
DATA MINING

SUPERVISED LEARNING
Regression

Classification

Decision Trees

Evaluation

Supervised learning

• In supervised learning, except for the feature variables that
describe the data, we also have a target variable

• The goal is to learn a function (model) that can predict the value of
the target variable given the features

• Regression: The target variable is numerical and continuous
• The price of a stock, the grade in a class, the height of a child, the life

expectancy etc

• Classification: The target variable is discrete
• Will the stock go up or down? Will the student pass or fail? Is a transaction

fraudulent or not? What is the topic of an article?

• Predictive modeling is in the heart of the data science revolution.

LINEAR REGRESSION

Regression

• We assume that we have 𝑘 feature variables:
• Also known as covariates, or dependent variables

• The target variable is also known as dependent variable.

• We are given a dataset of the form (𝒙1, 𝑦1) , … , (𝒙𝑛, 𝑦𝑛) where, 𝒙𝒊
is a 𝑘-dimensional feature vector, and 𝑦𝑖 a real value

• We want to learn a function 𝑓 which given a feature vector 𝒙𝒊
predicts a value 𝑦𝑖

′ = 𝑓 𝒙𝒊 that is as close as possible to the value
𝑦𝑖

• Minimize sum of squares:

෍

𝑖

𝑦𝑖 − 𝑓 𝒙𝒊
2

Linear regression

• The simplest form of 𝑓 is a linear

function

• In linear regression the function 𝑓 is

typically of the form:

𝑓 𝒙𝒊 = 𝑤0 +෍

𝑗=1

𝑘

𝑤𝑗𝑥𝑖𝑗

One-dimensional linear regression

In the simplest case we have a single

variable and the function is of the

form:

𝑓 𝑥𝑖 = 𝑤0 +𝑤1𝑥𝑖

Minimizing the error gives:

𝑤0 = ത𝑦 − 𝑤1 ҧ𝑥

𝑤1 =
σ𝑖(𝑥𝑖− ҧ𝑥)(𝑦𝑖−ത𝑦)

σ𝑖 𝑥𝑖− ҧ𝑥 2 = 𝑟𝑥𝑦
𝜎𝑥

𝜎𝑦

ҧ𝑥: mean value of 𝑥𝑖’s
ത𝑦: mean value of 𝑦𝑖’s
𝑟𝑥𝑦: correlation coefficient

between 𝒙, 𝒚

Multiple linear regression

• In the general case we have 𝑘 features, and 𝒙𝒊,𝒘 are vectors.

• We simplify the notation:
𝒙𝒊 = 1, 𝑥𝑖1, … , 𝑥𝑖𝑘
𝒘 = 𝑤0, 𝑤1, … , 𝑤𝑘

𝑓 𝒙𝒊, 𝒘 = 𝒙𝒊
𝑇𝒘

• Let 𝑋 be the 𝑛 × (𝑘 + 1) matrix with vectors 𝒙𝒊 as rows.

• Let 𝒚 = (𝑦1, … , 𝑦𝑛)
• We can write the SSE function as:

𝑆𝑆𝐸 = 𝑋𝒘 − 𝒚 2

• There is a closed-form solution for 𝒘:

𝒘 = 𝑋𝑇𝑋
−1
𝑋𝑇𝒚

• Matrix inversion may be too expensive. Other optimization techniques are
often used to find the optimal vector (e.g., Gradient Descent)

Outliers

• Regression is sensitive to outliers:

• The line will “tilt” to accommodate very extreme values

• Solution: remove the outliers

• But make sure that they do not capture useful information

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiK-YWl5pjmAhXNsaQKHWLGCggQjRx6BAgBEAQ&url=http%3A%2F%2Fr-statistics.co%2FOutlier-Treatment-With-R.html&psig=AOvVaw3ZoanFi1QLy4lbhtyGmQwT&ust=1575439133469519

Normalization

• In the regression problem some times our features may have

very different scales:

• For example: predict the GDP of a country using as features the

percentage of home owners and the income

• The weights in this case will not be interpretable

• Solution: Normalize the features by replacing the values with the

z-scores

More complex models

• The model we have is linear with
respect to the parameters 𝒘 but the
features we consider may be non-
linear functions of the 𝒙𝒊 values.

• To capture more complex
relationships we can take a
transformation of the input (e.g.,
logarithm log 𝑥𝑖𝑗), or add polynomial

terms (e.g., 𝑥𝑖𝑗
2).

• However this may increase a lot the
number of features

Interpretation and significance

• A regression model is useful for
making predictions for new data.

• The coefficients for the linear
regression model are also useful for
understanding the effect of the
independent variables to the value of
the dependent variable

• The 𝑤𝑗 value is the effect of the increase of
𝑥𝑖𝑗 by one to the value 𝑦𝑖

• We can also compute the significance
of the value of 𝑤𝑗 by testing the null
hypothesis that 𝑤𝑗 = 0

Predicting Crime rate

CLASSIFICATION

Classification

• Similar to the regression problem we have features and a target

variable that we want to model/predict

• The target variable is now discrete. It is often called the class label

• In the simplest case, it is a binary variable.

Example: Catching tax-evasion
Tid Refund Marital

Status
Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Tax-return data for year 2011

A new tax return for 2012

Is this a cheating tax return?

An instance of the classification problem: learn a method for discriminating between

records of different classes (cheaters vs non-cheaters)

Classification
• Classification is the task of learning a target function f that maps

attribute set x to one of the predefined class labels y

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

One of the attributes is the class attribute

In this case: Cheat

Two class labels (or classes): Yes (1), No (0)

Why classification?

• The target function f is known as a classification model

• Descriptive modeling: Explanatory tool to distinguish between

objects of different classes (e.g., understand why people cheat on

their taxes, or what makes a hipster)

• Predictive modeling: Predict a class of a previously unseen record

Examples of Classification Tasks

• Predicting tumor cells as benign or malignant

• Classifying credit card transactions as legitimate or fraudulent

• Categorizing news stories as finance, weather, entertainment, sports,
etc

• Identifying spam email, spam web pages, adult content

• Understanding if a web query has commercial intent or not

Classification is everywhere in data science

Big data has the answers to all questions.

General approach to classification

• Obtain a training set consisting of records with known class labels

• Training set is used to build a classification model

• A labeled test set of previously unseen data records is used to evaluate
the quality of the model.

• The classification model is applied to new records with unknown class
labels

• Important intermediate step: Decide on what features to use

Illustrating Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning
algorithm

Training Set

Evaluation of classification models

• Counts of test records that are correctly (or incorrectly) predicted

by the classification model

• Confusion matrix

Class = 1 Class = 0

Class = 1 f11 f10

Class = 0 f01 f00

Predicted Class

A
c
tu

a
l

C
la

s
s

00011011

0011

sprediction of # total

spredictioncorrect #
Accuracy

ffff

ff

+++

+
==

00011011

0110

sprediction of # total

sprediction wrong#
 rateError

ffff

ff

+++

+
==

Classification Techniques

• Decision Tree based Methods

• Rule-based Methods

• Memory based reasoning

• Neural Networks

• Naïve Bayes and Bayesian Belief Networks

• Support Vector Machines

• Logistic Regression

Classification Techniques

• Decision Tree based Methods

• Rule-based Methods

• Memory based reasoning

• Neural Networks

• Naïve Bayes and Bayesian Belief Networks

• Support Vector Machines

Decision Trees

• Decision tree

• A flow-chart-like tree structure

• Internal node denotes a test on an attribute

• Branch represents an outcome of the test

• Leaf nodes represent class labels or class distribution

Example of a Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Test outcome

Class labels

Another Example of Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

There could be more than one tree that

fits the same data!

Decision Tree Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Tree

Induction

algorithm

Training Set

Decision

Tree

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Start from the root of tree.

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Assign Cheat to “No”

Decision Tree Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Tree

Induction

algorithm

Training Set

Decision

Tree

Tree Induction

• Goal: Find the tree that has low classification error in the training data
(training error)

• Finding the best decision tree (lowest training error) is NP-hard

• Greedy strategy.
• Split the records based on an attribute test that optimizes certain criterion.

• Many Algorithms:
• Hunt’s Algorithm (one of the earliest)

• CART

• ID3, C4.5

• SLIQ,SPRINT

General Structure of Hunt’s Algorithm

• Let 𝐷𝑡 be the set of training records that reach a
node 𝑡

• General Procedure:
• If 𝐷𝑡 contains records that belong the same class 𝑦𝑡, then
𝑡 is a leaf node labeled as 𝑦𝑡

• If 𝐷𝑡 contains records with the same attribute values, then
𝑡 is a leaf node labeled with the majority class 𝑦𝑡

• If 𝐷𝑡 is an empty set, then 𝑡 is a leaf node labeled by the
default class, 𝑦𝑑

• If 𝐷𝑡 contains records that belong to more than one class,
use an attribute test to split the data into smaller subsets.

• Recursively apply the procedure to each subset.

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

𝐷𝑡

?

Hunt’s Algorithm

Don’t

Cheat

Refund

Don’t

Cheat

Don’t

Cheat

Yes No

Refund

Don’t

Cheat

Yes No

Marital

Status

Don’t

Cheat

Cheat

Single,

Divorced
Married

Taxable

Income

Don’t

Cheat

< 80K >= 80K

Refund

Don’t

Cheat

Yes No

Marital

Status

Don’t

Cheat
Cheat

Single,

Divorced
Married

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

4 Yes Married 120K No

7 Yes Divorced 220K No

2 No Married 100K No

3 No Single 70K No

5 No Divorced 95K Yes

6 No Married 60K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

4 Yes Married 120K No

7 Yes Divorced 220K No

2 No Married 100K No

6 No Married 60K No

9 No Married 75K No

3 No Single 70K No

5 No Divorced 95K Yes

8 No Single 85K Yes

10 No Single 90K Yes
10

Constructing decision-trees (pseudocode)
GenDecTree(Sample S, Features F)

1. If stopping_condition(S,F) = true then

a. leaf = createNode()

b. leaf.label= Classify(S)

c. return leaf

2. root = createNode()

3. root.test_condition = findBestSplit(S,F)

4. V = {v| v a possible outcome of root.test_condition}

5. for each value vєV:

a. Sv: = {s | root.test_condition(s) = v and s є S};

b. child = GenDecTree(Sv ,F) ;

c. Add child as a descent of root and label the edge (root→child) as v

6. return root

Tree Induction

• Issues

• How to Classify a leaf node

• Assign the majority class

• If leaf is empty, assign the default class – the class that has the highest popularity (overall

or in the parent node).

• Determine how to split the records

• How to specify the attribute test condition?

• How to determine the best split?

• Determine when to stop splitting

How to Specify Test Condition?

• Depends on attribute types

• Nominal

• Ordinal

• Continuous

• Depends on number of ways to split

• 2-way split

• Multi-way split

Splitting Based on Nominal Attributes

• Multi-way split: Use as many partitions as distinct values.

• Binary split: Divides values into two subsets.

Need to find optimal partitioning.

CarType
Family

Sports

Luxury

CarType
{Family,

Luxury} {Sports}

CarType
{Sports,

Luxury} {Family}
OR

• Multi-way split: Use as many partitions as distinct values.

• Binary split: Divides values into two subsets – respects the

order. Need to find optimal partitioning.

• What about this split?

Splitting Based on Ordinal Attributes

Size
Small

Medium

Large

Size
{Medium,

Large} {Small}

Size
{Small,

Medium} {Large} OR

Size
{Small,

Large} {Medium}

Splitting Based on Continuous Attributes

• Different ways of handling

• Discretization to form an ordinal categorical attribute

• Static – discretize once at the beginning

• Dynamic – ranges can be found by equal interval bucketing, equal frequency bucketing

(percentiles), or clustering.

• Binary Decision: (A < v) or (A  v)

• consider all possible splits and finds the best cut

• can be more computationally intensive

Splitting Based on Continuous Attributes

Taxable

Income

> 80K?

Yes No

Taxable

Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

How to determine the Best Split

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11

Before Splitting: 10 records of class 0,

10 records of class 1

Which test condition is the best?

How to determine the Best Split

• Greedy approach:

• Creation of nodes with homogeneous class distribution is preferred

• Need a measure of node impurity:

• Ideas?

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Measuring Node Impurity

• We are at a node 𝐷𝑡 and the samples belong to classes {1,… , 𝑐}

• 𝑝(𝑖|𝑡): fraction of records associated with node 𝐷𝑡 belonging to class 𝒊

• Impurity measures:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐷𝑡 = −෍

𝑖=1

𝑐

𝑝 𝑖 𝑡 log 𝑝 𝑖 𝑡

• Used in ID3 and C4.5

𝐺𝑖𝑛𝑖 𝐷𝑡 = 1 −෍

𝑖=1

𝑐

𝑝 𝑖 𝑡 2

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝐷𝑡 = 1 −max𝑝 𝑖 𝑡

• Used in CART, SLIQ, SPRINT.

Gain

• Gain of an attribute split into children 𝑣1, … , 𝑣𝑘 : compare the

impurity of the parent node with the average impurity of the child

nodes

Δ = 𝐼 𝑝𝑎𝑟𝑒𝑛𝑡 −෍

𝑗=1

𝑘
𝑁 𝑣𝑗

𝑁
𝐼(𝑣𝑗)

• Maximizing the gain

 Minimizing the weighted average impurity of children nodes

 Maximizing average purity

• If I() = Entropy(), then Δinfo is called information gain

Example

C1 0

C2 6

C1 2

C2 4

C1 1

C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0

Error = 1 – max (0, 1) = 1 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6 P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

Impurity measures

• All of the impurity measures take value zero (minimum) for the

case of a pure node where a single value has probability 1

• All of the impurity measures take maximum value when the class

distribution in a node is uniform.

Comparison among Splitting Criteria
For a 2-class problem:

The different impurity measures are consistent

Categorical Attributes

• For binary values split in two

• For multivalued attributes, for each distinct value, gather counts for each class

in the dataset

• Use the count matrix to make decisions

CarType

{Sports,
Luxury}

{Family}

C1 3 1

C2 2 4

Gini 0.400

CarType

{Sports}
{Family,
Luxury}

C1 2 2

C2 1 5

Gini 0.419

CarType

Family Sports Luxury

C1 1 2 1

C2 4 1 1

Gini 0.393

Multi-way split Two-way split

(find best partition of values)

Continuous Attributes

• Use Binary Decisions based on one value

• Choices for the splitting value

• Number of possible splitting values
= Number of distinct values

• Each splitting value has a count matrix associated with
it

• Class counts in each of the partitions, A < v and A  v

• Exhaustive method to choose best v

• For each v, scan the database to gather count matrix
and compute the impurity index

• Computationally Inefficient! Repetition of work.

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Taxable

Income

> 80K?

Yes No

Continuous Attributes
• For efficient computation: for each attribute,

• Sort the attribute on values

• Linearly scan these values, each time updating the count matrix and
computing impurity

• Choose the split position that has the least impurity

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions

Sorted Values

Splitting based on impurity

• Impurity measures favor attributes with large number of values

• A test condition with large number of outcomes may not be

desirable

• # of records in each partition is too small to make predictions

Splitting based on INFO

Gain Ratio

• Splitting using information gain

Parent Node, p is split into k partitions

ni is the number of records in partition i

• Adjusts Information Gain by the entropy of the partition (SplitINFO). Higher
entropy partition (large number of small partitions) is penalized!

• Used in C4.5

• Designed to overcome the disadvantage of impurity

SplitINFO

GAIN
GainRATIO Split

split
= 

=

−=
k

i

ii

n

n

n

n
SplitINFO

1

log

Stopping Criteria for Tree Induction

• Stop expanding a node when all the records belong to the same

class

• Stop expanding a node when all the records have similar attribute

values

• Early termination (to be discussed later)

Decision Tree Based Classification

• Advantages:

• Inexpensive to construct

• Extremely fast at classifying unknown records

• Easy to interpret for small-sized trees

• Accuracy is comparable to other classification techniques for many simple

data sets

Example: C4.5

• Simple depth-first construction.

• Uses Information Gain

• Sorts Continuous Attributes at each node.

• Needs entire data to fit in memory.

• Unsuitable for Large Datasets.

• Needs out-of-core sorting.

• You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Other Issues

• Data Fragmentation

• Expressiveness

Data Fragmentation

• Number of instances gets smaller as you traverse down the tree

• Number of instances at the leaf nodes could be too small to make

any statistically significant decision

• You can introduce a lower bound on the number of items per leaf

node in the stopping criterion.

Expressiveness

• A classifier defines a function that discriminates between two (or

more) classes.

• The expressiveness of a classifier is the class of functions that it

can model, and the kind of data that it can separate

• When we have discrete (or binary) values, we are interested in the class of

boolean functions that can be modeled

• If the data-points are real vectors we talk about the decision boundary that

the classifier can model

Decision Boundary

y < 0.33?

 : 0

 : 3

 : 4

 : 0

y < 0.47?

 : 4

 : 0

 : 0

 : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

• Border line between two neighboring regions of different classes is known as

decision boundary

• Decision boundary is parallel to axes because test condition involves a single

attribute at-a-time

Expressiveness

• Decision tree provides expressive representation for learning discrete-valued
function

• But they do not generalize well to certain types of Boolean functions
• Example: parity function:

• Class = 1 if there is an even number of Boolean attributes with truth value = True

• Class = 0 if there is an odd number of Boolean attributes with truth value = True

• For accurate modeling, must have a complete tree

• Less expressive for modeling continuous variables

• Particularly when test condition involves only a single attribute at-a-time

Oblique Decision Trees

x + y < 1

Class = + Class =

• Test condition may involve multiple attributes

• More expressive representation

• Finding optimal test condition is computationally expensive

Practical Issues of Classification

• Underfitting and Overfitting

• Evaluation

Underfitting and Overfitting (Example)

500 circular and 500

triangular data points.

Circular points:

0.5  sqrt(x1
2+x2

2)  1

Triangular points:

sqrt(x1
2+x2

2) > 0.5 or

sqrt(x1
2+x2

2) < 1

Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large

Underfitting

Overfitting: when model is too complex it models the details of the training set and fails on the test set

Bias-Variance tradeoff:

• Bias in the estimate:

• Poor model due to underfitting

• Variance in the estimate:

• Poor training data; overfitting

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to

predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision

tree to predict the test examples using other training records that are

irrelevant to the classification task

Learning Curve

Learning curve shows how

accuracy changes with

varying sample size

Requires a sampling

schedule for creating

learning curve

Effect of small sample size:

- Bias in the estimate

- Poor model

- Variance of estimate

- Poor training data

Notes on Overfitting

• Overfitting results in decision trees that are more complex than
necessary

• Training error no longer provides a good estimate of test error, that is,
how well the tree will perform on previously unseen records
• The model does not generalize well

• Generalization: The ability of the model to predict data points that it has
not already seen.

• Need new ways for estimating errors

Estimating Generalization Errors

• Re-substitution errors: error on training data (σ𝑒(𝑡) t: leaf node)

• Generalization errors: error on testing data (σ𝑒′(𝑡), t: leaf node)

• Methods for estimating generalization errors:

• Optimistic approach: 𝑒′(𝑡) = 𝑒(𝑡)
• Pessimistic approach (penalize large trees):

• For each leaf node: 𝑒′(𝑡) = (𝑒(𝑡) + 0.5)
• Total error: 𝑒′(𝑇) = 𝑒(𝑇) + 𝑁  0.5 (N: number of leaf nodes)

• For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances)
• Training error = 10/1000 = 1%,

• Generalization error = (10 + 300.5)/1000 = 2.5%

• Using validation set:
• Split data into training, validation, test

• Use validation dataset to estimate generalization error

• Drawback: less data for training.

Occam’s Razor

• Occam’s razor: All other things being equal, the simplest
explanation/solution is the best.
• A good principle for life as well

• Given two models of similar generalization errors, one should prefer the
simpler model over the more complex model

• For complex models, there is a greater chance that it was fitted
accidentally by errors in data

• Therefore, one should include model complexity when evaluating a
model

Minimum Description Length (MDL)

• Cost(Model,Data) = Cost(Model) + Cost(Data|Model)

• Search for the least costly model.

• Cost(Model) encodes the decision tree
• node encoding (number of children) plus splitting condition encoding.

• Cost(Data|Model) encodes the misclassification errors.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?

76

Example

• Regression: find a polynomial for describing a set of values
• Model complexity (model cost): polynomial coefficients

• Goodness of fit (data cost): difference between real value and the polynomial value

Source: Grunwald et al. (2005) Tutorial on MDL.

Minimum model cost

High data cost

High model cost

Minimum data cost

Low model cost

Low data cost

MDL avoids overfitting automatically!

How to Address Overfitting

• Pre-Pruning (Early Stopping Rule)

• Stop the algorithm before it becomes a fully-grown tree

• Typical stopping conditions for a node:

• Stop if all instances belong to the same class

• Stop if all the attribute values are the same

• More restrictive conditions:

• Stop if number of instances is less than some user-specified threshold

• Stop if class distribution of instance classes are independent of the available features

(e.g., using  2 test)

• Stop if expanding the current node does not improve impurity measures (e.g., Gini or

information gain).

How to Address Overfitting…

• Post-pruning

• Grow decision tree to its entirety

• Trim the nodes of the decision tree in a bottom-up fashion

• If generalization error improves after trimming, replace sub-tree by a leaf

node.

• Class label of leaf node is determined from majority class of instances in the

sub-tree

• Can use MDL for post-pruning

Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1

Model Evaluation

• Metrics for Performance Evaluation

• How to evaluate the performance of a model?

• Methods for Performance Evaluation

• How to obtain reliable estimates?

• Methods for Model Comparison

• How to compare the relative performance among competing models?

Metrics for Performance Evaluation

• Focus on the predictive capability of a model

• Rather than how fast it takes to classify or build models, scalability, etc.

• Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation…

• Most widely-used metric:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

FNFPTNTP

TNTP

dcba

da

+++

+
=

+++

+
=Accuracy

Precision-Recall

FNFPTP

TP

cba

a

pr

rp

pr

FNTP

TP

ba

a

FPTP

TP

ca

a

++
=

++
=

+
=








 +
=

+
=

+
=

+
=

+
=

2

2

2

22

2

/1/1

1
(F) measure-F

(r) Recall

 (p) Precision

Precision is biased towards C(Yes|Yes) & C(Yes|No)

Recall is biased towards C(Yes|Yes) & C(No|Yes)

F-measure is biased towards all except C(No|No)

Count PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Assumption: The class YES is the one we care about.

ROC (Receiver Operating Characteristic)
• Developed in 1950s for signal detection theory to analyze noisy

signals
• Characterize the trade-off between positive hits and false alarms

• ROC curve plots TPR (true positive rate) (on the y-axis) against FPR
(false positive rate) (on the x-axis)

FNTP

TP
TPR

+
=

TNFP

FP
FPR

+
=

PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)

What fraction of true positive instances

are predicted correctly ?

What fraction of true negative instances were predicted incorrectly?

Look at the positive predictions of the

classifier and compute:

ROC (Receiver Operating Characteristic)

• Performance of a classifier represented as a point on the ROC
curve

• Changing some parameter of the algorithm, sample distribution, or
cost matrix changes the location of the point

ROC Curve

At threshold t:

TP=0.5, FN=0.5, FP=0.12, FN=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

• (0,0): declare everything

to be negative class

• (1,1): declare everything

to be positive class

• (1,0): ideal

• Diagonal line:

• Random guessing

• Below diagonal line:

• prediction is opposite of the true

class

PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)

Using ROC for Model Comparison
No model consistently

outperform the other

M1 is better for

small FPR

M2 is better for

large FPR

Area Under the ROC

curve (AUC)

Ideal: Area = 1

Random guess:

▪ Area = 0.5

Precision-Recall plot

• Usually for parameterized models, it controls the precision/recall

tradeoff

ROC curve vs Precision-Recall curve

Area Under the Curve (AUC) as a single number for evaluation

Methods of Performance Estimation

• Holdout
• Reserve 2/3 for training and 1/3 for testing

• Random subsampling
• One sample may be biased -- Repeated holdout

• Cross validation
• Partition data into k disjoint subsets

• k-fold: train on k-1 partitions, test on the remaining one

• Leave-one-out: k=n

• Guarantees that each record is used the same number of times for
training and testing

• Bootstrap
• Sampling with replacement

• ~63% of records used for training, ~27% for testing

Class imbalance

• Consider a 2-class problem

• Number of Class 0 examples = 9990

• Number of Class 1 examples = 10

• If model predicts everything to be class 0, accuracy is 9990/10000

= 99.9 %

• Accuracy is misleading because model does not detect any class 1 example

• Precision and recall are better measures

Dealing with class Imbalance

• Class imbalance is a problem in training:

• If the class we are interested in is very rare, then the classifier will ignore it.

• Solution

• We can balance the class distribution

• Sample from the larger class so that the size of the two classes is the same

• Replicate the data of the class of interest so that the classes are balanced

• Over-fitting issues

• We can modify the optimization criterion by using a cost sensitive metric

Cost Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of classifying class j example as class i

Weighted

Accuracy

COST

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes 𝑤1

C(Yes|Yes)

𝑤2

C(No|Yes)

Class=No 𝑤3

C(Yes|No)

𝑤4

C(No|No)

CONFUSION

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

Weighted Accuracy =
𝑤1𝑎+𝑤4𝑑

𝑤1𝑎+𝑤2𝑏+𝑤3𝑐+𝑤4𝑑

Computing Cost of Classification
Cost

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ 1 100

- 1 1

Model

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Weighted Accuracy = 8.9%

Accuracy = 90%

Weighted Accuracy= 9%

Classification

Cost
COST

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes 𝑤1

C(Yes|Yes)

𝑤2

C(No|Yes)

Class=No 𝑤3

C(Yes|No)

𝑤4

C(No|No)

CONFUSION

MATRIX

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

Classification Cost = 𝑤1𝑎 + 𝑤2𝑏 + 𝑤3𝑐 + 𝑤4𝑑
Some weights can also be negative

Computing Cost of Classification

Cost

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ -1 100

- 1 0

Model

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)

= p (a + d) + q (N – a – d)

= q N – (q – p)(a + d)

= N [q – (q-p)  Accuracy]

Accuracy is proportional to cost if

1. C(Yes|No)=C(No|Yes) = q

2. C(Yes|Yes)=C(No|No) = p

