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Measuring and Modeling Networks

• There are networks everywhere

• What do they look like?
– How do you measure and describe a billion node 

network?

• What are the process that generate them?
– Can we create models for real-life networks?

• These two questions are related: We need to 
measure the characteristics that we want to 
model



Before we start

• Wait, there is a model for generating graphs!

• The Erdös-Renyi 𝐺𝑛,𝑝 random graph model:

– n : the number of vertices

– p : probability of generating an edge

• for each pair (i,j), generate the edge (i,j) independently
with probability p

• A very well studied model in graph theory!

– As we will see, not good enough in our case



Measuring Networks

• Degree distributions and power-laws

• Clustering Coefficient

• Small world phenomena

• Components

• Motifs

• Homophily



Degree distributions

degree

frequency

k

fk

fk = fraction of nodes with degree k
= probability of a randomly

selected node to have degree k



It all started with some Greeks

• Faloutsos, Faloutsos, Faloutsos, “On the power-
law relationships of the internet topology”, 
SIGCOMM 1999.

• Degree distributions for the internet graph



Power-law distributions

• The degree distributions of most real-life networks follow a power law

• Right-skewed/Heavy-tail distribution
– there is a non-negligible fraction of nodes that has very high degree (hubs)
– scale-free: no characteristic scale, average is not informative

• In stark contrast with the random graph model!
– Poisson degree distribution, z=np

𝑝 𝑘 =
𝑧𝑘

𝑘!
𝑒−z

– Concentrated around the mean
– the probability of very high degree nodes is exponentially small

𝑝(𝑘) = 𝐶𝑘−𝛼



Power-law signature

• Power-law distribution gives a line in the log-log plot

• α : power-law exponent (typically 2 ≤ α ≤ 3)

degree

frequency

log degree

log frequency α

log p(k) = -α logk + logC



A random graph example



Power-laws appear in all networks!

Taken from [Newman 2003]



And not only in 
networks!



Measuring power-laws

• How do we create these plots? How do we measure the power-law 
exponent?

• Collect a set of measurements:
– E.g., the degree of each page, the number of appearances of each word in a 

document, the size of solar flares(continuous)

• Create a value histogram
– For discrete values, number of times each value appears
– For continuous values (but also for discrete):

• Break the range of values into bins of equal width 
• Sum the count of values in the bin 
• Represent the bin by the mean (median) value

• Plot the histogram in log-log scale
– Bin representatives vs Value in the bin
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Measuring power laws

Simple binning  produces a noisy plot



Logarithmic binning

• Exponential binning
– Create bins that grow exponentially in size

– In each bin divide the sum of counts by the bin length 
(number of observations per bin unit)

Still some noise at the tail



Cumulative distribution

• Compute the cumulative distribution
– P[X≥x]: fraction (or number) of observations that 

have value at least x

– It also follows a power-law with exponent α-1
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Pareto distribution

• A random variable follows a Pareto
distribution if

• Power law distribution with exponent α=1+β

  βxC'xXP −= minxx 



Zipf plot

• There is another easy way to see the power-
law, by doing the Zipf plot

– Order the values in decreasing order

– Plot the values against their rank in log-log scale

• i.e., for the r-th value xr, plot the point (log(r),log(xr))

– If there is a power-law you should see something 
like a straight line



Zipf’s Law

• A random variable X follows Zipf’s law if the r-th largest 
value xr satisfies

• Same as Pareto distribution

• X follows a power-law distribution with α=1+1/γ

• Named after Zipf, who studied the distribution of 
words in English language and found Zipf law with 
exponent 1

γ
r rx −

  γ1xxXP −



Zipf vs Pareto
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Computing the exponent

• Maximum likelihood estimation

– Assume that the set of data observations x are 
produced by a power-law distribution with some 
exponent α

• Exact law: 𝑝 𝑥 =
𝛼−1

𝑥𝑚𝑖𝑛

𝑥

𝑥𝑚𝑖𝑛

−𝛼

– Find the exponent that maximizes the probability 
P(α|x)
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=
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Proof in M. E. J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics.



Collective Statistics (M. Newman 2003)



Power Laws - Recap

• A (continuous) random variable X follows a power-
law distribution if it has density function 

• A (continuous) random variable X follows a Pareto
distribution if it has cumulative function

• A (discrete) random variable X follows Zipf’s law if 
the the r-th largest value satisfies

αCxp(x) −=

  βCxxXP −=

γ
r Crx −=

power-law with α=1+β

power-law with α=1+1/γ



Average/Expected degree

• For power-law distributed degree
– if α ≥ 2, it is a constant 

𝐸 𝑋 =
𝛼 − 1

𝛼 − 2
𝑥𝑚𝑖𝑛

– if α < 2, it diverges 
• The expected value goes to infinity as the size of the 

network grows

• The fact that α ≥ 2 for most real networks 
guarantees a constant average degree as the 
graph grows



The 80/20 rule

• Top-heavy: Small fraction of values collect 
most of distribution mass

• This phenomenon becomes 
more extreme when 𝛼 < 2

• 1% of values has 99% of mass

• E.g. name distribution



The effect of exponent

𝜶 = 𝟏. 𝟗

𝜶 = 𝟑. 𝟏 𝜶 = 𝟐. 𝟓

As the exponent 
increases the probability 
of observing an extreme 
value decreases



Generating power-law values

• A simple trick to generate values that follow a 
power-law distribution:

– Generate values 𝑟 uniformly at random within the 
interval [0,1]

– Transform the values using the equation

𝑥 = 𝑥𝑚𝑖𝑛 1 − 𝑟 −1/(𝛼−1)

– Generates values distributed according to power-
law with exponent 𝛼



Clustering (Transitivity) coefficient

• Measures the density of triangles (local 
clusters) in the graph

• Two different ways to measure it:

• The ratio of the means
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Clustering (Transitivity) coefficient

• Clustering coefficient for node i

• The mean of the ratios

i nodeat  centered triples

i nodeat  centered triangles
Ci =

i
(2) C

n

1
C =



Example

• The two clustering coefficients give different 
measures 

• C(2) increases with nodes with low degree
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Collective Statistics (M. Newman 2003)



Clustering coefficient for random graphs

• The probability of two of your neighbors also being neighbors 
is p, independent of local structure
– clustering coefficient C = p

– when the average degree z=np is constant C =O(1/n)



Small worlds

• Millgram’s experiment: Letters were handed out to people in 
Nebraska to be sent to a target in Boston

• People were instructed to pass on the letters to someone they 
knew on first-name basis

• The letters that reached the destination followed paths of 
length around 6

• Six degrees of separation: (play of John Guare)

• Also: 
– The Kevin Bacon game
– The Erdös number



Measuring the small world phenomenon

• 𝑑𝑖𝑗 = shortest path between i and j

• Diameter:
𝑑 = max

𝑖,𝑗
𝑑𝑖𝑗

• Characteristic path length:

ℓ =
1

𝑛(𝑛 − 1)/2


𝑖>𝑗

𝑑𝑖𝑗

• Harmonic mean

ℓ−1 =
1

𝑛(𝑛 − 1)/2


𝑖>𝑗

𝑑𝑖𝑗
−1

• Also, distribution of all shortest paths

Problem if no path between two nodes



Effective Diameter

• Computation:
– 𝑓 𝑑 : for integer 𝑑, the fraction of pairs in the graph that 

have distance less or equal to D

– 𝑓 𝑥 : for real 𝑥: 𝑑 − 1 < 𝑥 < 𝑑, 𝑓 𝑥 =
𝑓 𝑑 −𝑓(𝑑−1)

𝑥−𝑑

– Effective Diameter: the real value 𝑥 such that 𝑓 𝑥 = 0.9

hops

Effective 
Diameter
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• Disconnected components or isolated long 
paths can throw off the computation of the 
diameter.

• Effective diameter: the interpolated value 
where 90% of node pairs are reachable



Collective Statistics (M. Newman 2003)



Small worlds in real networks

• For all real networks there are (on average) short paths 
between nodes of the network.
– Largest path found in the IMDB actor network: 7

• Is this interesting?
– Random graphs also have small diameter 

(d=logn/loglogn when z=ω(logn))

• Short paths are not surprising and should be combined 
with other properties
– ease of navigation
– high clustering coefficient



Connected components

• For undirected graphs, the size and 
distribution of the connected components

– is there a giant component?

– Most known real undirected networks have a 
giant component

• For directed graphs, the size and distribution 
of strongly and weakly connected components



Connected components – definitions 

• Weakly connected components (WCC)
– Set of nodes such that from any node can go to any node via an undirected path

• Strongly connected components (SCC)
– Set of nodes such that from any node can go to any node via a directed path.
– IN: Nodes that can reach the SCC (but not in the SCC)
– OUT: Nodes reachable by the SCC (but not in the SCC)

SCC

WCC



The bow-tie structure of the Web

The largest weakly connected component contains  90% of the nodes



SCC and WCC distribution

• The SCC and WCC sizes follows a power law 
distribution

– the second largest SCC is significantly smaller



Another bow-tie

Who lends to whom



Web Cores

• Cores: Small complete bipartite 
graphs (of size 3x3, 4x3, 4x4)
– Similar to the triangles for  

undirected graphs

• Found more frequently than 
expected on the Web graph

• Correspond to communities of 
enthusiasts (e.g., fans of japanese
rock bands)



Motifs

• Most networks have the same characteristics 
with respect to global measurements

– can we say something about the local structure of 
the networks?

• Motifs: Find small subgraphs that over-
represented in the network



Example

• Motifs of size 3 in a directed graph



Finding interesting motifs

• Sample a part of the graph of size S

• Count the frequency of the motifs of interest

• Compare against the frequency of the motif in 
a random graph with the same number of 
nodes and the same degree distribution



Generating a random graph

• Find edges (i,j) and (x,y) such that edges (i,y)
and (x,j) do not exist, and swap them

– repeat for a large enough number of times

i j

x
y

G

i j

x
y

G-swapped
degrees of i,j,x,y
are preserved



The feed-forward loop

• Over-represented in gene-regulation networks

– a signal delay mechanism X

Y Z

Milo et al. 2002



Homophily
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• Love of the same: People tend to have friends with common interests
– Students separated by race and age



Measuring Homophily

If the fraction of cross-gender edges is
significantly less than expected, then there is
evidence for homophily

gender male with probability p (fraction of males)
gender female with probability q (fraction of 
females)

Probability of cross-gender edge? 

pq
edges

edgesgendercross
2

#

__#




Measuring Homophily

▪ “significantly” less than
▪ Inverse homophily
▪ Characteristics with more than two values:

▪ Number of heterogeneous edges (edge between
two nodes that are different)



Mechanisms Underlying Homophily: 

Selection and Social Influence

Selection: tendency of people to form friendships with
others who are like then

Socialization or Social Influence: the existing social
connections in a network are influencing the individual
characteristics of the individuals

Social Influence as the inverse of Selection

Mutable & immutable characteristics



The Interplay of Selection and Social 
Influence

Longitudinal studies in which the social connections and
the behaviors within a group are tracked over a period of
time

Why?
- Study teenagers, scholastic achievements/drug use
(peer pressure and selection)
- Relative impact?
- Effect of possible interventions (example, drug use)



Christakis and Fowler on obesity, 12,000 people over a period of 32-years

People more similar on obesity status to the network neighbors than if
assigned randomly

Why?
(i) Because of selection effects, choose friends of similar obesity status,
(ii) Because of confounding effects of homophily according to other
characteristics that correlate with obesity
(iii) Because changes in the obesity status of person’s friends was exerting
an influence that affected her

(iii) As well -> “contagion” in a social sense

The Interplay of Selection and Social 
Influence



Tracking Link Formation in Online Data: interplay 
between selection and social influence

▪ Underlying social network
▪ Measure for behavioral similarity

Wikipedia
Node: Wikipedia editor who maintains a user account and user talk page
Link: if they have communicated with one writing on the user talk page of the other

Editor’s behavior: set of articles she has edited

||

||

BA

BA

NN

NN



Neighborhood overlap in the bipartite affiliation network
of editors and articles consisting only of edges between
editors and the articles they have edited

FACT: Wikipedia editors who have communicated are significantly more similar in their
behavior than pairs of Wikipedia editors who have not (homomphily), why?
Selection (editors form connections with those have edited the same articles) vs Social
Influence (editors are led to the articles of people they talk to)



Tracking Link Formation in Online Data: interplay 
between selection and social influence

Actions in Wikipedia are time-stamped
For each pair of editors A and B who have ever communicated,

o Record their similarity over time
o Time 0 when they first communicated -- Time moves in discrete units, advancing by one “tick”
whenever either A or B performs an action on Wikipedia
o Plot one curve for each pair of editors

Average, single plot: average level of similarity relative to the time of first interaction

Similarity is clearly increasing both before
and after the moment of first interaction
(both selection and social influence)
Not symmetric around time 0 (particular
role on similarity): Significant increase
before they meet
Blue line shows similarity of a random
pair (non-interacting)
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NETWORK MODELS



What is a network model?

• Informally, a network model is a process (randomized 
or deterministic) for generating a graph of arbitrary 
size.

• Models of static graphs

– input: a set of parameters Π, and the size of the graph n

– output: a graph G(Π,n)

• Models of evolving graphs

– input: a set of parameters Π, and an initial graph G0

– output: a graph Gt for each time t



Families of random graphs

• A deterministic model D defines a single graph for 
each value of n (or t)

• A randomized model R defines a probability space 
‹Gn,P› where Gn is the set of all graphs of size n, and 
P a probability distribution over the set Gn (similarly 
for t)

– we call this a family of random graphs R, or a random 
graph R



Why do we care?

• Creating models for real-life graphs is 
important for several reasons

– Create data for simulations of processes on 
networks

– Identify the underlying mechanisms that govern 
the network generation

– Predict the evolution of networks



Erdös-Renyi Random graphs

Paul Erdös (1913-1996)



Erdös-Renyi Random Graphs

• The Gn,p model

– input: the number of vertices n, and a parameter 
p, 0 ≤ p ≤ 1

– process: for each pair (i,j), generate the edge (i,j)
independently with probability p

• Related, but not identical: The Gn,m model

– process: select m edges uniformly at random



Graph properties

• A property P holds almost surely (a.s.) (or for almost every
graph), if

• Evolution of the graph: which properties hold as the 
parameters of the graph model change?
– different from the evolving graphs over time that we saw before

• Threshold phenomena: Many properties appear suddenly. 
That is, there exist a parameter 𝜃𝑐 (e.g., the probability 𝑝𝑐) 
such that for 𝜃 < 𝜃𝑐 the property does not hold a.s. and for 
𝜃 > 𝜃𝑐 the property holds a.s.

  1P has GP lim
n

=
→



The giant component

• Let z=np be the average degree

• If z < 1, then almost surely, the largest 
component has size at most O(ln n)

• if z > 1, then almost surely, the largest 
component has size Θ(n). The second largest 
component has size O(ln n)

• if z =ω(ln n), then the graph is almost surely 
connected.



The phase transition

• When z=1, there is a phase transition

– The largest component is O(n2/3)

– The sizes of the components follow a power-law 
distribution.



Random graphs degree distributions

• The degree distribution follows a binomial

• Assuming z=np is fixed, as n→∞, B(n,k,p) is 
approximated by a Poisson distribution

• Highly concentrated around the mean, with a tail 
that drops exponentially
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Phase transitions

• Phase transitions (a.k.a. Threshold Phenomena, Critical 
phenomena) are observed in a variety of natural or human 
processes, and they have been studied extensively by Physicists and 
Mathematicians
– Also, in popular science: “The tipping point”

• Examples
– Water becoming ice
– Percolation
– Giant components in graphs

• In all of these examples, the transition from one state to another 
(e.g., from water to ice) happens almost instantaneously when a 
parameter crosses a threshold

• At the threshold value we have critical phenomena, and the 
appearance of Power Laws
– There is no characteristic scale. 



Other properties

• Clustering coefficient

– C = p

• Diameter (maximum path)

– L = log n / log z



Random graphs and real life

• A beautiful and elegant theory studied 
exhaustively

• Random graphs had been used as idealized 
network models

• Unfortunately, they don’t capture reality…



Departing from the ER model

• We need models that better capture the 
characteristics of real graphs

– degree sequences

– clustering coefficient

– short paths



Graphs with given degree sequences

• The configuration model

– input: the degree sequence [d1,d2,…,dn]

– process:

• Create di copies of node i

• Take a random matching (pairing) of the copies
– self-loops and multiple edges are allowed

• Uniform distribution over the graphs with the 
given degree sequence



Example

• Suppose that the degree sequence is

• Create multiple copies of the nodes

• Pair the nodes uniformly at random

• Generate the resulting network

4 1 3 2



Power-law graphs

• The critical value for the exponent α is

• The clustering coefficient is  

• When α<7/3 the clustering coefficient 
increases with n

3.4788...α =

βnC −
1α

73α
β

−

−
=



Graphs with given expected degree 
sequences

• Input: the degree sequence [d1, d2, … ,dn]

• m = total number of edges

• Process: generate edge (i,j) with probability 
didj/m

– preserves the expected degrees

– easier to analyze



However…

• The problem is that these models are too 
contrived

• It would be more interesting if the network 
structure emerged as a side product of a 
stochastic process rather than fixing its 
properties in advance.



Preferential Attachment in Networks

• First considered by [Price 65] as a model for citation 
networks (directed)

– each new paper is generated with m citations (mean)

– new papers cite previous papers with probability 
proportional to their in-degree (citations)

– what about papers without any citations?
• each paper is considered to have a “default” a citations

• probability of citing a paper with degree k, proportional to k+a

• Power law with exponent α = 2+a/m



Practical Issues

• The model is equivalent to the following:
– With probability m/(m+a) link to a node with 

probability proportional to the degree.
– With probability a/(m+a) link to a node selected 

uniformly at random.

• How do we select a node with probability 
proportional to the degree in practice:
– Maintain a list with the endpoints of all the edges 

seen so far, and select a node from this list uniformly 
at random

– Append the list each time new edges are created.



Barabasi-Albert model

• The BA model (undirected graph)
– input: some initial subgraph G0, and m the number of 

edges per new node

– the process: 
• nodes arrive one at the time

• each node connects to m other nodes selecting them with 
probability proportional to their degree

• if [d1,…,dt] is the degree sequence at time t, the node t+1 links to 
node i with probability

• Results in power-law with exponent α = 3

2mt

d

d

d i

i i

i =




The mathematicians point of view 
[Bollobas-Riordan]

• Self loops and multiple edges are allowed

• For the single edge problem:
– At time t, a new vertex v, connects to an existing vertex u with 

probability

– it creates a self-loop with probability

• If m edges, then they are inserted sequentially, as if 
inserting m nodes 
– the problem reduces to studying the single edge problem.

1-2t

du

1-2t

1



Preferential attachment graphs

• Expected diameter

– if m = 1, the diameter is Θ(log n)

– if m > 1, the diameter is Θ(log n/loglog n)

• Expected clustering coefficient is small
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Weaknesses of the BA model

• Technical issues:
– It is not directed (not good as a model for the Web) and when directed it gives 

acyclic graphs
– It focuses mainly on the (in-) degree and does not take into account other 

parameters (out-degree distribution, components, clustering coefficient)
– It correlates age with degree which is not always the case

• Academic issues
– the model rediscovers the wheel
– preferential attachment is not the answer to every power-law
– what does “scale-free” mean exactly?

• Yet, it was a breakthrough in the network research, that popularized the 
area



Variations of the BA model

• Many variations have been considered some 
in order to address the problems with the 
vanilla BA model

– edge rewiring, appearance and disappearance

– fitness parameters

– variable mean degree

– non-linear preferential attachment

• surprisingly, only linear preferential attachment yields 
power-law graphs



Empirical observations for the Web graph

• Such subgraphs are highly unlikely in random graphs

• They are also unlikely in the BA model

• Can we create a model that will have high concentration of 
small cliques?

a K3,2 clique

▪ In a large scale experimental study by 
Kumar et al, they observed that the 
Web contains a large number of 
small bipartite cliques (cores)
▪ the topical structure of the Web



Copying model

• Input:
– the out-degree d (constant) of each node

– a parameter α

• The process:
– Nodes arrive one at the time

– A new node selects uniformly one of the existing nodes as 
a prototype

– The new node creates d outgoing links. For the ith link
• with probability α it copies the i-th link of the prototype node

• with probability 1- α it selects the target of the link uniformly at 
random



An example

• d = 3



Copying model properties

• Power law degree distribution with exponent 
β = (2-α)/(1- α)

• Number of bipartite cliques of size i x d is ne-i

• The model has also found applications in 
biological networks

– copying mechanism in gene mutations



Small world Phenomena

• So far we focused on obtaining graphs with 
power-law distributions on the degrees. What 
about other properties?

– Clustering coefficient: real-life networks tend to 
have high clustering coefficient

– Short paths: real-life networks are “small worlds”

• this property is easy to generate

– Can we combine these two properties?



Clustering Coefficient

• How can you create a graph with high 
clustering coefficient?

• High clustering coefficient but long paths



Small-world Graphs

• According to Watts [W99]

– Large networks (n >> 1)

– Sparse connectivity (avg degree z << n)

– No central node (kmax << n)

– Large clustering coefficient (larger than in random 
graphs of same size)

– Short average paths (~log n, close to those of 
random graphs of the same size)



The Caveman Model [W99]

• The random graph
– edges are generated completely at random

– low avg. path length L ≤ logn/logz

– low clustering coefficient C ~ z/n

• The Caveman model
– edges follow a structure

– high avg. path length L ~ n/z

– high clustering coefficient C ~ 1-O(1/z)

• Can we interpolate between the two?



Mixing order with randomness

• Inspired by the work of Solmonoff and Rapoport
– nodes that share neighbors should have higher probability to be connected

• Generate an edge between i and j with probability proportional to Rij

• When 𝛼 = 0 , edges are placed only between nodes with common 
neighbors (caveman model)

• When 𝛼 → ∞, edges are essentially independent of the common 
neighbors (except for rare cases)

• For intermediate values we obtain a combination of order and 
randomness
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Algorithm

• Start with a ring

• For i = 1 … n

– Select a vertex j with probability proportional to Rij

and generate an edge (i,j)

• Repeat until z edges are added to each vertex



Clustering coefficient – Avg path length

small world graphs



Watts and Strogatz model [WS98]

• Start with a ring, where every node is connected to the next z
nodes

• With probability p, rewire every edge (or, add a shortcut) to a 
uniformly chosen destination.
– Granovetter, “The strength of weak ties”

order randomness

p = 0 p = 10 < p < 1



Clustering Coefficient – Characteristic Path 
Length

log-scale in p

When p = 0, C = 3(k-2)/4(k-1) ~ ¾
L = n/k

For small p, C ~ ¾
L ~ logn



Graph Theory Results

• Graph theorist failed to be impressed. Most of 
these results were known.



Network models and temporal evolution

• For most of the existing models it is assumed 
that

– number of edges grows linearly with the number 
of nodes

– the diameter grows at rate logn, or loglogn

• What about real graphs?

– Leskovec, Kleinberg, Faloutsos 2005



Densification laws 

• In real-life networks the average degree 
increases! – networks become denser!

α = densification exponent

N(t)

E(t)

1.69

N(t)

E(t)

1.18
scientific
citation network

Internet



More examples

• The densification exponent 1≤α≤2

– α = 1: linear growth – constant out degree

– α = 2: quadratic growth - clique

N(t)

E(t)

1.66

N(t)

E(t)

1.15

patent citation network movies affiliation network



What about diameter?

• Effective diameter: the interpolated value 
where 90% of node pairs are reachable

hops

Effective 
Diameter
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Diameter shrinks

scientific
citation network

Internet

patent citation network
affiliation network



Densification – Possible Explanation

• Existing graph generation models do not capture the 
Densification Power Law and Shrinking diameters

• Can we find a simple model of local behavior, which 
naturally leads to observed phenomena?

• Two proposed models

– Community Guided Attachment – obeys Densification

– Forest Fire model – obeys Densification, Shrinking 
diameter (and Power Law degree distribution)



Community structure

• Let’s assume the 
community structure

• One expects many 
within-group 
friendships and fewer 
cross-group ones 

• How hard is it to cross 
communities?

Self-similar university 
community structure

CS Math Drama Music

Science Arts

University



• The cross-community linking probability of nodes 
at tree-distance h (the height of the least common 
ancestor) is scale-free

• We propose cross-community linking probability: 

where: c ≥ 1 … the Difficulty constant

h … tree-distance

Fundamental Assumption



Densification Power Law

• Theorem: The Community Guided Attachment leads 
to Densification Power Law with exponent

• α … densification exponent

• b … community structure branching factor

• c … difficulty constant



• Theorem:

• Gives any non-integer Densification 
exponent

• If c = 1: easy to cross communities
– Then: α = 2, quadratic growth of edges – near 

clique

• If c = b: hard to cross communities
– Then: α = 1, linear growth of edges – constant 

out-degree

Difficulty Constant



Room for Improvement

• Community Guided Attachment explains 
Densification Power Law

• Issues:

– Requires explicit Community structure

– Does not obey Shrinking Diameters

• The ”Forrest Fire” model



“Forest Fire” model – Wish List

• We want:

– no explicit Community structure

– Shrinking diameters

– and:

• “Rich get richer” attachment process, to get heavy-
tailed in-degrees

• “Copying” model, to lead to communities

• Community Guided Attachment, to produce 
Densification Power Law



“Forest Fire” model – Intuition

• How do authors identify references?

1. Find first paper and cite it

2. Follow a few citations, make citations

3. Continue recursively

4. From time to time use bibliographic tools (e.g. 
Google Scholar) and chase back-links



“Forest Fire” model – Intuition

• How do people make friends in a new 
environment?

1. Find first a person and make friends

2. From time to time get introduced to their friends

3. Continue recursively

• Forest Fire model imitates exactly this process



“Forest Fire” – the Model

• A node arrives

• Randomly chooses an “ambassador”

• Starts burning nodes (with probability p) and 
adds links to burned nodes

• “Fire” spreads recursively



Forest Fire in Action (1)

• Forest Fire generates graphs that Densify
and have Shrinking Diameter

densification diameter

1.21

N(t)

E(t)

N(t)
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Forest Fire in Action (2)

• Forest Fire also generates graphs with 
heavy-tailed degree distribution

in-degree out-degree

count vs. in-degree count vs. out-degree



Forest Fire model – Justification

• Densification Power Law:
– Similar to Community Guided Attachment

– The probability of linking decays exponentially 
with the distance – Densification Power Law

• Power law out-degrees:
– From time to time we get large fires

• Power law in-degrees:
– The fire is more likely to reach hubs



Forest Fire model – Justification

• Communities: 

– Newcomer copies neighbors’ links

• Shrinking diameter



Kronecker graphs

• Kronecker graphs are a model for generating graphs 
using the Kronecker product matrix operation
– Leskovec, Chakrabarti, Kleinberg, Faloutsos, PKDD 2005

• Kronecker graphs have rich properties:
– Static Patterns

• Power Law Degree Distribution

• Small Diameter

• Power Law Eigenvalue and Eigenvector Distribution

– Temporal Patterns
• Densification Power Law

• Shrinking/Constant Diameter

• Kronecker graphs are analytically tractable



• Intuition: self-similarity leads to power-laws
• Try to mimic recursive graph / community growth 
• There are many obvious (but wrong) ways:

• Kronecker Product is a way of generating self-
similar matrices

Idea: Recursive graph generation

Initial graph Recursive expansion



Adjacency matrix

Kronecker product: Graph

Intermediate stage

Adjacency matrix

(9x9)(3x3)



Kronecker product: Definition

• The Kronecker product of matrices A and B is given 
by

• We define a Kronecker product of two graphs as a 
Kronecker product of their adjacency matrices

N x M K x L

N*K x M*L 



Kronecker graphs

• We create the self-similar graphs recursively

– Start with an initiator graph G1 on N1 nodes and E1 edges

– The recursion will then produce larger graphs G2,   G3, 

…Gk on N1
k nodes

• We obtain a growing sequence of graphs by 
iterating the Kronecker product



Kronecker product: Graph

• Continuing multypling with G1 we 
obtain G2 and so on …

G2 adjacency matrix

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



Kronecker product: Graph

• Continuing multiplying with G1 we obtain G2

and so on …

G2 adjacency matrix

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⊗𝑁1

𝑁1

𝑁1
2

𝑁1
2

1

1

1

Each cell in 𝐺2 is the product by two cells in 𝐺1
Each cell in 𝐺3 is the product of three cells in 𝐺1
and so on



Example



Examples



Kronecker graphs: Intuition

• Recursive growth of graph communities
– Nodes get expanded to micro communities
– Nodes in sub-community link among 

themselves and to nodes from different 
communities as determined by the original 
graph 𝐺1



Kronecker graphs

• Kronecker graphs have nice properties but 
they are deterministic and the distributions 
we obtain are not smooth:



Stochastic Kronecker graphs

• Create N1N1 probability matrix Θ1

• Compute the kth Kronecker power Θk

• For each entry puv of Θk include an edge 
(u,v) with probability puv

0.5 0.2

0.1 0.3

Θ1

Instance

matrix K2

0.25 0.10 0.10 0.04

0.05 0.15 0.02 0.06

0.05 0.02 0.15 0.06

0.01 0.03 0.03 0.09

Θ2=Θ1Θ1

For each puv

flip Bernoulli 

coin

Kronecker

multiplication

Probability 

of edge puv



Stochastic Kronecker graphs: Intuition

• Node attribute representation
– Nodes are described by 𝑘 features

• [in Ioannina, student, computer science]
• u=[1,1,0],   v=[1, 1,1]

– Parameter matrix gives the linking probability
• p(u,v) = 0.5 * 0.5* 0.1 = 0.025

0.5 0.1

0.1 0.3

1       0

1 

0
Θ1Both in Ioannina Both students One CS one not

We could have different 
probabilities for different attributes



Kronecker graph construction

• We can construct the graph by flipping a coin for 
each of the possible edges.
– But this is expensive, quadratic number of coins to 

flip.

• We can exploit the recursive/hierarchical nature 
of Kronecker graphs



Kronecker graph construction

• If for 𝑃1 we have that 𝐸1 = σ𝑖𝑗 𝜃𝑖𝑗 then the 
number of edges is normally distributed with 
expectation 𝐸1

𝑘

• Process:
– Sample the number of edges from the normal 

distribution
– For each edge to be added, descend to the position of 

the edge:
• Pick a top-level cell with probability 𝜃𝑖𝑗/𝐸1
• Within the top-level cell repeat recursively
• Until you have gone down 𝑘 levels 



Example

• To generate the edge (𝑣2, 𝑣3) first we pick the top 
quadrant

• Then within that we pick the exact cell of the matrix.



Properties of Kronecker graphs

• We prove that  Kronecker multiplication generates 
graphs that obey [PKDD’05]
– Properties of static networks

Power Law Degree Distribution
Power Law eigenvalue and eigenvector distribution
Small Diameter

– Properties of dynamic networks 
Densification Power Law
Shrinking/Stabilizing Diameter

• Good news: Kronecker graphs have the necessary 
expressive power

✓

✓

✓

✓

✓



Experiments

• Use a 4-star as the graph 𝐺1

• Make the matrix stochastic by having 
probability α for all edges and β for all non-
edges in the matrix
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Threshold phenomena



Model estimation: approach

• How do we choose the parameters to match the 
properties of a real network?

• Maximum likelihood estimation
– Given real graph G

– Estimate Kronecker initiator graph Θ (e.g.,        ) which

• We need to (efficiently) calculate

• And maximize over Θ (e.g., using gradient 
descent)

)|( GP

)|(maxarg 


GP



Fitting Kronecker graphs

• Given a graph G and Kronecker matrix Θ we 
calculate probability that Θ generated G P(G|Θ)

0.25 0.10 0.10 0.04

0.05 0.15 0.02 0.06

0.05 0.02 0.15 0.06

0.01 0.03 0.03 0.09

0.5 0.2

0.1 0.3

Θ
Θk

1 0 1 1

0 1 0 1

1 0 1 1

1 1 1 1

G
P(G|Θ)

]),[1(],[)|(
),(),(

vuvuGP k
Gvu

k
Gvu

−=


G



• Nodes are unlabeled

• Graphs G’ and G” should have 
the same probability

P(G’|Θ) = P(G”|Θ)

• One needs to consider all node 

correspondences  σ

• All correspondences are a priori 
equally likely

• There are O(N!)
correspondences

• Solution: Sample from the 
possible distributions

Challenge 1: Node correspondence

0.25 0.10 0.10 0.04

0.05 0.15 0.02 0.06

0.05 0.02 0.15 0.06

0.01 0.03 0.03 0.09

0.5 0.2

0.1 0.3

1 0 1 0

0 1 1 1

1 1 1 1

0 0 1 1

1

2

3

4

2

1

4

3

)(),|()|( 


PGPGP  =

1 0 1 1

0 1 0 1

1 0 1 1

1 1 1 1

G’

G”

P(G’|Θ) = P(G”|Θ)

Θ
Θk

σ



Challenge 2: Calculating P(G|Θ,σ)

• Calculating naively P(G|Θ,σ) takes O(N2)

• Idea:

– First calculate likelihood of empty graph, a graph 
with 0 edges

– Correct the likelihood for edges that we observe in 
the graph

• By exploiting the structure of Kronecker product 
we obtain closed form for likelihood of an 
empty graph



Challenge 2: Calculating P(G|Θ,σ)

• We approximate the likelihood:

• The sum goes only over the edges 

• Evaluating P(G|Θ,σ) takes O(E) time

• Real graphs are sparse, E << N2

No-edge likelihood Edge likelihoodEmpty graph



Experiments: real networks

• Experimental setup:
– Given real graph

– Stochastic gradient descent from random initial 
point

– Obtain estimated parameters

– Generate synthetic graphs 

– Compare properties of both graphs

• We do not fit the properties themselves 

• We fit the likelihood and then compare the 
graph properties



AS graph (N=6500, E=26500)

• Autonomous systems (internet)

• We search the space of ~1050,000 permutations

• Fitting takes 20 minutes

• AS graph is undirected and estimated parameter 
matrix is symmetric:

0.98 0.58

0.58 0.06



• Generate synthetic graph using estimated 
parameters

• Compare the properties of two graphs

AS: comparing graph properties

Degree distribution Hop plot

log degree
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AS: comparing graph properties

Network valueScree plot

log rank
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• Spectral properties of graph adjacency 
matrices



Epinions graph (N=76k, E=510k)

• We search the space of ~101,000,000 permutations

• Fitting takes 2 hours

• The structure of the estimated parameter gives insight 
into the structure of the graph

Degree distribution Hop plot
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0.99 0.54

0.49 0.13



Epinions graph (N=76k, E=510k)

Network valueScree plot
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Scalability

• Fitting scales linearly with the number of 
edges



Conclusion

• Kronecker Graph model has 
– provable properties

– small number of parameters

• We developed scalable algorithms for fitting 
Kronecker Graphs

• We can efficiently search large space (~101,000,000) 
of permutations

• Kronecker graphs fit well real networks using few 
parameters

• We match graph properties without a priori 
deciding on which ones to fit
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