝑘 𝑦𝑛

𝑏𝑘𝑖𝑏1𝑖 𝑏𝑛𝑖

𝑠𝑦1

𝑠𝑦𝑘 𝑠𝑦𝑛

𝛿𝑦1 =
𝜕𝐸

𝜕𝑠𝑦1
𝛿𝑦𝑘 =

𝜕𝐸

𝜕𝑠𝑦𝑘
𝛿𝑦𝑛 =

𝜕𝐸

𝜕𝑠𝑦𝑛

𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘𝑏𝑘𝑖 𝑔
′ 𝑠ℎ𝑖 𝑥𝑗

𝑠ℎ𝑖

For the sigmoid activation function:

𝑔 𝑥 =
1

1 + 𝑒−𝑥

The derivative is:
𝑔′ 𝑥 = 𝑔(𝑥)(1 − 𝑔 𝑥)

This makes it easy to compute it. We have:

𝑔′ 𝑠ℎ𝑖 = ℎ𝑖(1 − ℎ𝑖)

Therefore

𝜕𝐸

𝜕𝑎𝑖𝑗
= ෍

𝑘=1

𝑛

𝛿𝑦𝑘𝑏𝑘𝑖 ℎ𝑖(1 − ℎ𝑖)𝑥𝑗

We have already computed the 𝛿𝑦𝑘’s

We want to compute
𝜕𝐸

𝜕𝑎𝑖𝑗

Stochastic gradient descent

• Ideally the loss should be the average loss over all
training data.

• We would need to compute the loss for all
training data every time we update the gradients.
– However, this is expensive.

• Stochastic gradient descent: Consider one input
point at the time. Each point is considered only
once.

• Intermediate solution: Use mini-batches of data
points.

44

WORD EMBEDDINGS
(Thanks to Chris Manning for the material borrowed from his slides)

45

Basic Idea

46

• You can get a lot of value by representing a
word by means of its neighbors

• “You shall know a word by the company it
keeps”

• (J. R. Firth 1957: 11)

• One of the most successful ideas of modern
statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

 These words will represent banking 

Basic idea

Define a model that aims to predict between a center
word wc and context words in some window of length m
in terms of word vectors

P 𝑤𝑐 𝑤𝑐−𝑚,… ,𝑤𝑐−1, 𝑤𝑐+1… ,𝑤𝑐+𝑚)

model)

Pairwise probabilities

Independence assumption (bigram model)

𝑃(𝑤1, 𝑤2, …, 𝑤𝑛) = ς𝑖=2
𝑛 𝑃(𝑤𝑖|𝑤𝑖−1)

48

Word2Vec

49

Predict between every word and its context words

Two algorithms

1. Skip-grams (SG)

Predict context words given the center word

2. Continuous Bag of Words (CBOW)

Predict center word from a bag-of-words context

Position independent (do not account for distance from center)

Two training methods

1. Hierarchical softmax

2. Negative sampling

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean: Distributed Representations of Words and
Phrases and their Compositionality. NIPS 2013: 3111-3119

CBOW

50

Use a window of context words to predict the center word

Learn two matrices (N size of embedding, |V| number of words)

|V|

Embedding of the i-th word when center
word

i

N

W
W’N

|V|

i

Embedding of the i-
th word when
context word

|V| x N context embeddings
when input

N x |V| center embeddings
when output

CBOW

51

Given window size m

𝑥(𝑐) one hot vector for context words, y one hot vector for the center word

1. Input: the one hot vectors for the 2m context words

𝑥(𝑐−𝑚), …, 𝑥(𝑐−1), 𝑥(𝑐+1), …, 𝑥(𝑐+𝑚)

2. Compute the embeddings of the context words

𝑣𝑐−𝑚 = 𝑊𝑥(𝑐−𝑚), …, 𝑣𝑐−1 = 𝑊𝑥(𝑐−1), 𝑣𝑐+1 = 𝑊𝑥(𝑐+1), …, 𝑣𝑐+𝑚= 𝑊𝑥(𝑐+𝑚)

3. Average these vectors

ො𝑣 =
𝑣𝑐−𝑚+𝑣𝑐−𝑚+1+⋯𝑣𝑐+𝑚

2𝑚
, ො𝑣 ∈ 𝑅𝑁

4. Generate a score vector
z = W’ ො𝑣
dot product, (embedding of center word) similar vectors close to each other

5. Turn the score vector to probabilities
ො𝑦 = softmax(z)

We want this to be close to 1 for the center word

52

Exponentiate to
make positive

Normalize to
give probability

• E.g. “The cat sat on floor”

– Window size = 2

53

the

cat

on

floor

sat

54

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

one-hot
vector

one-hot
vector

Index of cat in vocabulary

55

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

𝑊′𝑁×𝑉

V-dim

N will be the size of word vector

We must learn W and W’

56

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

+ ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

𝑊𝑉×𝑁
𝑇 × 𝑥𝑐𝑎𝑡 = 𝑣𝑐𝑎𝑡

2.4

2.6

…

…

1.8

=

57

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

+ ො𝑣 =
𝑣𝑐𝑎𝑡 + 𝑣𝑜𝑛

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

𝑊𝑉×𝑁
𝑇 × 𝑥𝑜𝑛 = 𝑣𝑜𝑛

1.8

2.9

…

…

1.9

=

58

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

ො𝑦sat

Output layer𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

𝑊𝑉×𝑁
′ × ො𝑣 = 𝑧

V-dim

N will be the size of word vector

ො𝑣

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

59

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

ො𝑦sat

Output layer𝑊𝑉×𝑁

𝑊𝑉×𝑁

V-dim

V-dim

N-dim

𝑊𝑉×𝑁
′ × ො𝑣 = 𝑧

ො𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

V-dim

N will be the size of word vector

ො𝑣

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00

ො𝑦

We would prefer ො𝑦 close to ො𝑦𝑠𝑎𝑡

60

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊𝑉×𝑁

𝑊𝑉×𝑁

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

𝑊𝑉×𝑁
𝑇

Contain word’s vectors

𝑊𝑉×𝑁
′

We can consider either W (context) or W’ (center) as the word’s representation.
Or even take the average.

Skipgram

61

Given the center word, predict (or, generate) the context words

W: N x |V|, input matrix, word representation as center word
W’: |V| x N, output matrix, word representation as context word

𝑦(𝑗) one hot vector for context words

1. Get one hot vector of the center word

𝑥

2. Get the embedding of the center word
𝑣𝑐 = 𝑊 𝑥

3. Generate a score vector for each context word
z = W’ 𝑣𝑐

5. Turn the score vector into probabilities
ො𝑦 = softmax(z)

We want this to be close to 1 for the context words

62

Skipgram

63

• For each word t = 1 … T, predict surrounding words in a
window of “radius” m of every word.

• Objective function: Maximize the probability of any
context word given the current center word:

where θ represents all variables we will optimize

64

• The basic skipgram utilizes the softmax function:

𝑝 𝑐 𝑤 =
exp 𝑣′𝑐

𝑇𝑣𝑤

σ𝑖=1
𝑇 exp(𝑣′𝑖

𝑇𝑣𝑤)

• Where:

– T – # of words in the corpus.

– 𝑣𝑤 - input vector of w.

– 𝑣′𝑤 - output vector of w.
Word Input Output

King [0.2,0.9,0.1] [0.5,0.4,0.5]

Queen [0.2,0.8,0.2] [0.4,0.5,0.5]

Apple [0.9,0.5,0.8] [0.3,0.9,0.1]

Orange [0.9,0.4,0.9] [0.1,0.7,0.2]

65

An example

66

These representations are very good at encoding
similarity and dimensions of similarity!

• Analogies testing dimensions of similarity can
be solved quite well just by doing vector
subtraction in the embedding space

Syntactically

– xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

– Similarly for verb and adjective morphological
forms

Semantically (Semeval 2012 task 2)

– xshirt − xclothing ≈ xchair − xfurniture

– xking − xman ≈ xqueen − xwoman

67

king

man

woman

Test for linear relationships, examined by Mikolov et al.

man

woman

[0.20 0.20]

[0.60 0.30]

king [0.30 0.70]

[0.70 0.80]

−

+

+

man:woman :: king:?

a:b :: c:?

queen

Hierarchical softmax

68

Instead of learning O(|V|) vectors, learn O(log(|V|) vectors

How?

▪ Build a binary tree with leaves the words, and learn one
vector for each internal node.

▪ The value for each word w is the product of the values of the
internal nodes in the path from the root to w.

69

The probability of a word being the context word is defined as:

where:

– 𝑛 𝑤, 𝑗 – is the j-th node on the path from the root to w.

– 𝐿 𝑤 – is the length of the path from root to w.

– 𝑐ℎ(𝑛) – is the left child of node n.

– 𝑥 = {
1 𝑖𝑓 𝑥 𝑖𝑠 𝑡𝑟𝑢𝑒
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– 𝜎 𝑥 =
1

1+𝑒−𝑥

𝑝 𝑐 𝑤 = ෑ

𝑗=1

𝐿 𝑤 −1

𝜎(𝑛 𝑐, 𝑗 + 1 = 𝑐ℎ(𝑛(𝑤, 𝑗)) ∙ 𝑣𝑛(𝑐,𝑗)
𝑇𝑣𝑤)

returns 1 if the path goes left,
- 1 if it goes right n w, 1 = root

n w, L w = parent of w

L w2 = 3

compares the similarity of
the input vector 𝑣𝑤 to each
internal node vector

70

Suppose we want to compute the probability of w2

being the output word.

• The probabilities of going right/left in a node n are:

– 𝑝 𝑛, 𝑙𝑒𝑓𝑡 = 𝜎 𝑣𝑛
𝑇𝑣𝑤

– 𝑝 𝑛, 𝑟𝑖𝑔ℎ𝑡 = 1 − 𝜎 𝑣𝑛
𝑇𝑣𝑤 = 𝜎 −𝑣𝑛

𝑇𝑣𝑤

𝑝 𝑤2 = 𝑐 = 𝑝 𝑛 𝑤2, 1 , 𝑙𝑒𝑓𝑡 ∙ 𝑝 𝑛 𝑤2, 2 , 𝑙𝑒𝑓𝑡 ∙ 𝑝 𝑛 𝑤2, 3 , 𝑟𝑖𝑔ℎ𝑡

= 𝜎 𝑣𝑛 𝑤2,1
𝑇𝑣𝑤 ∙ 𝜎 𝑣𝑛 𝑤2,2

𝑇𝑣𝑤 ∙ 𝜎 −𝑣𝑛 𝑤2,3
𝑇𝑣𝑤

Complexity improved even further using a Huffman tree:
▪ Designed to compress binary code of a given text.
▪ A full binary suffix tree that guarantees a minimal average weighted

path length when some words are frequently used.

Negative Sampling

71

▪ For each positive example we draw K negative examples.

▪ The negative examples are drawn according to the unigram
distribution of the data

72

p 𝐷 = 1|𝑤, 𝑐 is the probability that 𝑤, 𝑐 ∈ 𝐷.

p 𝐷 = 0|𝑤, 𝑐 = 1 − p 𝐷 = 1|𝑤, 𝑐 is the probability that (𝑤, 𝑐) ∉ D.

For negative samples: 𝑝(𝐷 = 1|𝑤, 𝑐) must be low ⇒ 𝑝(𝐷 = 0|𝑤, 𝑐) will be
high.

For one sample:

BACK TO GRAPHS

73

74

Words = Nodes
Sentences = Paths, Random walks

How?

Random-walk embeddings

75

probability that i and j
co-occur on a random
walk over the network

𝑧𝑖 ∙ 𝑧𝑗 ≈

Random-walk Embeddings

76

1. Estimate probability of
visiting node v on a random
walk starting from node u
using some random walk
strategy R.

2. Optimize embeddings to
encode these random walk
statistics.

Random Walk Optimization

1. Run short random walks starting from each node on the
graph using some strategy R.

2. For each node u collect NR(u), the multiset* of nodes
visited on random walks starting from u.

3. Optimize embeddings according to (maximum
likelihood):

77

* NR(u) can have repeat elements since nodes can be visited multiple
times on random walks.

𝐿 = ෍

𝑖 ∈𝑉

෍

𝑗 ∈𝑁(𝑖)

−log(𝑃 𝑗 𝑧𝑖)

Random Walk optimization

78

Intuition: Optimize embeddings to maximize likelihood of random
walk co-occurrences.

Parameterize P(v | zu) using softmax:

𝐿 = ෍

𝑖 ∈𝑉

෍

𝑗 ∈𝑁(𝑖)

−log(𝑃 𝑗 𝑧𝑖)

𝑃(𝑗|𝑧𝑖) =
exp(𝑧𝑖 ∙ 𝑧𝑗)

σ𝑚∈𝑉 𝑒𝑥𝑝 (𝑧𝑖 ∙ 𝑧𝑚)

𝐿 = −log(෍

𝑖 ∈𝑉

෍

𝑗 ∈𝑁(𝑖)

exp(𝑧𝑖 ∙ 𝑧𝑗)

σ𝑚∈𝑉 𝑒𝑥𝑝 (𝑧𝑖 ∙ 𝑧𝑚)
)

sum over nodes m seen
on random walks starting

from i

sum over all nodes i

predicted probability of i and j
co-occuring on random walk

Why Random Walks?

79

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information.

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks.

80

Short random walks = sentences

Short truncated random walks are sentences in an
artificial language

DeepWalk

B. Perozzi, R. Al-Rfou, S. Skiena: DeepWalk: online learning of social representations. KDD 2014

81

DeepWalk

Node frequency in random walks on
scale free graphs also follows a
power law.

Words frequency in a natural
language corpus follows a power law.

82

DeepWalk

83

▪ Window w
▪ Generate γ random

walks for each vertex
in the graph

▪ Each short random
walk has length t
(intuitively, sentence length)

▪ Pick the next step
uniformly from the
node neighbors

DeepWalk

84

Representation mapping

85

Random Walk strategies

▪ DeepWalk just runs fixed-length,
unbiased random walks starting from
each node

▪ Node2vec: biased random walks that
can trade off between local and global
views of the network

A. Grover, J. Leskovec: node2vec: Scalable Feature Learning for Networks. KDD 2016

node2vec: Biased Walks

Two classic strategies to define a neighborhood
𝑁𝑅 𝑢 of a given node 𝑢:

86

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view (BFS)

Global macroscopic view (DFS)

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

Biased 2nd Order Random Walks

87

Same distance to 𝒕

t

x1

v

x2

x3Closer to 𝒕

Farther from 𝒕

Walker from t, traversed (t, v) and is now in v, where to
go next?

How much far away from t? Only three possible choices:
▪ Farther distance (distance =2)
▪ Same distance (distance = 1)
▪ Back to t (distance = 0)

Biased Random Walks

88

Same distance to 𝒕

t

x1

v

x2

x3Closer to 𝒕

Farther from 𝒕

At V from t, where to go next?

How much far away from t?
▪ Farther distance (distance =2)
▪ Same distance (distance = 1)
▪ Back to t (distance = 0)

1

1/𝑞
1/𝑝

𝑝, 𝑞 model transition probabilities
𝑝 return parameter
𝑞 ”walk away” parameter

Biased Random Walks

89

Walker at V from t, where to go next?

1

1/𝑞
1/𝑝

𝑝, 𝑞 model transition probabilities
𝑝 return parameter
𝑞 ”walk away” parameter

BFS-like walk: Low value of 𝑝
DFS-like walk: Low value of 𝑞

𝑁𝑆(𝑢) are the nodes visited by the walker

Same distance to 𝒕

t

x1

v

x2

x3Closer to 𝒕

Farther from 𝒕

Interpolating BFS and DFS

Biased random walk 𝑅 that given a node 𝑢
generates neighborhood 𝑁𝑅 𝑢

• Two parameters:

– Return parameter 𝑝:

• Return back to the previous node

– In-out parameter 𝑞:

• Moving outwards (DFS) vs. inwards (BFS)

90

node2vec

91

Also learns edge vectors based on the vectors of
their endpoints

Node embeddings

92

Three approaches based on:
▪ Adjacency matrix
▪ Multi-hop neighborhoods
▪ HOPE
▪ GraRep

▪ Random-walks
▪ DeepWalk
▪ Node2Vec

93

Path of length k =1

Path of length k = 2

GraRep

Path of length k = 3

Path of length k = 4

▪ Look at the paths that
connect the nodes

▪ More paths -- more
similar
o Probability from a

node to reach the
other

▪ Considers paths of
different lengths

S. Cao, W. Lu, Q.i Xu: GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015

94

Nearest neighborhoods more important

Maintain different k-step information differently in the graph representation

GraRep

But not all k-neighbors equally important

GraRep

95

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=

01001

00111

00010

10000

00110

A























=

20000

03000

00100

00010

00002

D























== −

01/2001/2

001/31/31/3

00010

10000

001/21/20

1ADP

Probabilistic adjacency matrix Pij the probability of transition from node i to
node j where the transition has length exactly 1

GraRep

96

𝑣2

𝑣3

𝑣4𝑣5

𝑣1













































==

01/2001/2

001/31/31/3

00010

10000

001/21/20

*

01/2001/2

001/31/31/3

00010

10000

001/21/20

*2 PPP

Nodes reachable in 1-step
from node 2

Nodes that reach node 4
in one step























=

005/125/121/6

1/301/61/20

10000

01/2001/2

1/2001/20

2P

𝑃𝑖𝑗
2 the probability of transition

form node i from node j when the
transition has length exactly 2

GraRep

97

𝑃𝑖𝑗
𝑘

: Transition probability from node i to node j where the

transition consists of exactly k steps

Basic idea:

• Train embeddings to predict k-hop neighbors.

• Approach based on skipgrams

𝐿𝑘 = σ 𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝑃𝑖𝑗
𝑘 - 𝑧𝑖 ∙ 𝑧𝑗 ||

2

2. Concatenate the embeddings for the different k

1. Minimize the loss for a specific k

GraRep

98

𝑃𝑖𝑗
𝑘 = 𝑝𝑘 𝑗 | 𝑖

Transition probability from node i (current node) to node j
(context node) where the transition consists of exactly k steps

Given a center word w, predict the context words c, i.e.,
the words that appear within distance k from w

𝑃𝑐𝑤
𝑘 = 𝑝𝑘 𝑐 | 𝑤

Skip-gram model

Learn two representations:
▪ One for node i as the source node (i.e., center word)
▪ One for node i as the destination node (i.e., context word)

GraRep

99

Use negative sampling (*) and maximum likelihood
Assume for a given k, the collection of all paths from G that start from i and end at j.
Maximize
(1) Probability that these pairs came from the graph, and
(2) Probability that all other pairs did not come form the graph

𝐿𝑘 𝑖 = σ𝑗 ∈ 𝑉 (𝑝𝑘 𝑗 𝑖 log 𝜎(𝑧𝑖 ∙ 𝑧𝑗)) + 𝜆 𝐸𝑗′~𝑝𝑘(𝑉)[log 𝜎(−𝑧𝑖 ∙ 𝑧𝑗′)]

Sampled vertices drawn
according to the vertex
distribution over the
graph (𝑝𝑘(V))

hyper parameter
indicating the number
of negative samples

probability that pair (i, j)
came from the graph

probability that pair (i, j) did not
come from the graph

σ: sigmoid function

GraRep

100

𝐿𝑘 𝑖 = σ𝑗 ∈ 𝑉 (𝑝𝑘 𝑗 𝑖 log 𝜎(𝑧𝑖 ∙ 𝑧𝑗)) + 𝜆 𝐸𝑗′~𝑝𝑘(𝑉)[log 𝜎(−𝑧𝑖 ∙ 𝑧𝑗′)]

𝐿𝑘 𝑖, 𝑗 = 𝑃𝑖𝑗
𝑘 log 𝜎 𝑧𝑖 ∙ 𝑧𝑗 +

𝜆

N
σ𝑗′∈𝑉𝑃𝑖𝑗′

𝑘 log σ(−𝑧𝑖 ∙ 𝑧𝑗′]

Local objective for a specific pair of nodes

As before, compute the gradient and use stochastic gradient descent

𝑧𝑖𝑧𝑗= log(
𝑆𝑖,𝑗𝑘

σ𝑖′ 𝐴𝑖′,𝑗𝑘𝑘
) – log(β), β =

𝜆

Ν

Or solve by setting = 0 and get

Summary

101

• Basic idea: Embed nodes so that distances in
embedding space reflect node similarities in the
original network.

• Different notions of node similarity:
– Adjacency-based (i.e., similar if connected)

– Multi-hop similarity definitions (HOPE, GraRep).

– Random walk approaches (DeepWalk, node2vec).

• No one method wins in all cases
– e.g., node2vec performs better on node classification

while multi-hop methods performs better on link
prediction

GRAPH NEURAL NETWORKS

102

Outline

103

▪ Basic Variant
▪ Convolution GNNs
▪ GraphSAGE
▪ Gated GNNs

Embeddings: Key Components

104

Encoder maps each node to a low-dimensional vector.

Similarity function specifies how relationships in vector
space map to relationships in the original network.

node in the input graph

d-dimensional embedding

Similarity of u and v in the
original network dot product between node embeddings (*)

(*) other distance measures than dot products could be used (e.g., Euclidean
distance), but the dot product is the standard measure of similarity used.

From “Shallow” to “Deep”

105

So far, “shallow” encoders, i.e. embedding lookups:

Dimension/size of
embeddings

one column per node

embedding matrix

embedding vector for a specific node

106

“deeper” methods based on graph neural
networks.

▪ In general, all these more complex encoders can be
combined with the similarity functions we discussed

complex function that
depends on graph structure.

From “Shallow” to “Deep”

Setup

107

Assume we have a graph G:

– V is the vertex set.

– A is the adjacency matrix (assume binary).

– X ∈ R𝑚×|𝑉| is a matrix of m node features (input

representation of a node)

• Categorical attributes, text, image data
– E.g., profile information in a social network.

• Node degrees, clustering coefficients, etc.

• Indicator vectors (i.e., one-hot encoding of each node)

Neighborhood Aggregation

108

Key idea: Generate node embeddings based on local
neighborhoods.

Neighborhood Aggregation

109

Intuition: Nodes aggregate information from their
neighbors using neural networks

Neighborhood Aggregation

110

Intuition: Network neighborhood defines a
computation graph

Every node defines a unique
computation graph!

Neighborhood Aggregation

▪ Nodes have embeddings at each layer.

▪ Model can be of arbitrary depth.

▪ layer-0 embedding of node u is its input feature, i.e. xu.

Layer-2

Layer-1

Layer-0

Neighborhood Aggregation

112

???

?

?

?

what’s in the box!

Key distinctions in how different approaches
aggregate information across the layers.

Neighborhood Aggregation

113

Basic approach: Average neighbor information and
apply a neural network.

1) average messages
from neighbors

2) apply neural network

average of neighbor’s

previous layer embeddings

The Math

Initial “layer 0” embeddings are

equal to node features

kth layer

embedding

of v
non-linearity (e.g.,

ReLU or tanh)

previous layer

embedding of v

Basic approach: Average neighbor information and
apply a neural network.

115

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu: A Comprehensive Survey on Graph Neural
Networks. CoRR abs/1901.00596 (2019)

Graph Convolution

▪ Each pixel in an image as a node with
neighbors determined by the filter size.

▪ 2D convolution takes a weighted
average of pixel values of the red node
along with its neighbors.

▪ Neighbors of a node are ordered and
have a fixed size.

▪ To get a hidden representation of the
red graph node, takes the average
value of the node features of the red
node along with its neighbors.

▪ Neighbors of a node are unordered
and variable in size.

Training the Model

116

Need to define a loss function on
the embeddings, L(zu)!

How do we train the model to generate high-quality
embeddings?

Training the Model

117

• After K-layers of neighborhood aggregation, we get output
embeddings for each node.

• We can feed these embeddings into any loss function and run
stochastic gradient descent to train the aggregation parameters.

trainable matrices

(i.e., what we learn)

Training the Model

118

• Train in an unsupervised manner using only the graph
structure.

• Unsupervised loss function can be anything from the
last section, e.g., based on

– Random walks (node2vec, DeepWalk)

– Graph factorization

– i.e., train the model so that “similar” nodes have
similar embeddings.

Training the Model

119

L 𝑧𝑢 = − log 𝜎 𝑧𝑢
Τ𝑧𝑣 − 𝜆 𝐸𝑣𝑛~𝑃𝑛 𝑣 [log 𝜎 −𝑧𝑢

𝑇𝑧𝑣𝑛)

v a node that co-occurs
near u on fixed-length
random walk

Pn negative
sampling
distribution

λ number of negative
samples

▪ representations zu feed into thε loss function are generated from the
features contained within a node’s local neighborhood, rather than
training a unique embedding for each node

Training the Model

120

Alternative: Directly train the model for a
supervised task (e.g., node classification):

Human or

bot?

Human or

bot?

e.g., an online social network

Training the Model

121

output node

embedding

classification

weights

node class label

Human or

bot?

Alternative: Directly train the model for a
supervised task (e.g., node classification):

Overview of Model Design

122

1) Define a neighborhood aggregation
function.

2) Define a loss function on the
embeddings, L(zu)

Overview of Model Design

123

3) Train on a set of nodes, i.e., a batch of
compute graphs

Overview of Model

124

4) Generate embeddings for nodes as needed

Even for nodes we never trained on!!!!

Inductive Capability

125

▪ The same aggregation parameters are shared for
all nodes.

▪ The number of model parameters is sublinear in
|V| and we can generalize to unseen nodes!

Inductive Capability

126

Inductive node embedding generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

train on one graph generalize to new graph

Inductive Capability

127

train with snapshot new node arrives
generate embedding

for new node

Many application settings constantly encounter previously unseen nodes.

e.g., Reddit, YouTube, GoogleScholar, ….

Need to generate new embeddings “on the fly”

Quick Recap

128

Basic variant: Generate node embeddings by
aggregating neighborhood information.

– Allows for parameter sharing in the encoder.

– Allows for inductive learning.

Graph Convolutional Networks (GCNs)

129

Variation on the neighborhood aggregation idea:

Kipf et al., 2017. Semisupervised Classification with Graph Convolutional Networks. ICLR.

Graph Convolutional Networks

130

same matrix for self and neighbor
embeddings

per-neighbor normalization

Basic Neighborhood Aggregation

GCN Neighborhood Aggregation

VS.

Graph Convolutional Networks

131

Empirically, they found this configuration to give
the best results.

– More parameter sharing.

– Down-weights high degree neighbors.

use the same transformation matrix for self and
neighbor embeddings

instead of simple average,
normalization varies across neighbors

GraphSAGE Idea

132

???

?

?

?

So far we have aggregated the neighbor messages by
taking their (weighted) average, can we do better?

Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. NIPS

GraphSAGE Idea

133

Any differentiable function

that maps set of vectors to a

single vector.

• Simple neighborhood aggregation:

• GraphSAGE:

GraphSAGE Differences

134
generalized aggregation

concatenate self embedding and

neighbor embedding

GraphSAGE Variants

135

• Mean:

• Pool
– Transform neighbor vectors and apply symmetric vector

function

• LSTM:
– Apply LSTM (Long Short-Term Memory) to random

permutation of neighbors.

element-wise mean/max

Neighborhood Aggregation

136

• Basic idea: Nodes aggregate “messages” from
their neighbors using neural networks

Neighborhood Aggregation

137

• GCNs and GraphSAGE generally only 2-3 layers
deep.

Neighborhood Aggregation

138

• But what if we want to go deeper?

INPUT GRAPH

TARGET NODE B

D

E

F

C
A

A

D

B

C …..

…
..

10+ layers!?

Gated Graph Neural Networks

139

• How can we build models with many layers of
neighborhood aggregation?

• Challenges:

– Overfitting from too many parameters.

– Vanishing/exploding gradients during backpropagation.

• Idea: Use techniques from modern recurrent
neural networks

Li et al., 2016. Gated Graph Sequence Neural Networks. ICLR.

Gated Graph Neural Networks

140

• Idea 1: Parameter sharing across layers.

same neural network

across layers

Gated Graph Neural Networks

Representation Learning on Networks,
snap.stanford.edu/proj/embeddings-www,

WWW 2018
141

• Idea 2: Recurrent state update.

RNN module
RNN module!

Summary

142

• Graph convolutional networks
– Average neighborhood information and stack neural

networks.

• GraphSAGE
– Generalized neighborhood aggregation.

• Gated Graph Neural Networks
– Neighborhood aggregation + RNNs

143

Acknowledgement

Most slides adopted from the following tutorial

William Hamilton, Rex Ying, Jure Leskovec and
Rok Sosic, Representation Learning on Networks.
Held at WWW 2018 (April 24, Lyon, France).

http://cs.stanford.edu/~jure
http://snap.stanford.edu/proj/embeddings-www/

