Online Social Networks and Media

Community detection

Introduction

Real networks are not random graphs

Communities
aka: groups, clusters, cohesive subgroups, modules
(informal) Definition: groups of vertices which probably share common properties and/or play similar roles within the graph

Some are explicit (emic) (e.g., Facebook (groups), Linkedln (groups, associations), etc), we are interested in implicit (etic) ones

NCAA Football Network

Protein-Protein Interactions

Protein-Protein Interactions

Protein-Protein Interactions

Facebook Network

Facebook Network

Nodes: Facebook Users
Edges: Friendships

Twitter \& Facebook

friends under the same advisor

social circles, circles of trust

Outline

PART I

1. Introduction: what, why, types?
2. Cliques
3. Background: How it relates to "cluster analysis" (node/edge similarity)
4. Betweeness centrality
5. Modularity
6. How to evaluate

PART II
Cuts, Spectral clustering, Denser subgraphs, community evolution

Why? (some applications)

- Knowledge discovery
- Groups based on common interests, behavior, etc (e.g., Canadians who call USA, readings tastes, etc)
- Recommendations, marketing
- Collective behavior (observable at the group, not the individual level, local view is noisy and ad hoc)
- Performance-wise (partition a large graph into many machines, assigning web clients to web servers, routing in ad hoc networks, etc)
- Classification of the nodes (by identifying modules and their boundaries)
- Summary, visual representation of the graph

Example: communities in Belgium

59\% Flemish, speaking Dutch 40\% Walloons speaking French

Community structure in Belgium

Community Types

Non-overlapping vs. overlapping communities

Non-overlapping Communities

Adjacency matrix

Overlapping Communities

What is the structure of community overlaps: Edge density in the overlaps is higher!

Communities as "tiles"

Community Types

Member-based (local) vs. group-based

Community Detection

Given a graph $G(V, E)$, find subsets C_{i} of V, such that $U_{i} C_{i} \subseteq V$

Assumptions

- Undirected graphs
- Edges may have
- weights, (easily extended)
- labels
- content or attributes shared by individuals (in the same location, of the same gender, etc)
- Nodes may have labels, attributed, or labeled graphs

Multipartite graphs - e.g., affiliation networks, citation networks, customers-products: reduced to unipartited projections of each vertex class

Hardness

Bell Number

Number of all possible partitions of N nodes

$$
B_{N}=\frac{1}{e} \sum_{j=0}^{\infty} \frac{j^{N}}{j!}
$$

1040 partitions for a network of size $N=50$

Community Detection

We will see three approaches

- Node degree (familiarity)
- cliques
- Node similarity
- cluster
- Node reachability
- betweeness

Cliques (degree similarity)

Clique: a maximum complete subgraph in which all pairs of vertices are connected by an edge.

A clique of size k is a subgraph of k vertices where the degree of all vertices in the induced subgraph is $k-1$.

\checkmark Cliques vs complete graphs

Cliques (degree similarity)

Search for:

- the maximum clique (the one with the largest number of vertices) or
- all maximal cliques (cliques that are not subgraphs of a larger clique; i.e., cannot be expanded further).

Both problems are NP-hard, as is verifying whether a graph contains a clique larger than size k.

Cliques

```
Algorithm 6.1 Brute-Force Clique Identification
Require: Adjacency Matrix \(A\), Vertex \(v_{x}\)
    1: return Maximal Clique \(C\) containing \(v_{x}\)
    2: CliqueStack \(=\left\{\left\{v_{x}\right\}\right\}\), Processed \(=\{ \}\);
    3: while CliqueStack not empty do
    4: \(\quad \mathrm{C}=\) pop(CliqueStack); push(Processed,C);
    5: \(\quad v_{\text {last }}=\) Last node added to C;
    6: \(\quad N\left(v_{\text {last }}\right)=\left\{v_{i} \mid A_{v_{\text {lass }}, v_{i}}=1\right\}\). Check all neighbors of last node sequentially
    7: for all \(v_{\text {temp }} \in N\left(v_{\text {last }}\right)\) do if connected with all members in the clique \(->\) new
    8. if \(C\) clique \(->\) push
    8: \(\quad\) if \(C \bigcup\left\{v_{\text {temp }}\right\}\) is a clique then
    9: \(\quad \operatorname{push}\left(\right.\) CliqueStack, \(\left.C \cup\left\{v_{\text {temp }}\right\}\right)\);
10: end if
11: end for
12: end while
13: Return the largest clique from Processed
```

Enumerate all cliques (in alphabetical order)
Checks all permutations!
For (complete graph) 100 vertices, $2^{99}-1$ different cliques

Cliques

Pruning

- Prune all vertices (and incident edges) with degrees less than $k-1$.
- Effective due to the power-law distribution of vertex degrees
"Exact cliques" are rarely observed in real networks.
E.g., a clique of 1,000 vertices has $(999 \times 1000) / 2=499,500$ edges.
- A single edge removal results in a subgraph that is no longer a clique.
- That represents less than 0.0002% of the edges

Relaxing Cliques

All vertices have a minimum degree but not necessarily k-1
k-plex
For a set of vertices V_{0}, for all $u, d_{u} \geq\left|V_{0}\right|-k$ where d_{u} is the degree of v in the induced subgraph

What is k for a clique?
Maximal

$$
\begin{aligned}
& \text { 1-plex : }\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \text { 2-plex }:\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
& \text { 3-plex }:\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
\end{aligned}
$$

Relaxing Cliques

Clique

$$
\forall i \in C, k_{i}^{\mathrm{int}}=N_{C}
$$

Strong community $\forall i \in C, k_{i}^{\text {int }}>k_{i}^{\text {ext }}$
Weak community $\quad \sum_{i \in C} k_{i}^{\text {int }}>\sum_{i \in C} k_{i}^{\text {ext }}$
$k_{i}^{\text {int }}$ Inside C $k_{i}^{e x t} \quad$ Outside C Where k stands for degree

Clique Percolation Method (CPM): Using cliques as seeds

Assumption: communities are formed from a set of cliques and edges that connect these cliques.

Clique Percolation Method (CPM): Using cliques as seeds

```
Algorithm 6.2 Clique Percolation Method (CPM)
Require: parameter \(k\)
    1: return Overlapping Communities
    2: Cliques \(_{k}=\) find all cliques of size \(k\)
    3: Construct clique graph \(G(V, E)\), where \(|V|=\mid\) Cliques \(_{k} \mid\)
    4: \(E=\left\{e_{i j} \mid\right.\) clique \(i\) and clique \(j\) share \(k-1\) nodes \(\}\)
    5: Return all connected components of \(G\)
```

1. Given k, find all cliques of size k.
2. Create graph (clique graph) where all cliques are vertices, and two cliques that share $k-1$ vertices are connected via an edge.
3. Communities are the connected components of this graph.

Clique Percolation Method (CPM): Using cliques as seeds

Input graph, let $k=3$

Clique Percolation Method (CPM): Using cliques as seeds

Clique graph for $k=3$

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Clique Percolation Method (CPM): Using cliques as seeds

Result

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Note: the example protein network was detected using a CPM algorithm

Clique Percolation Method (CPM): Using cliques as seeds (terminology)

Two k-cliques are adjacent, if they share $k-1$ vertices.
The union of adjacent k-cliques is called k-clique chain.
Two k-cliques are connected if they are part of a k clique chain.

A k-clique community is the largest connected subgraph obtained by the union of a k-clique and of all k-cliques which are connected to it.

Clique Percolation Method (CPM): Using cliques as seeds

- A k-clique community is identified by making a k-clique "roll" over adjacent k-cliques, where rolling means rotating a k-clique about the k - 1 vertices it shares with any adjacent k-clique.
- By construction, overlapping communities
- There may be vertices belonging to nonadjacent k-cliques, which could be reached by different paths and end up in different clusters. There are also vertices that cannot be reached by any k-clique
- Instead of $k=3$, maximal cliques?
- Theoretical complexity grows exponential with size, but efficient on sparse graphs

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques
3. Background: cluster analysis (node/edge similarity)
4. Hierarchical clustering (betweenness)
5. Modularity
6. How to evaluate

What is Cluster Analysis?

Finding groups of objects such that the objects in a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Types of Clustering

- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
- Division of data objects into subsets (clusters)
- Assumes that the number of clusters is given
- Hierarchical clustering
- A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Example Partitioning: K-means Clustering

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don't change

- Input: Number of clusters, K
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid

Example

K-means Clustering

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
- Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~K} * \mathrm{I} * \mathrm{~d}\right)$
- $n=$ number of points, $K=$ number of clusters,
$\mathrm{I}=$ number of iterations, $\mathrm{d}=$ number of attributes

K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

$$
S S E=\sum_{i=1}^{K} \sum_{x \in C_{i}} d i s t^{2}\left(m_{i}, x\right)
$$

$-x$ is a data point in cluster C_{i} and m_{i} is the representative point for cluster C_{i}

- can show that m_{i} corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Vertex similarity

- Define similarity between two vertices
- Place similar vertices in the same cluster
- Use traditional cluster analysis

Vertex similarity

- Structural equivalence: based on the overlap between their neighborhoods

$$
\sigma\left(v_{i}, v_{j}\right)=\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|
$$

- Normalized to [0, 1], e.g.,

$$
\sigma_{\text {Jaccard }}\left(v_{i}, v_{j}\right)=\frac{\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|}{\left|N\left(v_{i}\right) \cup N\left(v_{j}\right)\right|}
$$

Vertex similarity

$$
\sigma_{\text {Jaccard }}\left(v_{2}, v_{5}\right)=\frac{\left|\left\{v_{1}, v_{3}, v_{4}\right\} \cap\left\{v_{3}, v_{6}\right\}\right|}{\left|\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}\right|}=0.25
$$

Other definitions of vertex similarity

Use the adjacency matrix A,

$$
d_{i j}=\sqrt{\sum_{k \neq i, j}\left(A_{i k}-A_{j k}\right)^{2}}
$$

Other definitions of vertex similarity

If we map vertices u, v to n-dimensional points A, B in the Euclidean space,

$$
\begin{aligned}
& d_{A B}^{E}=\sum_{k=1}^{n} \sqrt{\left(a_{k}-b_{k}\right)^{2}} \\
& d_{A B}^{M}=\sum_{k=1}^{n}\left|a_{k}-b_{k}\right| \\
& d_{A B}^{\infty}=\max _{k \in[1, n]}\left|a_{k}-b_{k}\right| \\
& \rho_{A B}=\arccos \frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\sum_{k=1}^{n} a_{k}^{2}} \sqrt{\sum_{k=1}^{n} b_{k}^{2}}}
\end{aligned}
$$

Other definitions of vertex similarity

Many more - we shall revisit this issue when we talk graph embeddings

Also useful when there are attributes associated with nodes or edges to combine distances

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
- A tree like diagram that records the sequences of merges or splits

Hierarchical Clustering

- Two main types of hierarchical clustering
- Agglomerative:
- Start with each node as an individual cluster (called singletons)
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) is left
- Divisive:
- Start with one, all-inclusive cluster = the whole graph
- At each step, split a cluster until each cluster contains a single node (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
- Merge or split one cluster at a time

Agglomerative Clustering Algorithm

Popular hierarchical clustering technique
Basic algorithm is straightforward

1. [Compute the proximity matrix]
2. Let each node be a cluster
3. Repeat
4. Merge the two closest clusters
5. [Update the proximity matrix]
6. Until only a single cluster remains

Agglomerative

dendrogram
current clustering

Agglomerative

dendrogram

current clustering

Agglomerative

dendrogram
d.........ว..
current clustering

Agglomerative

Agglomerative

dendrogram
fil..........
current clustering

Agglomerative

dendrogram
current clustering

Agglomerative

dendrogram
current clustering

Agglomerative

dendrogram

current clustering

Agglomerative

dendrogram : 1.1 .1.
current clustering

Agglomerative

dendrogram

current clustering

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
- Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
- Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Where to cut?

Agglomerative Clustering Algorithm

Key operation is the computation of the proximity of two clusters

- Different approaches to defining the distance between clusters distinguish the different algorithms

How to Define Inter-Cluster Similarity

	p 1	p 2	p 3	p 4	p 5	\ldots
p 1						
p 2						
p 3						
p4						
p5						
.						

How to Define Inter-Cluster Similarity

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						

MIN or single link
based on the two most similar (closest) points in the different clusters

Proximity Matrix
(sensitive to outliers)

How to Define Inter-Cluster Similarity

	p 1	p 2	p 3	p 4	p 5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

MAX or complete linkage

Proximity Matrix
Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
(Tends to break large clusters
Biased towards globular clusters)

How to Define Inter-Cluster Similarity

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

Group Average

Proximity of two clusters is the
Proximity Matrix average of pairwise proximity between points in the two clusters.

Divisive Algorithms

remove the "spanning links" between denselyconnected regions

$$
e_{i j}=\frac{|N(i) \cap N(j)|+A_{i j}}{\min \{d(i), d(j)\}}
$$

Divisive Algorithms

Divisive Algorithms

b. (A) B
c. A
d. (A) B

Example of a Hierarchically Structured Graph

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques
3. Background: How it relates to "cluster analysis" (node/edge similarity)
4. Betweeness centrality
5. Modularity
6. How to evaluate

Graph Partitioning

- Divisive methods: try to identify and remove the "spanning links" between densely-connected regions
- Agglomerative methods: Find nodes that are likely to belong to the same region and merge them together (bottom-up)

The Girvan Newman method

Hierarchical divisive method

- Start with the whole graph
- Find edges whose removal "partitions" the graph
- Repeat with each subgraph until single vertices

Which edge?

The Girvan Newman method

Use bridges or cut-edge (if removed, the nodes become disconnected)

Which one to choose?

The Girvan Newman method

There may be none!

Strength of Weak Ties

- Edge betweenness: Number of shortest paths passing over the edge
- Intuition:

Edge strengths (call volume) in a real network

Edge betweenness
in a real network

Edge Betweenness

Betweenness of an edge (a, b): number of pairs of nodes x and y such that the edge (a, b) lies on the shortest path between x and y - since there can be several such shortest paths edge (a, b) is credited with the fraction of those shortest paths that include (a, b).

$$
\operatorname{bt}(a, b)=\sum_{x, y} \frac{\# \text { shortest_paths }(x, y) \text { through }(a, b)}{\# \text { shortest }-\operatorname{path} s(x, y)}
$$

Edges that have a high probability to occur on a randomly chosen shortest path between two randomly chosen nodes have a high betweenness.

Traffic (unit of flow)

The Girvan Newman method

" Undirected unweighted networks

- Repeat until no edges are left:
- Calculate betweenness of edges
- Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

Girvan Newman method: An example

Betweenness $(7,8)=7 \times 7=49$
$\operatorname{Betweenness(3,~7)=Betweenness(6,~7)=Betweenness(8,~9)~=~Betweenness(8,~12)=3\times 11=33~}$

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan Newman method: An example

(a) Step 1

Betweenness $(1,3)=1 \times 5=5$
Betweenness(3,7)=Betweenness(6,7)=Betweenness(8,9) = Betweenness(8,12)=3x4=12

Girvan Newman method: An example

(8)

(b) Step 2

Betweenness of every edge = 1

Girvan Newman method: An example

Girvan-Newman: Example

Step 1:

Step 3:

(7) (8)

Step 2:

©
(8)

Hierarchical network decomposition:

Another example

Another example

(a) Step 1

Another example

(b) Step 2

Girvan-Newman: Results

- Zachary's Karate club: Hierarchical decomposition

Girvan-Newman: Results

Communities in physics collaborations

How to Compute Betweenness?

- Want to compute betweenness of paths starting at node A

Computing Betweenness

1. Perform a BFS starting from A
2. Determine the number of shortest path from A to each other node
3. Based on these numbers, determine the amount of flow from A to all other nodes that uses each edge

Computing Betweenness: step 1

Initial network

BFS on A

Computing Betweenness: step 2

Count how many shortest paths from A to a specific node

Level 1

Level 2

Level 3

Level 4

Top-down

Computing Betweenness: step 3

Compute betweenness by working up the tree: If there are multiple paths count them fractionally

For each edge e: calculate the sum over all nodes Y of the fraction of shortest paths from the root A to Y that go through e.

Each edge (X, Y) participates in the shortest-paths from the root to Y and to nodes (at levels) below Y -> Bottom
 up calculation

Computing Betweenness: step 3

Count the flow through each edge

$$
\text { credite })=\sum_{X, Y} \frac{\mid \text { shortest }-\operatorname{path}(X, Y) \text { through e| }}{\left.\mid \text { shortest } \operatorname{path}^{2}(X, Y)\right\} \mid}
$$

Computing Betweenness: step 3

Computing Betweenness

Repeat the process for all nodes

Sum over all BFSs

Example

Example

Computing Betweenness

Issues

- Test for connectivity?
- Re-compute all paths, or only those affected
- Parallel computation
- Sampling

Centrality measures

Degree centrality

$\operatorname{closeness}(u)=\frac{1}{\sum_{v \in V, v \neq u} d(u, v)}$

A: Degree

B: Closeness

C: Betweenness

D: PageRank

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques and vertex similarity
3. Background: Cluster analysis
4. Betweeness centrality
5. Modularity
6. How to evaluate

Modularity

- Communities: sets of tightly connected nodes
- Define: Modularity Q
- A measure of how well a network is partitioned into communities

- Given a partitioning of the network into groups $s \in S$:
$Q \propto \sum_{s \in S}$ [(\# edges within group $\left.s\right)$ (expected \# edges within group s)]

Null Model: Configuration Model

- Given real G on n nodes and m edges, construct rewired network G^{\prime}
- Same degree distribution but random connections
- Consider \boldsymbol{G}^{\prime} as a multigraph

- The expected number of edges between nodes
i and j of degrees $\boldsymbol{d}_{\boldsymbol{i}}$ and $\boldsymbol{d}_{\boldsymbol{j}}$ equals to: $\boldsymbol{d}_{\boldsymbol{i}} \cdot \frac{\boldsymbol{d}_{\boldsymbol{j}}}{2 \boldsymbol{m}}=\frac{\boldsymbol{d}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{j}}}{2 m}$
For any edge going out of i randomly, the probability of this
edge getting connected to node j is $\frac{d_{j}}{2 m}$
Note:
Because the degree for i is d_{j} we have d_{i} number of such edges

$$
\sum_{u \in N} d_{u}=2 m
$$

Null Model: Configuration Model

- The expected number of edges in (multigraph) G':

$$
\begin{aligned}
& -=\frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{d_{i} d_{j}}{2 m}=\frac{1}{2} \cdot \frac{1}{2 m} \sum_{i \in N} d_{i}\left(\sum_{j \in N} d_{j}\right)= \\
& -=\frac{1}{4 m} 2 m \cdot 2 m=m
\end{aligned}
$$

Modularity

- Modularity of partitioning S of graph G:
$-\mathrm{Q} \propto \sum_{s \in S}$ [(\# edges within group s) -
(expected \# edges within group s)]
$-Q(G, S)=\underbrace{\frac{1}{2 m}} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s}\left(A_{i j}-\frac{d_{i} d_{j}}{2 m}\right)$
Normalizing cost.: $-1<Q<1$
- Modularity values take range $[-1,1]$
- It is positive if the number of edges within groups exceeds the expected number
$-0.3-0.7<Q$ means significant community structure

Modularity

Greedy method of Newman (one of the many ways to use modularity)
Agglomerative hierarchical clustering method

1. Start with a state in which each vertex is the sole member of one of n communities
2. Repeatedly join communities together in pairs, choosing at each step the join that results in the greatest increase (or smallest decrease) in Q.

Since the joining of a pair of communities between which there are no edges can never result in an increase in modularity, we need only consider those pairs between which there are edges, of which there will at any time be at most m

Modularity: Number of clusters

- Modularity is useful for selecting the number of clusters:

- \quad o $\quad 0$ iv i i \quad ir

Modularity: Cluster quality

When a given clustering is "good"?

Also, it is both a local (per individual cluster) and global measure

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques
3. Background: cluster analysis (node/edge similarity)
4. Hierarchical clustering (betweenness)
5. Modularity
6. How to evaluate

Community Evaluation

- With ground truth
- Without ground truth

Evaluation with ground truth

Zachary's Karate Club
Club president (34) (circles) and instructor (1) (rectangles)

Metrics: purity

the fraction of instances that have labels equal to the label of the community's majority

$$
\text { Purity }=\frac{1}{N} \sum_{i=1}^{k} \max _{j}\left|C_{i} \cap L_{j}\right|
$$

Community 1

Community 2

Community 3
$(5+6+4) / 20=0.75$

Metrics

Based on pair counting: the number of pairs of vertices which are classified in the same (different) clusters in the two partitions.

- True Positive (TP) Assignment: when similar members are assigned to the same community. This is a correct decision.
- True Negative (TN) Assignment: when dissimilar members are assigned to different communities. This is a correct decision.
- False Negative (FN) Assignment: when similar members are assigned to different communities. This is an incorrect decision.
- False Positive (FP) Assignment: when dissimilar members are assigned to the same community. This is an incorrect decision.

Metrics: pairs

For TP, we need to compute the number of pairs with the same label that are in the same community

$$
T P=\underbrace{\binom{5}{2}}_{\text {Community } 1}+\underbrace{\binom{6}{2}}_{\text {Community } 2}+\underbrace{\binom{4}{2}+\binom{2}{2}}_{\text {Community } 3}=32
$$

Metrics: pairs

Community 1

Community 3

$$
T N=\underbrace{(5 \times 6}+\overbrace{1 \times 1}+\overbrace{1 \times 6}+\overbrace{1 \times 1)}
$$

For TN: compute the number of dissimilar pairs in dissimilar communities

Communities 1 and 2
$+\underbrace{\overbrace{5 \times 4}^{\times, \Delta}+\overbrace{5 \times 2}^{\times,+}+\overbrace{1 \times 4}^{+, \Delta}+\overbrace{1 \times 2})}_{\text {Communities } 1 \text { and } 3} \overbrace{1,+}^{\text {, }}$

$$
+\underbrace{+, \Delta}_{\overbrace{\text { Communities } 2 \text { and } 3}^{+, \Delta}+\overbrace{1 \times 2}^{\times,+}+\overbrace{1 \times 4}^{\times, \Delta}}=104 .
$$

Metrics: pairs

For FP, compute dissimilar pairs that are in the same community.

$$
F P=\underbrace{(5 \times 1+5 \times 1+1 \times 1)}_{\text {Community } 1}+\underbrace{(6 \times 1)}_{\text {Community } 2}+\underbrace{(4 \times 2)}_{\text {Community } 3}=25
$$

For FN, compute similar members that are in different communities.

$$
F N=\underbrace{(5 \times 1)}_{\times}+\underbrace{(6 \times 1+6 \times 2+2 \times 1)}_{+}+\underbrace{(4 \times 1)}_{\Delta}=29
$$

Metrics: pairs

Precision (P): the fraction of pairs that have been correctly assigned to the same community.
TP/(TP+FP)

Recall (R): the fraction of pairs assigned to the same community of all the pairs that should have been in the same community.
TP/(TP+FN)

F-measure
2PR/(P+R)

Evaluation without ground truth

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters
- Example: Squared Error
- Cohesion is measured by the within cluster sum of squares (SSE)

$$
\boldsymbol{W S S}=\sum_{i} \sum_{x \in C_{i}}\left(\boldsymbol{x}-\boldsymbol{m}_{\boldsymbol{i}}\right)^{2}
$$

- Separation is measured by the between cluster sum of squares

$$
B S S=\sum_{i}\left|C_{i}\right|\left(m-m_{i}\right)^{2}
$$

- Where $\left|C_{i}\right|$ is the size of cluster i

Evaluation without ground truth

$$
\begin{gathered}
\delta_{\text {int }}(\mathcal{C})=\frac{\# \text { internal edges of } \mathcal{C}}{n_{c}\left(n_{c}-1\right) / 2} \\
\delta_{\text {ext }}(\mathcal{C})=\frac{\# \text { inter-cluster edges of } \mathcal{C}}{n_{c}\left(n-n_{c}\right)}
\end{gathered}
$$

Evaluation without ground truth

Modularity

Both as a local (per individual community) and as a global measure

Evaluation without ground truth

With semantics:

- (ad hoc) analyze other attributes (e.g., profile, content generated) for coherence
- human subjects (user study) Mechanical Turk Visual representation (similarity/adjacency matric, word clouds, etc)

(a) U.S . Constitution

(b) Sports

Basic References

- Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, Chapter 10, http://www.mmds.org/
- Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An Introduction, Chapter 6, http://dmml.asu.edu/smm/
- Santo Fortunato: Community detection in graphs. CoRR abs/0906.0612v2 (2010)
- Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Chapter 8, http://www.users.cs.umn.edu/~kumar/dmbook/index.php
- Albert-László Barabasi, Network Science, Chapter 9, http://networksciencebook.com/

Questions?

