Online Social Networks and
Media

Graph Embeddings

Graph embeddings: what are they?

node
>
fifu->R% C
~
Rd
O Feature representation, embedding
Map nodes to vectors so that:

“similar” nodes in the graph have embeddings that are
close together.

Example

Zachary’s Karate Club Network:

Input

17

Image from: Perozzi et al.. DeepWalk: Online Learning of Social Representations. KDD 2014.

—0.6

-0.8

-1.0

—1.2

—-1.4

-1.6

—-1.8

N

| a .‘ i
B ~ ® kN o i

' 29 . 17
| 33 13 i
0y @ 1
&

% s
i L L L L L L L L]
—1.0 —0.5 0.0 0.5 1.0 1.5 2.0 2.5

Graph embeddings: why?

Machine learning lifecycle

Structured Learning
Data Algorithm
Feature Engineering Downstream
degree, PageRank, motifs, prediction task

degrees of neighbors,
Pagerank of neighbors, etc

Graph embeddings: why?

Machine learning lifecycle

Structured Learning

Data Algorithm

Downstream
prediction task

Automatically learn the features (embeddings)

Embedding nodes

Input: Graph G(V, E)
Goal: encode nodes so that similarity in the embedding
space approximates similarity in the original network.

- ~——
- -
P ———
-
-
-
s
-

““““““

G: original network embedding space

Based on: W. L. Hamilton, R. Ying, J. Leskovec: Representation Learning on Graphs: Methods and Applications. |IEEE Data Eng. Bull. 40(3): 52-74 (2017)

Embedding nodes

Goal:[similarity(i, j) = |z; - z; .

to be defined \ dot product (other
how relationships in vector space definitions possible)
map to relationships in the original

network

encode structure

—— ———
- -
- ~——
-
-
-
s
-

G: original network embedding space

Based on: W. L. Hamilton, R. Ying, J. Leskovec: Representation Learning on Graphs: Methods and Applications. |IEEE Data Eng. Bull. 40(3): 52-74 (2017)

Learning node embeddings

Define an encoder that maps nodes to low
dimensional spaces

Define a node similarity function in the original
network.

Optimize the parameters of the encoder so that we
minimize a loss function L that looks (roughly) like:

I = Zi,je V(similarl’ty(i,j) - Zp °Z)2

When are two nodes similar? Any ideas?

Shallow embeddings!”)

Each node is assignhed a single d-dimensional vector
Learn embedding matrix Z: each column j is the embedding z; of

node j
V|

Dimension/size ¢ —
of the embedding

Zj

(*) As opposed to deep learning in graphs (neural networks embeddings)

Shallow embeddings

Encoder is an embedding lookup

ENC() = Z I,

I;

i

ol o 1 0

One-hot or indicator vector, all Os
but position i

Node embeddings

Three approaches based on:
= Adjacency matrix
= Multi-hop neighborhoods
= HOPE
= GraRep
Background on wordZ2vec
= Random-walks
= DeepWalk
= Node2Vec

11

Adjacency-based approach

2 03210
5//‘ v, 30032
O A=|2 0 0 2 0

& 1 320 0
O 0200 0

= Similarity function is just the edge (weight) between u and v in
the original network.

" Dot products between node embeddings approximate edge
existence.

A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, A. J. Smola: Distributed large-scale natural graph factorization.
WWW 2013

12

Adjacency-based approach

The loss that what we want to minimize

embedding similarity

/

L= Y icvevllAdj-z -z|l
/

sum over all node pairs (weighted) adjacency

matrix for the graph

13

How to minimize loss

1. Matrix decomposition (for example, SVD decomposition)

1. Scalability issues
2. Produced matrices that are very dense

2. Stochastic gradient descent

14

Singular Value Decomposition

0,

Q
N
<
N

A=U 2 V'=[i, 0,

cl
—

[nxr][rxr] [rxn]

Q
<l

r : rank of matrix A
0,2 0,2 ... 20, : singular values (square roots of eigenvals AA", ATA)
Cll,ljz,- : -,Clr . left singular vectors (eigenvectors of AAT)

\71 , \72 77"y \7r: right singular vectors (eigenvectors of A'A)

Adjacency-based approach —
stochastic gradient descent

A few manipulations

L= X iicvevlldij-z -z||°
sum over all node pairs

L = Z(i,j) c p(Aij-z; -z)?

sum over all edges

1 A
L=32ape s(ij-2z -2)+ 75 Lillzi]l7

regularization factor

16

Adjacency-based approach
L= %Z(i,j) e 6(Aij-2; 2)2+ % Xillzi |]?

Taking the gradient

Gradient of L with respect to each row (column) of Z (learn one
vector per node)

oL
a_ziz'ZjeN(i)(Aij — Zj* Z)Zj + A z;

For each edge (i, j) € E this amounts for

oL _

a_Zi__ (AU —Zi'Zj)Zj'l')\Zl‘

17

Adjacency-based approach

Requires: Adjacency matrix A, rank d, accuracy ¢
Ensures: Local minimum
1: Initialize Z’ at random

2: t<«1

3; repeat n: learning rate, captures the extent at which
4: <7 newly acquired information overrides old

5: for all edges (i, j) € Edo

6: n<« 1/\/t

/: t<—t+1l

8: Zi < Zi + n ((Aij — <Zi - Zj>Zj) + \ Zi)

9: end for

10: until ||Z-2'||%?<=¢

11: return Z

= Complexity O(|E])
= (Can be parallelized

18

Node embeddings

Three approaches based on:

= Adjacency matrix

= Multi-hop neighborhoods
= HOPE

= GraRep
= Random-walks
= DeepWalk

= Node2Vec

19

Multi-hop approaches

Only considers direct connections
What about further neighbors?

A

Look further than the 1-step neighbors and learn by using mformatlon
from/for k-step neighbors -

We will see two approaches
" GraRep: looks at probabilities of reaching a node
= HOPE: various metrics of similarity based on neighbors and paths

20

High-order Proximity Preserved
Embeddings (HOPE)

Based on a high order proximity matrix S,

S;; = proximity(i j)

Learn two embeddings vectors
Z=|7%,7

— t
L=Yupevxev IS)-2 - z||?

M. Ou, P. Cui, J. Pei, Z.i Zhang, W. Zhu: Asymmetric Transitivity Preserving Graph Embedding. KDD 2016

21

HOPE

Local High Order Proximity

Common Neighbors (for directed

graphs, source-target) i o o)
SCN _ Az 01 1 00|01|2 0O 01 0 01
O 00 O 1,|/01|0|l0 O 1 1 0010

A? = 0100 O0*0J|2|/0 0 0O0(={0 0 0 0 1

1 1100|1212 0O 0 2101

1 0010|100 1 0] |1]202 0 0]

%)

Adamic-Adar

SM=ADA

Similar but assigns a weight to the
neighbor = reciprocal of its degree

The more vertexes a node is connected
to, the less important it is on evaluating
the proximity between a pair of nodes

V3

\ &\./

Vs

22

HOPE

Global High Order Proximity

Katz
Sum over all paths of length |, using a decay parameter

cKatz _ ZﬁlAl
=1

Rooted Pagerank

SVD with some tricks to save computations

23

INTRODUCTION TO NEURAL
NETWORKS

Classification

e Classification is the task of learning a target function f that maps attribute set x
to one of the predefined class labels y

Tid Refund Marital Taxable One of the attributes is the class attribute
Status Income Cheat .
In this case: Cheat

1 |Yes Single 125K No
B N° B 100K Two class labels (or classes): Yes (1), No (0)
3 |No Single 70K No
4 Yes Married |[120K No

. Input Output
5 No Divorced |95K Yes

) Classification

6 No Married 60K No Attnb(t)il)e set :> model |:> Clas(sy)label
7 Yes Divorced |220K No
8 No Single 85K Yes Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.
9 No Married |75K No
10 [No Single 90K Yes

Illustrating Classification Tas

Tid Attribl Attrib2 Attrib3 | Class Lea rning

1 Yes Large 125K No a Igorith m

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No Induction

5} No Large 95K Yes

6 No Medium 60K No

7 | Yes Large 220K No Learn

8 |[No Small 85K Yes Model

9 |No Medium | 75K No \

10 | No Small 90K Yes

Training Set Model

Apply

Tid Attribl | Attrib2 Attrib3 | Class Model

11 | No Small 55K ?

12 | Yes Medium 80K ?

13 |Yes |Large 110K |2 Deduction

14 | No Small 95K ?

15 | No Large 67K ?

Test Set

Example of a Model

> >
O Xe,
S S

))
X x@
R ?

Tid Refund Marital

OO

Taxable

Status Income Cheat
1 |Yes Single 125K No
2 No Married |100K No
3 |No Single 70K No
4 |Yes Married |120K No
5 |No Divorced |95K Yes
6 No Married |60K No
7 |Yes Divorced | 220K No
8 No Single 85K Yes
9 No Married |75K No
10 [No Single 90K Yes
Training Data

Yi:%

NO

Refund

WAO

MarSt

Single, Diyorced

TaxInc

< sory
NO

> 80K

YES

\/I‘arried

NO

Model: Decision Tree

Classification in Networks

 There are various problems in network analysis that
can be mapped to a classification problem:

— Link prediction: Predict 0/1 for missing edges, whether
they will appear or not in the future.

— Node classification: Classify nodes as democrat-
republican/spammers-legitimate/other categories
* Use node features but also neighborhood and structural features
* Label propagation

— Edge classification: Classify edges according to type
(professional/family relationships), or according to
strength.

— More...
* Recently all of this is done using Neural Networks.

Linear Classification

A simple model for classification is to take a linear
combination of the feature values and compute a
score.

Input: Feature vector x = (x4, ..., Xp,)

Model: Weights w = (wy, ..., w,)

Output: score(w, x) =).; w;X;

Make a decision depending on the output score.

— E.g.: Decide “Yes” if score(w, x) > 0 and “No” if
score(w,x) < 0

The perceptron classification algorithm

Linear Classification

 We can represent this as a network

Edges correspond to weights

X1
Input nodes 27
correspond to features Xa
X4
x “Output” node with incoming
> edges computes the score

30

Linear models

* Linear models partition the space according to a
hyperplane

* But they cannot model everything

31

Multiple layers

 We can add more
— Each arrow has a weight

— Nodes compute scores from incoming edges and give input to
outgoing edges

..O Did we gain anything?

Non-linearity

* Instead of computing a linear combination
score(w,x) = Z Wi X;
i
* Apply a non-linear function on top:
score(w,x) = g ZWixi
i
* Popular functions:

1
1+e™*

Y

(sigmoid is also called the "logistic function”)

sigmoid(x) = relu(z) = max(0,x)

These functions play the role of a soft “switch” (threshold function)

33

Side note

* Logistic regression classifier:

— Single layer with a logistic function

34

Deep learning

e Networks with

e Each layer can be thought of as a processing step

* Multiple layers allow for the computation of more
complex functions

Example

* A network that implements XOR

Hidden node hy is OR

\
Output node hy — hy

Hidden node h; is AND

Bias term

Input zy Inputz; | Hidden hy Hidden h; | Output yg

0 0 0.12 0.02 0.18 —» 0
0 1 0.88 0.27 074 — 1
1 0 0.73 0.12 0.74 =1
1 1 0.99 0.73 0.33 =0

Error

* The computed value is 0.76 but the correct value
s 1

— There is an error in the computation

— How do we set the weights so as to minimize this
error?

Gradient Descent

The error is a function of the weights

We want to find the weights that minimize the
error

Compute gradient: gives the direction to the
minimum

Adjust weights, moving at the direction of the
gradient.

38

Gradient Descent

A

error(A)

(o
:K®; A

optimal X current A

Gradient Descent

radieat har W rrent Point

—kd radi® ¢
Omb\

Backpropagation

* How can we compute the gradients?
Backpropagation!
 Main idea:

— Start from the final layer: compute the gradients for
the weights of the final layer.

— Use these gradients to compute the gradients of
previous layers using the chain rule

— Propagate the error backwards

* Backpropagation essentially is an application of
the chain rule for differentiation.

Notation:

Activation function: g

Sy, = bi1hy + biohy , ¥ = g(syl)
Sy, = by1hy + byshy, ¥, = g(sy,)
Sp, = A11X1 + aq,x,, hl = g(shl)
Sh, = Q21X1 T QX2 , h, = g(shz)

OE OE dsp, OE

0E _ OE 0y,

) =2(y; —t1)g'(sy,)

Y1~ 6sy1_ 0y 0sy,

0E OE p
3h = 8y,ha | Oy,= 50 —=2(y2 — 2) 9 (sy,)

Ik _ h —E—5h
dby, Y12 db,, V2 ?

day; 0sp, 0aq

= 6h1x1 aazz

On

_OE _9E dh, [OE 0s,,
1 aShl B ahl aShl

Op, = (5y1b12 + 6y2b22).g,(5h2)

oE aShZ . X oE s OE
dE 0sy,\ ,
aSJ’1 ahl + aSyZ ah1>g (Shl) — (5y1b11 + 5)/2b21)g (Shl)

42

Backpropagation

We have already computed the 6y, s

@ We want to compute

0FE
aaij

Z Sy, bii ' (5n,)%

aau

For the sigmoid activation function:

1
9(x) = 1+e*

The derivative is:

g'(x)=gx)1 - gkx))

This makes it easy to compute it. We have:
g'(sn,) = hy(1 — hy)
Therefore

2 WD hi (1 — hy)x;

aau

43

Stochastic gradient descent

ldeally the loss should be the average loss over all
training data.

We would need to compute the loss for all
training data every time we update the gradients.
— However, this is expensive.

Stochastic gradient descent: Consider one input

point at the time. Each point is considered only
once.

Intermediate solution: Use mini-batches of data
points.

WORD EMBEDDINGS

(Thanks to Chris Manning for the material borrowed from his slides)

45

Basic Idea

* You can get a lot of value by representing a
word by means of its neighbors

* “You shall know a word by the company it
keeps”
(J. R. Firth 1957: 11)

* One of the most successful ideas of modern
statistical NLP

government debt problems turning into banking crises as has happened in
saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 4

46

Basic idea

Define a model that aims to predict between a center
word w, and context words in some window of length m
in terms of word vectors

P(We [Weem, ooy Wem1, Wt oo Werm)
model)
Pairwise probabilities
Independence assumption (bigram model)

P(Wll WZI Ly Wn) = ?:2 P(Wllwl—l)

P(""t.-a-l"e)

"

... Turning ato ban

1~

m (wtu\‘"e)

king crises as ...

C%ﬁ*e,v'

m werd window fosi‘h'm t

g

48

Word2Vec

Predict between every word and its context words
Two algorithms
1. Skip-grams (SG)
Predict context words given the center word
2. Continuous Bag of Words (CBOW)
Predict center word from a bag-of-words context

Position independent (do not account for distance from center)

Two training methods
1. Hierarchical softmax
2. Negative sampling

Tomas Mikolov, llya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean: Distributed Representations of Words and
Phrases and their Compositionality. NIPS 2013: 3111-3119

49

CBOW

Use a window of context words to predict the center word

Learn two matrices (N size of embedding, |V| number of words)

W N) Embedding of the i-th word when center
W word i

i—»\

Embedding of the i-
th word when N
|V context word

VI

N x |V| center embeddings
|V] x N context embeddings when output

when input "

CBOW

Given window size m
x(©) one hot vector for context words, y one hot vector for the center word

1. Input: the one hot vectors for the 2m context words
x(c—m)’ » x(c—l)’x(c+1)’ » x (c+tm)

2. Compute the embeddings of the context words
Ve = WxCM v, =WxC D p =WxCED) p. = WxEtm

3. Average these vectors

_ Vemm v +ov ~

c-mTVc—m+1 C+m,UERN
2m

Q%)

4. Generate a score vector
z=W’' 1D
dot product, (embedding of center word) similar vectors close to each other

5. Turn the score vector to probabilities
y = softmax(z)

We want this to be close to 1 for the center word

51

 Seftmaw
Exponentiate to
make positive .
\ e u -

u “i
Normalize to e @,
give probability J

52

 E.g. “The cat sat on floor”

— Window size = 2

the

cat

on

floor

INPUT PROJECTION QUTPUT

wit-2)

sat

53

Index of cat in vocabulary

one-hot
vector

Input layer

cat

on

oflofofofoflofrfo

ofoflofofrfloflofo

Hidden layer

Output layer

of: [=fel=l=]ofe]<]-

sat

one-hot
vector

54

We must learn W and W’

Input layer
0
1
0
0

Hidden layer

cat |2
0 WVXN
0
0

V-dim |0 — ,
H Winxy

0 —
0
0
1 N-dim
H Wixn

on
0
0
0

V-dim | o N will be the size of word vector

Output layer

oIE Iplololololololo

sat

V-dim

55

Wyxn X Xcat =
0.1|24|16|18|05]|09 32 [0 |
Input layer |o5|26/1.4]20[15/36 6.1
0 x o] =
1 | 0|
0 | 0|
5 0.6|1.8|27|19]24]20 12 o
Xeat = WPT o
0 * n
0 CQt Q
V-dim |0 qr |
" — 1,} — Vcat + Von
= 2
0 S\ -
g 2
0 Vv
1 +’)(;0
0 Hidden layer
Xon 0 N“q+ﬂ . y
5 N-dim
0
V-dim | o

Output layer

oIE IHIOIOIOIOIOIOIO

sat

V-dim

56

01|2a|16|18fos|o9| .. | .. |. |32
Input layer 45|56/ 14]20[15/36] . | .| . |61 g
0 X =
1 | 0|
0 | 0|
0 06|18[27)19f24a|20| .| .. | . |22 0 |
Xeat = WPT o
0 * n
0 CQt Q
V-dim |0 qr |
" m Veat + Von
= 2
0 QA2 -
0 z
0 Vv
1 +’)(;0
0 Hidden layer
Xon 0 \quil"l‘ﬂ . y
5 N-dim
0
V-dim |o

S
X"‘]
2
X
R
=l3
Il
=
S

Output layer

oIE IHIOIOIOIOIOIOIO

sat

V-dim

57

Input layer

cat

V-dim

on

V-dim

ofocfofjof=lofojoO ofl: Jojojjofofjjojoj=jo

of:

Hidden layer Output layer
Wyxn

N will be the size of word vector

y = softmax(z)

of: [=|=leolol=]=l<]-

58

Input layer

0
1 We would prefer y close to Vsq:
0
O .
cat o W Hidden layer Output layer
0 VXN _
0 [0] 0.01
0 0 |
— o ooz
V-dim |0 - 0 0.00
- ! 5 = 0 | —
— WVXN XVv=2Z — 0.02
0 - Yy =softmax(z)[c oo
0 = 0.02
i W 4 T 0.01
on 12 VXN N-dim - 07}
0 Vsat
5 | |
0 V-dim 0.00
V-dim | o N will be the size of word vector h%

0.1|24|16|18]05/09 3.2 . ,
| Contain word’s vectors
Input layer |os|26|1.4[29]|1536 6.1/
0
1
0
5 0.6|18|27)19|24]|20] .. 12
Xeat g Output layer
0 0
0 WV)(N 0 |
- 0
V-dim |0 — W’ | 0
— 0
n VXN = sat
0 - 0|
0 1
0 —
1 WVXN 0 V-dim
. Hidden layer
on 0 .
5 N-dim
0
V-dim | o

We can consider either W (context) or W’ (center) as the word’s representation.
Or even take the average.

60

Skipgram

Given the center word, predict (or, generate) the context words

W: N x |V]|, input matrix, word representation as center word
W’: |V| x N, output matrix, word representation as context word

y(j) one hot vector for context words

1. Get one hot vector of the center word /B Output layer

X { ¥,
2. Get the embedding of the center word B

=Wx B
3. Generate a score vector for each context word Vdim
z=W’v,
5. Turn the score vector into probabilities L-;“:.d...,

y = softmax(z)

We want this to be close to 1 for the context words

61

gkirﬂsr‘d(\q

Vxl OIX\/
W
We
o [__ . 0.1 - _
0| |77 5% -
novs §o) & =
- T (S
(') i, DL
.OJ L-'"‘~ 0.5 -
1 (i
ome ho LMLS “f
v column o
l: b] w‘r‘ tW\bPJJ;hS
7m y malrix ©S

1 e w"\'a‘\'iah
Wo\r-ol ,;t‘Pc_uﬁcp wh

Vx i Vxl
W, = Plxle) =
[un've) softmax (u, Vc.)
:.7] Fo.o';
63| ¢ ‘ﬁ"\‘)‘ 6.
M) > |ees
~6-) o.0)
.0'2 .0
3
o\
0 6.7 &
b
:.7" .0.0';
63| ¢ & Mmoot 6.
B el b-03~
n‘.) 0.0}
'02 .0
> o
09 6.7 &
L4 b o

-:.71 .o.o;
63| ° & Mmoo 6.

M) > |ees
~6-) (X))
-0.2 .0
" o3
0 l 6.7 i
o 4 ~

x|
Aej'u 4|
Cov\‘ftx'\'
wovd 5

Skipgram
e Foreachwordt=1..T, predict surrounding words in a
window of “radius” m of every word.

* Objective function: Maximize the probability of any
context word given the current center word:

.
J'(9) = tlll ~Ejsn plw,, J] We 9)
e
Ne&m{ ~ = log P (Weei|W
La)-k.“oo& 3(9) T g-' -Zssﬂ‘ J er t)

where O represents all variables we will optimize

63

* The basic skipgram utilizes the softmax function:

exp(v’c va)

plclw) = 5

Where:

— T —# of words in the corpus.

— v, - input vector of w.
— v',, - output vector of w.

i—1exp(V'; "vy)

Word Input Output
King [0.2,0.9,0.1] | [0.5,0.4,0.5]
Queen | [0.2,0.8,0.2] | [0.4,0.5,0.5]
Apple | [0.9,0.5,0.8] | [0.3,0.9,0.1]
Orange | [0.9,0.4,0.9] | [0.1,0.7,0.2]

An example

ddecades

dviolence conflict

{crisis

@nation

dhistory
@religion
dliberal
@conservative
delections e
@ Gsocial @ apSlitician
{country spolitics P
® @partisan [] @media
@struggle &ctmsm dmainstream
@culture ai i
. ournalism
Telection @campaigninglaffairs * : -
i {society
@policiesyconservatives
® 9 .
(dg.l?ate dissue (economicsteducatlon
@revolution @ Umorality €science
@partisanship dideology @
L democrac i
¢ y Gvalues {think
Py @candidate
i i {talk
Illberallsrn‘ ° |
.. . ‘
@administration (consqgvatism
@much @thinking
¢ focused
G matter @/ perspective
dreality
drhetoric
agenda

@mind

dideas

These representations are very good at encoding
similarity and dimensions of similarity!

* Analogies testing dimensions of similarity can
be solved quite well just by doing vector
subtraction in the embedding space

Syntactically

— Xapple ~ Xapples = Xcar = Xcars = Xfamity ~ Xfamilies
— Similarly for verb and adjective morphological
forms

Semantically (Semeval 2012 task 2)

— Xsnirt ~ Xclothing = Xchair ~ Xfurniture

— Xking ~ Xman = Xqueen ~ Xwoman

66

Test for linear relationships, examined by Mikolov et al.

a:b::c:?

man:woman :: king:?

+ king [0.300.70]
- man [0.200.20]
+ woman [0.600.30]

queen [0.700.80]

d = arg max
T

(wb — Wy + wc)wa

||wb _wa‘|’w6||

0.75

0.5

0.25

x
% king
% Woman
4
man
0 0.25 0.5 0.75

67

Hierarchical softmax

Instead of learning O(|V|) vectors, learn O(log(|V|) vectors
How?

= Build a binary tree with leaves the words, and learn one
vector for each internal node.

= The value for each word w is the product of the values of the
internal nodes in the path from the root to w.

68

The probability of a word being the context word is defined as:

compares the similarity of
the input vector v,, to each

L(w)—1 int?rnalnodi vector |
p(clw) = 1_[J({n(c,j +1) = ch(n(w,{))] * Un(c.j) v.)
j=1 Y
where: returns 1 if the path goes left,

- 1if it goes right n(w, 1) = root

— n(w, j) —is the j-th node on the path from the root to w. n(w, L(w)) = parent of w

— L(w) —is the length of the path fromroottow. L(w,) =3

— ch(n) —is the left child of node n.

n(w,,1)
1 if xistrue
—_ xl =
[x] {—1 otherwise
1
B G(x) T 1+e X

'H,r} “-"_j 11."3 “-"_‘! 1"-""'_‘1 11-":-

69

Suppose we want to compute the probability of w,
being the output word.

n(w,,1)

 The probabilities of going right/left in a node n are: "2

n(w,.,3)
— p(n, left) = a(v, "vy)

-""-]] “-':_\ Wi “'_‘f]FI ¥ w V

— p(n,right) =1 —o(vy, va) = o(—wy, va)

p(WZ — C) = p(?’l(Wz, 1)! left) ’ p(n(Wz» 2)1 left) ’ p(n(Wz, 3),Tlght)

= U(Un(Wz,l) T”w) ' U(vn(WZ,Z) va) ' J(_vn(Wz,B) va)

Complexity improved even further using a Huffman tree:

= Designed to compress binary code of a given text.

= A full binary suffix tree that guarantees a minimal average weighted
path length when some words are frequently used.

70

Negative Sampling

= For each positive example we draw K negative examples.

= The negative examples are drawn according to the unigram
distribution of the data

Pp(c) = ﬁ(ﬁ)

71

p(D = 1|w, c) is the probability that (w, c) € D.
p(D =0|w,c) =1—p(D = 1|w,c) is the probability that (w, c) & D.

For negative samples: p(D = 1|w, ¢) must be low = p(D = 0|w, ¢) will be
high.

arg max H p(D = 1|c,w; 0)
(w,c)eD

:argmgx Z log 0 (V- Ve) + Z log o (— V" Ve)
(w,e)eD (w,c)e D’

For one sample: y

log o (V- Ve) + Z log o(— Vw* V)

1=1

72

BACK TO GRAPHS

How?

Words = Nodes
Sentences = Paths, Random walks

74

Random-walk embeddings

probability thatjand

Zi » / : & co-occuronarandom
J

walk over the network

Random-walk Embeddings

Estimate probability of
visiting node von a random
walk starting from node u
using some random walk
strategy R.

Optimize embeddings to
encode these random walk
statistics.

76

Random Walk Optimization

1. Run short random walks starting from each node on the
graph using some strategy R.

2. For each node ucollect N ,(u), the multiset” of nodes
visited on random walks starting from w.

3. Optimize embeddings according to (maximum

likelihood):
L= > —log(P(lz)

i€V jEN(D)

* Np(u) can have repeat elements since nodes can be visited multiple
times on random walks.

77

Random Walk optimization
L= Y —log(P(il)
i €V j EN()
Intuition: Optimize embeddings to maximize likelihood of random
walk co-occurrences.
Parameterize P(v | z,) using softmax:

predicted probability of i and j

exp(z; - z;) .
co-occuring on random walk

ZmEV exp (z; * Zm)

B exp(z; * zj)
L8 2 e)

sum over all nodes i

P(jlz;) =

sum over nodes m seen
on random walks starting

from i s

Why Random Walks?

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information.

Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks.

79

DeepWalk

Short random walks = sentences

U771 — VUgq — VU — U] — U7 — Vg —

Vg — V2 — V3 —r V1 — V12 — U3 —

(3 00
o -]
O o P00 | o
o0 e .?’?3 ONE %
V37 — VU344 — Vg — VU — V19— Vgq — (} oo °?% Vg s PR
oge
%

V73 — Vg4 — Uy — V1 — V12 — U1 —
U7 —» U4 — Vg — U1 —» V13 — Vsl —

Scale Free Graph

Short truncated random walks are sentences in an
artificial language

B. Perozzi, R. Al-Rfou, S. Skiena: DeepWalk: online learning of social representations. KDD 2014

80

DeepWalk

Words frequency in a natural

language corpus follows a power law.

U7l — Ugq — Us —
Vg2 — V2 — V3 —
V37 — V34 — Vg —
v73 — Ve — VUs —>
U775 — V4 — Vg —

Node frequency in random walks on
scale free graphs also follows a

power law.

vy —
U] —
v —
m —
v —>

17 —
U192 —
U190 —
U192 —

vU13 —

Vg —
V73 —
V9q —
U1 —

Vg1 —

of Words

of Vertices

in Wikipedia

. Frequency of Word Occurrence
10° pr T T T "

- _ — = =
(=} o = (=] (=}
™ W 'y w

—
(=]
©

"‘4.

N\

10° 100 10° 100 10* 100 10° 10’

Word mention count

Scale Free Graph

Wikipedia Article Text

F{gguency of Vertex Occurrence in Short Random Walks

10° b

100k

10t}

10t |

10° L

i

10° 10" 107 10° 10°
Vertex visitation count

You

10° 10°

Tube Social Graph
81

DeepWaIk

’U4 = 4
e *
~ Random Walks ui | 1] ——)
—-’. 5
1 ()

@ Representation Mapping

-0.6F
» 3
08 Ggg L °®
3
1.0+ ® & ®

120 g

14k

16k

O(v,) o ‘1.8

I I 1 L I
—10 —05 00 0.5 1.0 1.5 2.0 2.5

@ Hierarchical Softmax @ Output: Representation

DeepWalk

Algorithm 1 DeerWark(&, w, d, ., t)

Window w
Input: graph G(V, E)

Generate V ra ndom window slze w

embedding size d

walks for each vertex e e

walk length ¢

in the graph S Bt e B e
Each short random

3: for i =0 to v do

4: O = Shuffle(V)
5: for each v; £ O do
B: W., = RandomW alk(G, vi.t)
Wa I (h a S Ie ngt h t T SkipGram(&, W,,, w)
. .. B: d fi
(intuitively, sentence length) 0. end for

Qutput: matrix of vertex representations & £ RIV**

Pick the next step
uniformly from the
node neighbors

Representation mapping

Wy, BV — Us— U] — U5 Ul — Ugs > Us] = Usg

W, = 4 m Map the vertex under focus (U7) to
! -, its representation.
w 1] — =’ m Define a window of size W
5 o
1 d wm IfW=1and VU=71]

Maximize: Pr(vs|®(vq))
PI‘(’U5‘(I)(’01))

Algorithm 2 SkipGram($, W, , w)

1: for each v; € W, do

2: for each u. € W, [j —w:j+ w] do
3 J(®) = — log Priug | ®(v;))

4: b=>d—a=* %
5
B:

end for
end for

Random Walk strategies

= DeepWalk just runs fixed-length,
unbiased random walks starting from

each node
= Node2vec: biased random walks that
can trade off between local and global

views of the network

A. Grover, J. Leskovec: node2vec: Scalable Feature Learning for Networks. KDD 2016

85

node2vec: Biased Walks

Two classic strategies to define a neighborhood
N (u) of a given node u:

Ngrs(u) = {s4,55,53} Local microscopic view (BFS)

NDFS(u) = { S4,S5,S6} Global macroscopic view (DFS)

86

Biased 2"d Order Random Walks

Walker from t, traversed (t, v) and is now in v, where to

go next?
Same distance to t

Closerto t

How much far away from t? Only three possible choices:
= Farther distance (distance =2)

= Same distance (distance = 1)

= Backtot (distance = 0)

87

Biased Random Walks

AtV from t, where to go next?

Same distance to t

Farther from ¢

1/q

Closerto t

p, ¢ model transition probabilities
p return parameter
q "walk away” parameter

How much far away from t?

» Farther distance (distance =2)
= Same distance (distance = 1)
= Backtot (distance =0)

88

Biased Random Walks

1 : _
Walker at V from t, where to go next p Hdiz =0
Opglt,z) =41 ifdiz =1
L ifdi. =2

Same distanceto t

Closerto t

p, ¢ model transition probabilities

BFS'Iike Walk: LOW Value Of p p return parameter
DFS-like walk: Low value of ¢ 7 "walk away” parameter

N (u) are the nodes visited by the walker

89

Interpolating BFS and DFS

Biased random walk R that given a node u
generates neighborhood Ny (1)

* Two parameters:
— Return parameter p:
* Return back to the previous node

— In-out parameter q:
* Moving outwards (DFS) vs. inwards (BFS)

90

node2vec

Also learns edge vectors based on the vectors of
their endpoints

Operator Symbol Definition
Average H (f(u) B f(v)], = f:{uﬁﬂz—f:h-)
Hadamard L] [f(uw) & f(v)]: = fi(u) * fi(v)

Weighted-L1
Weighted-1.2

|- 1
|- 1l2

[f(u) - f(v)l5, = [fi(u) = fi(v)]
1f(w) - f(v)|l2: = | fi(u) = fi(v)]?

91

Node embeddings

Three approaches based on:

= Adjacency matrix

= Multi-hop neighborhoods
= HOPE

= GraRep
= Random-walks
= DeepWalk

= Node2Vec

92

Gra Rep

Al

Path of length k =1 ._. & .

= Look at the paths that
Al AZ connect the nodes

Path of length k=2 = More paths -- more
/ similar
A2

o Probability from a
node to reach the
other

= Considers paths of

different lengths

Path of length k=3

Path of length k=4
Ai

S. Cao, W. Lu, Q.i Xu: GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015 93

11

c1 c2 c3 c4

GraRep

But not all k-neighbors equally important

A ¢
T B C1 ca
S O |
c1 2 3 c4 ', () c3

Nearest neighborhoods more important

Maintain different k-step information differently in the graph representation

Probabilistic adjacency matrix P; the probability of transition from node i to

node j where the transition has length exactly 1

O, Pk O K

0
1/3
1/2

1 0 0
0 0 1
00 0
1 00
0 1 0
12 12 0
0 0 0
1 0 0
13|13 0
0 0 1/2

O O O o N

o O o +—» O

o O —» O O

o w O o o

95

N O O O O

Uy

from node 2
[0 1/2 0 0 1/2]
172 0 0 |1/2} 0

U .
0 0 0 0 1
0 1/2 1/6 0 1/3
_1/6 5/12 5/12 O 0

GraRep

Nodes reachable in 1-step

0 1/2 1/2 0
O 0 0 O

o 1 0 O
1/3 1/3 1/3 0 O

0
1
0

12 0 0 1/2 0]

0 1/2 1/2] 0

0O 0 O0}f O

0O 1 03O0

1/3 1/3 1/3] 0
1/2 0 0 §1/2

Nodes that reach node 4
in one step

Pl-zj the probability of transition
form node j from node j when the
transition has length exactly 2

o o o —» O

96

GraRep

Pl-lj-: Transition probability from node / to node j where the
transition consists of exactly k steps

1. Minimize the loss for a specific k

_ k o 112
Ly = Xgpevav IP-2i- 7 ||
2. Concatenate the embeddings for the different k

Basic idea:
* Train embeddings to predict k-hop neighbors.
* Approach based on skipgrams

97

GraRep

Transition probability from node i (current node) to node j
(context node) where the transition consists of exactly k steps

Pf = pr(G | D)
Skip-gram model

Given a center word w, predict the context words ¢, i.e.,
the words that appear within distance k from w

Pcl\(/v = pk(c | w)

Learn two representations:
= One for node i as the source node (i.e., center word)
= One for node i as the destination node (i.e., context word)

98

GraRep

Use negative sampling (*) and maximum likelihood

Assume for a given k, the collection of all paths from G that start fromiand end at .
Maximize

(1) Probability that these pairs came from the graph, and

(2) Probability that all other pairs did not come form the graph

probability that pair (i, j) probability that pair (i, j) did not
came from the graph I come from the graph

[I \
Le(D) = Xjev (Ul loga(z; - 7)) + A Ejep,nllogo(—z; - zj1)]

\

Sampled vertices drawn
according to the vertex
distribution over the

graph (pg(V))

hyper parameter
indicating the number
of negative samples

o: sigmoid function

99

GraRep

L) = Xjev (r(li) loga(z; - z;)) + A Ejp,n[logo(—z; - zj1) |
Local objective for a specific pair of nodes

. N pk A k
Li(i,j) = P;;log a(zi - Zj) + 5 Z]rev P’ log o(—z; - zj]
As before, compute the gradient and use stochastic gradient descent

Or solve by setting = 0 and get

ZiZj= log(z 4,)—log(B), B =

i’ jkk

100

Summary

* Basic idea: Embed nodes so that distances in
embedding space reflect node similarities in the
original network.

* Different notions of node similarity:
— Adjacency-based (i.e., similar if connected)
— Multi-hop similarity definitions (HOPE, GraRep).
— Random walk approaches (DeepWalk, node2vec).

* No one method wins in all cases

— e.g., node2vec performs better on node classification
while multi-hop methods performs better on link
prediction

GRAPH NEURAL NETWORKS

Outline

Basic Variant
Convolution GNNs
GraphSAGE

Gated GNNs

Embeddings: Key Components

Encoder maps each node to a low-dimensional vector.

d-dimensional embedding
/

ENC(v) = 2,
node in the/input graph

Similarity function specifies how relationships in vector
space map to relationships in the original network.

. . T
similarity (u, v) = z, z,
Similarity of v afd v in the 3
original network dot product between node embeddings (*)

(*) other distance measures than dot products could be used (e.g., Euclidean

distance), but the dot product is the standard measure of similarity used.
104

From “Shallow” to “Deep”

So far, “shallow” encoders, i.e. embedding lookups:

embedding vector for a specific node

e —

embedding matrix Dimension/size of
\ embeddings

f

one column per node

105

From “Shallow” to “Deep”

“deeper” methods based on graph neural
networks.

ENC (U) __ complex function that

o depends on graph structure.

" |n general, all these more complex encoders can be
combined with the similarity functions we discussed

106

Setup

Assume we have a graph G:
— V is the vertex set.
— A is the adjacency matrix (assume binary).

— X € R™IVI'is a matrix of m node features (input
representation of a node)

* Categorical attributes, text, image data

— E.g., profile information in a social network.
* Node degrees, clustering coefficients, etc.
* Indicator vectors (i.e., one-hot encoding of each node)

107

Neighborhood Aggregation

Key idea: Generate node embeddings based on local
neighborhoods.

TARGETl NODE) ‘A‘:'

I .1
INPUTGRAPH . . e ‘

Neighborhood Aggregation

Intuition: Nodes aggregate information from their

neighbors using neural networks

TARGET NODE

l

A

./ % <

INPUT GRAPH

Neighborhood Aggregation

Intuition: Network neighborhood defines a
computation graph

Every node defines a unique
computation graph!

INPUT GRAPH

® ’ ’ hd ’ o
[]] } []]
® < e o Rt ; e o >
o® oo , o o
R A 1 V- A A
Lo egy e Yeg g -0 doe %047 o° 0°5;- e
CrYYY) o0 o 0 °® o0 @0] ... ®

Neighborhood Aggregation

" Nodes have embeddings at each layer.
* Model can be of arbitrary depth.
= |ayer-0 embedding of node u is its input feature, i.e. X,,.

Layer-0
Layer-1 ’XA
l Layer-2 BXA
‘ A ‘ X B
- s o
‘ S v - ‘ X E

l .1
INPUTGRAPH T T

Neighborhood Aggregation

Key distinctions in how different approaches
aggregate information across the layers.

what’s in the box! *‘ ________________________ kS
TARGET NODE ‘ 4'
e -
€« P07 € 3221: ________
® 7R +- ce @
®

INPUT GRAPH

Neighborhood Aggregation

Basic approach: Average neighbor information and
apply a neural network.

1) average messages
TARGET NODE from neij g hbors ‘4‘:'

l

l .1 ____________
INPUTGRAPH = &« T T ‘

The Math

Basic approach: Average neighbor information and
apply a neural network.

Initial “layer 0" embeddings are revious layer

- _— equal to node features embedding of v

T

kth layer

embedding non- linearity (e.q.,
of v RelLU or tanh)

average of neighbor’s
previous layer embeddings

Graph Convolution

Each pixel in an image as a node with

neighbors determined by the filter size.

2D convolution takes a weighted
average of pixel values of the red node
along with its neighbors.

Neighbors of a node are ordered and
have a fixed size.

To get a hidden representation of the
red graph node, takes the average
value of the node features of the red
node along with its neighbors.
Neighbors of a node are unordered
and variable in size.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqgi Zhang, Philip S. Yu: A Comprehensive Survey on Graph Neural

Networks. CoRR abs/1901.00596 (2019)

115

Training the Model

How do we train the model to generate high-quality
embeddings?

----- ‘A
- o
.\ | g
Z 2 « DR 4’.
'/ A o @ g
T
o<y
_________ =

INPUT GRAPH

Need to define a loss function on
the embeddings, L(z,)!

116

Training the Model

trainable matrices
v — Xu (l.e., what we learn)

/kl\.

h?
h* =¢ W . - By k=1 : Vké{l,...,K}
PRI &
z, = h \

e After K-layers of neighborhood aggregation, we get output
embeddings for each node.

=y
o
|

 We can feed these embeddings into any loss function and run
stochastic gradient descent to train the aggregation parameters.

117

Training the Model

* Train in an unsupervised manner using only the graph
structure.

* Unsupervised loss function can be anything from the
last section, e.g., based on

— Random walks (node2vec, DeepWalk)
— Graph factorization

— i.e., train the model so that “similar” nodes have
similar embeddings.

118

Training the Model

A number of negative

samples
L(z,) = —log (U(Zu Zv)) — 2 Eypep, llog o(—2y2y,))
/
P negative
v a node th.at CO-OCCurs sampling
near u on fixed-length distribution

random walk

= representations z, feed into the loss function are generated from the
features contained within a node’s local neighborhood, rather than
training a uniqgue embedding for each node

119

Training the Model

Alternative: Directly train the model for a
supervised task (e.g., node classification):

Human or Hutr)n 6,‘(2 o
bot? O
Q
I
X
o i%
.?S %; gé g&. e.g., an online social network
Y'Y B

120

Training the Model

Alternative: Directly train the model for a
supervised task (e.g., node classification):

classification

H vvelghts \
uman or
hot? L= Yy log(o log 1—0@0)
O veV
l
.%.]a output node
@
‘ : b embedding node class label

O
“ .

121

Overview of Model Design

1) Define a neighborhood aggregation

function.
..... A
o
A &
'/ 7 A @ < e @I
INPUT GRAPH e R

2) Define a loss function on the
embeddings, L(z,)

122

Overview of Model Design

3) Train on a set of nodes, i.e., a batch of
compute graphs

I
/IE‘ ._ ,’./’ A A !‘7-“_
o o ‘o ®0 o‘
‘ “ N/] i * 2
Nl | ‘ % -
.%.QDD ‘?ﬂ‘ﬁé.&. ..D R C'j..
123

Overview of Model

4) Generate embeddings for nodes as needed

Even for nodes we never trained on!!!!

INPUT GRAPH
4 o 0] o e
- o]]]
%‘. : .‘y %: ;.& .%%f.:‘ .h.! ‘e : %-.;.; .‘a %'; .‘
\. daae®"’ % oo° oo \‘“ ®ep o ®eo 'D/

. T
d
. T

Inductive Capability

ne same aggregation parameters are shared for
| nodes.

ne number of model parameters is sublinear in

|V| and we can generalize to unseen nodes!

shared parameters
“' ... ;f....g‘.“ 3
. VkE Pk 4 e
i a shared parameters ‘
Horrreraenaes AAA .,)
L P ® ®

INPUT GRAPH

Compute graph for node A Compute graph for node B

125

Inductive Capability

Ly,

train on one graph generalize to new graph

Inductive node embedding — generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and generate

embeddings on newly collected data about organism B
126

Inductive Capability

generate embedding
train with snapshot new node arrives for new node

Many application settings constantly encounter previously unseen nodes.
e.g., Reddit, YouTube, GoogleScholar,

Need to generate new embeddings “on the fly”

127

Quick Recap

Basic variant: Generate node embeddings by
aggregating neighborhood information.

— Allows for parameter sharing in the encoder.

— Allows for inductive learning.

128

Graph Convolutional Networks (GCNs)

Variation on the neighborhood aggregation idea:

hk—l
ueNE(;)UfU \/|N(U)HN(U)|

Kipf et al., 2017. Semisupervised Classification with Graph Convolutional Networks. ICLR.

129

Graph Convolutional Networks

Basic Neighborhood Aggregation

k h; ! k—1
h> =0 | W, Z lBkhv

werioy 1V (W)
VS.
/~ GCN Neighborhood Aggregation)
hk—l
hﬁ — 0O Wk Z .
ueN (v)UJv \/|N HN
N)),
— \

same matrix for self and neighbor

_ per-neighbor normalization
embeddings

130

Graph Convolutional Networks

Empirically, they found this configuration to give
the best results.

— More parameter sharing.
— Down-weights high degree neighbors.

k—1
h* W § | n,
B VIN@W)[[N(v)
ueN (v)Uv
use the same transformation matrix for self and instead of simple average,

neighbor embeddings normalization varies across neighbors

131

GraphSAGE Idea

So far we have aggregated the neighbor messages by
taking their (weighted) average, can we do better?

TARGETl NODE “ B A‘: c
. @
@« ?2?7?7 €n ‘4—.}

o
INPUTGRAPH . . ‘

Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. NIPS 132

GraphSAGE Idea

TARGET NODE

l

‘*/

Any differentiable funcUon
INPUTGRAPH that maps set of vectors to a
single vector.

\

hy = o ([Ay - Aca({hy ", Vu € N(v)}), B hi'])

v

GraphSAGE Differences

* Simple neighborhood aggregation:

hrk—1
hy =0 [W, ‘— + Bghy !
3 Fa

concatenate self embedding and
neighbor embedding

/ \.

h? = o ([W}, -[ace ({bE 1, Vu € N(v)}) , B,h* 1))

/

generalized aggregation

 GraphSAGE:

134

GraphSAGE Variants

* Mean:

AGG = Z

ueN (v)

e Pool

hk—l
[N (v)]

— Transform neighbor vectors and apply symmetric vector

function

AGG =y

e |STM:

element-wise mean/max

‘(/{Qhﬁ—l,vu e N(v)})

— Apply LSTM (Long Short-Term Memory) to random
permutation of neighbors.

AGG = LSTM

([h,ﬁ_l,Vu c W(N(U))])

135

Neighborhood Aggregation

* Basicidea: Nodes aggregate “messages” from
their neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neighborhood Aggregation

* GCNs and GraphSAGE generally only 2-3 layers
deep.

RGET NOBE ® 4‘:‘

“”’ b A
.\
R e
S < PR ol
0.”.

l .v
INPUTGRAPH TR Ty A

Neighborhood Aggregation

e But what if we want to go deeper?

10+ Iayers"?

P
[J
)
TARGET NODE r—/% - -
l * o
..... = o
| Pt ..
e -t
‘® .

INPUT GRAPH

138

Gated Graph Neural Networks

* How can we build models with many layers of
neighborhood aggregation?

* Challenges:
— Overfitting from too many parameters.

— Vanishing/exploding gradients during backpropagation.

* |dea: Use techniques from modern recurrent
neural networks

Lietal., 2016. Gated Graph Sequence Neural Networks. ICLR.
139

Gated Graph Neural Networks

* ldea 1: Parameter sharing across layers.

same neural network

across layers o8t
P
. DR ‘1- :)
TARGET NODE @ s
l """""" L
. &
"""" .Ar o
““““ A
e o ‘ <
. S PR “
: ‘4_ V' “.
...... €
......) ‘ v
........ -
............ ‘1
INPUT GRAPH "‘$
e, ".
o

Gated Graph Neural Networks

* ldea 2: Recurrent state update.

RNN module! .

TARGET NODE ®“ T QO

o
.
o
"""""
. "
‘u‘ A .
. &

o
.
.
R
-

‘e
.
.
.
‘e
.

INPUT GRAPH ‘,_

Summary

* Graph convolutional networks

— Average neighborhood information and stack neural
networks.

 GraphSAGE

— Generalized neighborhood aggregation.

* Gated Graph Neural Networks
— Neighborhood aggregation + RNNs

142

Acknowledgement

Most slides adopted from the following tutorial

William Hamilton, Rex Ying, Jure Leskovec and
Rok Sosic, Representation Learning on Networks.
Held at WWW 2018 (April 24, Lyon, France).

http://cs.stanford.edu/~jure
http://snap.stanford.edu/proj/embeddings-www/

