
1

Online Social Networks and
Media

Link Prediction, Classification,

Graph Embeddings

Graph embeddings: what are they?

2

vec

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, embedding

node
u

Map nodes to d-dimensional vectors so that:
“similar” nodes in the graph have embeddings that are
close together.

Example

3

Output

Zachary’s Karate Club Network:

Image from: Perozzi et al.. DeepWalk: Online Learning of Social Representations. KDD 2014.

Input

4

Graph embeddings: why?

Raw
Data

Structured
Data

Learning
Algorithm

Model

Downstream
prediction task

Feature Engineering

Machine learning lifecycle

degree, PageRank, motifs,
degrees of neighbors,
Pagerank of neighbors, etc

5

Graph embeddings: why?

Raw
Data

Structured
Data

Learning
Algorithm

Model

Downstream
prediction task

Feature Engineering

Automatically learn the features (embeddings)

Machine learning lifecycle

degree, PageRank, motifs,
degree of neighbors,
Pagerank of neighbors, etc

6

Machine Learning tasks in
networks

▪ Link prediction and link recommendations

▪ Node labeling

▪ Community detection (we have already seen an
approach)

▪ Network similarity

Link Prediction

7

Motivation

▪ Recommending new friends in online social networks,
suggesting interactions or collaborations, predicting hidden
connections (e.g., terrorist),

8

In social networks:

▪ Increases user engagement
▪ Controls the growth of the network

Outline

▪ Estimating a score for each edge (seminal work of Liben-
Nowell&Kleinberg)

▪ Classification approach

▪ The who to follow service at Twitter (one more application
of link analysis)

9

Problem Definition

Link prediction problem: Given the links in a social
network at time t (Gold), predict the edges that will
be added to the network during the time interval
from time t to a given future time t’ (Gnew).

▪ Based solely on the topology of the network (social proximity) (the
more general problem also considers attributes of the nodes and links)

▪ Different from the problem of inferring missing (hidden) links (there is
a temporal aspect)

To save experimental effort in the laboratory or in the field

10

Approach

▪ Assign a connection weight score(x, y) to each
pair of nodes <x, y> based on the input graph

▪ Produce a ranked list of edges in decreasing
order of score

▪ Recommend the ones with the highest score

Note
▪ We can consider all links incident to a specific node x, and

recommend to x the top ones
▪ If we focus to a specific x, the score can be seen as a

centrality measure for x

11

How to define the score

How to assign the score(x, y) between
two nodes x and y?

▪ Some form of similarity or node proximity

12

Two general methods
▪ Neighbors
▪ Paths

Neighborhood-based metrics

The larger the overlap of the neighbors of two nodes,
the more likely the nodes to be linked in the future

13

A adjacency matrix
𝐴𝑥,𝑦
2 : number of different

paths of length 2
𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑦 = 𝑁 𝑥 ∩ 𝑁 𝑦

Common neighbors:

Jaccard coefficient:

𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑦 =
|𝑁 𝑥 ∩ 𝑁 𝑦 |

|𝑁 𝑥 ∪ 𝑁 𝑦 |

The probability that both x and y
have a feature from a randomly
selected feature that either x or y
has

Neighborhood-based metrics

14

𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑦 = ෍

𝑧 ∈ |𝑁 𝑥 ∩𝑁 𝑦 |

1

log(|𝑁 𝑧 |)

Adamic Adar:

▪ Weighted version: common neighbors which themselves
have few neighbors get larger weights (larger weights to
rare features)

▪ Neighbors who are linked with 2 nodes are assigned weight = 1/log(2)
▪ Neighbors who are linked with 5 nodes are assigned weight = 1/log(5)

Note: |N(x)| = degree of x, inverse logarithmic centrality

Neighborhood-based metrics

15

𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑦 = 𝑁 𝑥 |𝑁 𝑦 |

Preferential attachment:

▪ Nodes like to form ties with ‘popular’ nodes
▪ E.g., empirical evidence suggest that co-authorship is correlated

with the product of the neighborhood sizes
▪ Fall-back strategy: recommending popular users

▪ Depends on the degrees of the nodes not on their
neighbors per se

Path-based methods

score(x, y) = (negated) length of shortest path between
x and y

16

Not just the shortest, but all paths between two nodes

෍

𝑙=1

∞

𝛽𝑙|𝑝𝑎𝑡ℎ<𝑥,𝑦>
𝑙 |

▪ Sum over all paths of length l
▪ 0 < β < 1 parameter of the predictor, exponentially damped to

count short paths more heavily

Katzβ measure:

Path-based methods

17

σ𝑙=1
∞ 𝛽𝑙|𝑝𝑎𝑡ℎ<𝑥,𝑦>

𝑙 | = 𝛽Α𝑥𝑦 + 𝛽2𝐴𝑥𝑦
2 + 𝛽3𝐴𝑥𝑦

3 + …

Katzβ measure:

(Ι − βΑ)−1 − Ι

▪ 0 < β < 1
▪ Small β much like common neighbors
▪ β small: degree, β maximal: eigenvalue

▪ Weighted version

Path-based methods

Based on random walks that starts at x

Hitting Time Hx,y from x to y: the expected number of steps it takes
for the random walk starting at x to reach y.

score(x, y) = − Hx,y

Commute Time Cx,y from x to y: the expected number of steps to
travel from x to y and from y to x

score(x, y) = − (Hx,y + Hy,x)

18

Not symmetric, can be shown

Stationary-normed versions:
to counteract the fact that Hx,y is rather small when y is a node with a large
stationary probability regardless of x

score(x, y) = − Hx,y πy

score(x, y) = −(Hx,y πy + Hy,x πx)

19

Example: hit time h1,n in a line

1 i-1 i i+1 n

Path-based methods

Personalized (or, Rooted) PageRank: with probability (1 – a) moves
to a random neighbor and with probability a returns to x

score(x, y) = stationary probability of y in a personalized PageRank

SimRank

Two objects are similar, if they are related to similar objects

x and y are similar, if they are related to objects w and z
respectively and w and z are themselves similar

20

score(x, y) = similarity(x, y)

Base case: similarity(x, x) = 1

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) = 𝐶
σ𝑤 ∈Ν(𝑥)σ𝑧 ∈𝑁(𝑦) 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤, 𝑧)

𝑁 𝑥 |𝑁 𝑦 |

SimRank
Introduced for directed graphs: two objects are similar if
referenced by similar objects

21

Average similarity between in-neighbors of a and in-neighbors of b
I(x): in-neighbors of x, C: constant between 0 and 1, decay

s(a, b) = 1, if a =b

Iterative computation

s0(x, y) = 1 if x = y and 0 otherwise
sk+1 based on the sk values of its (in-neighbors) computed at iteration k

𝑠 𝑎, 𝑏 =
𝐶

𝐼 𝑎 | 𝐼 𝑏 |
෍

𝑖=1

𝐼 𝑎

෍

𝑗=1

𝐼 𝑏

𝑠(𝐼𝑖 α , Ι𝑗(𝑏))

SimRank: the Pair Graph

Pair graph G2

A node for each pair of nodes
An edge (x, y) → (a, b), if x→ a and y → b
a value per node: similarity of the
corresponding pairs

Computation starts at singleton nodes
(score = 1)
Scores flow from a node to its neighbors
C gives the rate of decay as similarity flows
across edges (C = 0.8 in the example)

▪ Symmetric pairs: (a, b) node same as (b, a) node (with the union of associated edges)
▪ Omit singleton that do not contribute to score (no {ProfA, ProfA} node) and nodes with 0 score {ProfA,

StudentA})
▪ Self-loops and cycles reinforce similarity
▪ Prune: by considering only nodes within a radius

SimRank and random walks

Expected Meeting Distance (EMD) m (a, b) between a and b: the
expected number of steps required before two random surfers, one
starting at a and the other starting at b, would meet if they walked
the graph randomly at lock-step

23

= 3,
a lower similarity than between v and
w but higher than between u and v
(or u and w).

= 

m(u, v) = m(u,w) = ,
m(v, w) = 1
v and w are much more
similar than u is to v or w.

SimRank and random walks

Let us consider G2

A node (a, b) as a state of the tour in G:
if a moves to c, b moves to d in G,
then (a, b) moves to (c, d) in G2

A tour in G2 of length n represents a pair of tours in G where each
has length n

What are the states in G2 that correspond to “meeting” points in G?
What is the meeting point of a and b? m(a, b)?

24

SimRank and random walks
What are the states in G2 that correspond to “meeting” points in
G?

Singleton nodes (common neighbors)

The EMD m(a, b) is just the expected distance - hitting time in G2

between (a, b) and any singleton node

▪ The sum is taken over all walks that start from (a, b) and end at
a singleton node

This roughly corresponds to the SimRank of (a, b): when two
surfers one from a and one from b that randomly walk the graph
would meet

25

26

SimRank for bipartite graphs

▪ People are similar if they purchase similar items.
▪ Items are similar if they are purchased by similar people
Useful for recommendations in general

27

SimRank for bipartite graphs

28

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference

Author

Q: What is most related
conference to ICDM?

SimRank

SimRank

ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004

29

Evaluation of link recommendations

30

Output
a list Lp of pairs in V × V − Eold ranked by score
predicted new links in decreasing order of confidence

Precision at recall
▪ How many of the top-n predictions are correct where n = |Enew|

Improvement over baseline
Baseline: random predictor

Probability that a random prediction is correct:

|V|

Possible correct

Possible predictions

Can we combine the various scores?
How?

Classification (supervised learning)

31

Classification

32

Using Supervised Learning

Given a collection of records (training set)

Each record contains
a set of attributes (features) + the class attribute.

Find a model for the class attribute as a function of the values
of other attributes.

Goal: previously unseen records should be assigned a class as
accurately as possible.

A test set is used to determine the accuracy of the model.

Usually, the given data set is divided into training and test sets, with
training set used to build the model and test set used to validate it.

33

Illustrating the Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning

algorithm

Training Set

34

Classification Techniques

• Decision Tree based methods

• Rule-based methods

• Memory based reasoning

• Neural networks (more soon)

• Naïve Bayes and Bayesian Belief networks

• Support vector machines

• Logistic regression

35

Example of a Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

36

Classification for Link Prediction

37

Input
Features describing the two nodes

Output
Prediction

Metrics for Performance Evaluation

Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP

+++

+
=Accuracy

38

ROC Curve
TPR (sensitivity)=TP/(TP+FN) (percentage of

positive classified as positive)

FPR = FP/(TN+FP) (percentage of negative
classified as positive)

• (0,0): declare everything
to be negative class

• (1,1): declare everything
to be positive class

• (0,1): ideal

Diagonal line: Random guessing

Below diagonal line: prediction is
opposite of the true class

AUC: area under the ROC 39

Classification for Link Prediction:
features

PropFlow: corresponds to the probability that a restricted random walk starting at
x ends at y in l steps or fewer using link weights as transition probabilities (stops in
l steps or if revisits a node)

40

For each edge (i, j)

How to construct the training set

41

Two time instances τx and τy

• From t0 to τx construct graph and extract features (Gold)
• From τx + 1 to τy examine if a link appears (determine class

value)

What are good values
▪ Large τx better topological features (as the network reaches

saturation)
▪ Large τy larger number of positives (size of positive class)
▪ Should also match the real-world prediction interval

When to extract features and when to determine class?

How to construct the training set

42

Unsupervised (single feature)

Datasets

43

712 million cellular phone calls
▪ weighted, directed networks, weights correspond to the number of calls
▪ use the first 5 weeks of data (5.5M nodes, 19.7M links) for extracting
features and the 6th week (4.4M nodes, 8.5M links) for obtaining ground truth.

19,464 condensed matter physics collaborations from 1995 to 2000.
▪ weighted, undirected networks, weights correspond to the number of

collaborations two authors share.
▪ use the years 1995 to 1999 (13.9K nodes, 80.6K links) for extracting features and

the year 2000 (8.5K nodes, 41.0K links) for obtaining ground truth.

The assortativity coefficient is the
Pearson correlation coefficient of degree
between pairs of linked nodes.
Positive values indicate a correlation
between nodes of similar degree, while
negative values indicate relationships
between nodes of different degree.

Using Supervised Learning: why?

▪ Predictors that work well in one network not in
another

▪ Should increase with the score (not in phone)
▪ Preferential attachment increase with distance (when

other may fail) 44

A different prediction model for each distance

Using Supervised Learning: why?

▪ Even training on a single feature may outperform
ranking (if no clear bound on score)

▪ Dependencies between features – use an ensemble of
features

45

Imbalance
▪ Sparse networks: |E| = k |V| for constant k << |V|

The class imbalance ratio for link prediction in a sparse
network is Ω(|V|/1) when at most |V| nodes are added

Missing links is |V|2

Positives V

n-neighborhood exactly n
hops way
Treat each neighborhood as a
separate problem

46

Results

Ensemble of classifiers: Random Forest

47

Random forest: Ensemble classifier
constructs a multitude of decision trees at training time
output the class that is the mode (most frequent) of the classes
(classification) or mean prediction (regression) of the individual
trees.

Results

48

Results

49

▪ Mechanism by which links arise different both across
networks and geodesic distances.

▪ Local vs Global (preferential attachment)
▪ Better in condmat network,
▪ Improves with distance

▪ HPLP achieves performance levels as much as 30% higher
than the best unsupervised methods

Salsa

50

51

Wtf (“Who to Follow"): the Twitter user recommendation service

An application: Wtf

Twitter graph statistics (August 2012)
▪ over 20 billion edges (only active users)
▪ power law distributions of in-degrees and out-degrees.

▪ over 1000 with more than 1 million followers,
▪ 25 users with more than 10 million followers.

Is it a “social” network as Facebook?
Difference between:
▪ Interested in
▪ Similar to
Example (follow @espn but not similar to it)

▪ do not follow users similar to you, but follow users that the users
that are similar to you follow

Algorithms

52

▪ Asymmetric nature of the follow relationship
(other social networks e.g., Facebook or LinkedIn
require the consent of both participating
members)

▪ Directed edge case is similar to the user-item
recommendations problem where the “item” is
also a user.

Bipartite graph

53

Hubs: 500 top-ranked nodes from the
user's circle of trust
Circle of trust: the result of an
egocentric random walk (similar to
personalized PageRank)

Authorities: users that the hubs
follow.

Users similar
to u

Users followed by
similar to u users

Authorities

Hubs

Algorithms: SALSA

54

SALSA (Stochastic Approach for Link-Structure Analysis)
a variation of HITS

hubs authorities

As in HITS
▪ hubs

▪ authorities

HITS
▪ Good hubs point to good authorities
▪ Good authorities are pointed by good hubs

hub weight = sum of the authority weights of the
authorities pointed to by the hub

authority weight = sum of the hub weights that
point to this authority.


→

=
jij

ji ah
:


→

=
ijj

ji ha
:

Algorithms: SALSA

55

Random walks to rank hubs and authorities

▪ Two different random walks (Markov chains): a chain of hubs and a
chain of authorities

▪ Each walk traverses nodes only in one side by traversing two links in
each step h->a->h, a->h->a

Transition matrices of each Markov chain:
H and A

W: the adjacency of the directed graph
Wr: divide each entry by the sum of its row
Wc: divide each entry by the sum of its
column

H = WrWc
T

A = Wc
T Wr

Proportional to the degree

hubs authorities

Algorithms: SALSA

56

Use SALSA to assign scores to both sides
Hub scores: user similarity (based on homophily, also useful)
Authority scores : “interested in" user recommendations.

Recommend best in the RHS

Authorities

Hubs

SALSA: summary

57

How it works

SALSA mimics the recursive nature of the problem:
▪ A user u is likely to follow those who are followed by users that are similar to u.
▪ A user is similar to u if the user follows the same (or similar) users.

I. SALSA provides similar users to u on the LHS and similar followings of those on
the RHS.

II. The random walk ensures equitable distribution of scores in both directions
III. Similar users are selected from the circle of trust of the user through

personalized PageRank.

Real evaluation

58

▪ Offline experiments on retrospective data
▪ Online A/B testing on live traffic

Various parameters may interfere:
▪ How the results are rendered (e.g., explanations)
▪ Platform (mobile, etc.)
▪ New vs old users

Evaluation: metrics

59

Follow-through rate (FTR) (precision)

▪ Does not capture recall
▪ Does not capture lifecycle effects (newer users more

receptive, etc.)
▪ Does not measure the quality of the recommendations:

all follow edges are not equal

Engagement per impression (EPI):
After a recommendation is accepted, the amount of
engagement by the user on that recommendation in a
specified time interval called the observation interval.

Extensions

60

▪ Add metadata to vertices (e.g., user profile information) and
edges (e.g., edge weights, timestamp, etc.)

▪ Consider interaction graphs (e.g., graphs defined in terms of
retweets, favorites, replies, etc.)

References
D. Liben-Nowell, and J. Kleinberg, The link-prediction problem for social
networks. Journal of the American Society for Information Science and
Technology, 58(7) 1019–1031 (2007)

R. Lichtenwalter, J. T. Lussier, N. V. Chawla: New perspectives and
methods in link prediction. KDD 2010: 243-252

G. Jeh, J. Widom: SimRank: a measure of structural-context
similarity. KDD 2002: 538-543

P-N Tan, . Steinbach, V. Kumar. Introduction to Data Mining (Chapter 4)

P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, R.Zadeh. WTF: The Who to
Follow Service at Twitter, WWW 2013

R. Lempel, S. Moran: SALSA: the stochastic approach for link-structure
analysis. ACM Trans. Inf. Syst. 19(2): 131-160 (2001)

61

62

Online Social Networks and
Media

Graph Embeddings

Embedding nodes

63

Input: Graph G(V, E)
Goal: encode nodes so that similarity in the embedding
space approximates similarity in the original network.

Based on: W. L. Hamilton, R. Ying, J. Leskovec: Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40(3): 52-74 (2017)

i

j

𝑧𝑖

𝑧𝑗

G: original network embedding space

ENC(i)

ENC(j)

Embedding nodes

64

Goal: similarity(i, j) ≈ 𝑧𝑖 ∙ 𝑧𝑗

Based on: W. L. Hamilton, R. Ying, J. Leskovec: Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40(3): 52-74 (2017)

i

j

𝑧𝑖

𝑧𝑗

G: original network embedding space

ENC(i)

ENC(j)

to be defined
how relationships in vector space
map to relationships in the original
network
encode structure

dot product (other
definitions possible)

Learning node embeddings

65

1. Define an encoder that maps nodes to low
dimensional spaces

2. Define a node similarity function in the original
network.

3. Optimize the parameters of the encoder so that we
minimize a loss function L that looks (roughly) like:

𝑳 = σ 𝑖,𝑗 ∈ 𝑉(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖, 𝑗 − 𝑧𝑖 ∙ 𝑧𝑗)2

When are two nodes similar? Any ideas?

Node embeddings

66

Approaches based on:
▪ Adjacency matrix
▪ Multi-hop neighborhoods

Approaches based on Word2Vec
▪ DeepWalk
▪ Node2Vec

Shallow embeddings(*)

67

d

|V|

Z

𝑧𝑖

i

Each node is assigned a single d-dimensional vector
Learn embedding matrix Z: each column i is the embedding 𝑧𝑖 of
node i

Dimension/size
of the embedding

(*) As opposed to deep learning in graphs (neural networks embeddings)

Shallow embeddings

68

Z

𝑧𝑖

i

𝐸𝑁𝐶 𝑖 = 𝑍 𝐼𝑖

0 0 1 0

i

One-hot or indicator vector, all 0s
but position i

𝐼𝑖

Encoder is an embedding lookup

69

Adjacency-based approach

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=

00020

00231

02002

23003

01230

A

▪ Similarity function is just the edge (weight) between u and v in
the original network.

▪ Dot products between node embeddings approximate edge
existence.

A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, A. J. Smola: Distributed large-scale natural graph factorization.
WWW 2013

70

𝐿 = σ𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗 ||
2

sum over all node pairs

The loss that what we want to minimize

(weighted) adjacency
matrix for the graph

embedding similarity

Adjacency-based approach

71

1. Matrix decomposition (for example, SVD decomposition)
1. Scalability issues
2. Produced matrices that are very dense

2. Stochastic gradient descent

How to minimize loss

Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eigenvals AAT, ATA)

• : left singular vectors (eigenvectors of AAT)

• : right singular vectors (eigenvectors of ATA)

 





































==

r

2

1

r

2

1

r21

T

v

v

v

σ

σ

σ

uuuVΣUA















[n×r] [r×r] [r×n]

r21 u,,u,u





r21 v,,v,v





T

rrr

T

222

T

111r vuσvuσvuσA





+++=

73

𝐿 = σ 𝑖,𝑗 ∈ 𝐸(𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗)2

𝐿 = σ 𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗 ||
2

sum over all edges

𝐿 =
1

2
σ 𝑖,𝑗 ∈ 𝐸(𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑗)2 +

𝜆

2
σ𝑖 ||𝑧𝑖 ||

2

Adjacency-based approach –
stochastic gradient descent

regularization factor

A few manipulations

sum over all node pairs

Adjacency-based approach

74

𝐿 =
1

2
σ 𝑖,𝑗 ∈ 𝐸(𝐴𝑖𝑗 - 𝑧𝑖 ∙ 𝑧𝑖)

2 +
𝜆

2
σ𝑖 ||𝑧𝑖 ||

2

Gradient of L with respect to each row (column) of Z (learn one
vector per node)

𝜕𝐿

𝜕𝑧𝑖
= - σ𝑗 ∈ 𝑁(𝑖) 𝐴𝑖𝑗 − 𝑧𝑗 ∙ 𝑧𝑖 𝑧𝑗 + λ 𝑧𝑖

For each edge (i, j) ∈ 𝐸 this amounts for

𝜕𝐿

𝜕𝑧𝑖
= - (𝐴𝑖𝑗 − 𝑧𝑖 ∙ 𝑧𝑗) 𝑧𝑗 + λ 𝑧𝑖

Taking the gradient

Adjacency-based approach

75

Requires: Adjacency matrix A, rank d, accuracy ε
Ensures: Local minimum
1: Initialize Z’ at random
2: t  1
3; repeat
4: Z  Z’
5: for all edges (i, j)  E do

6: η  1/ 𝑡
7: t  t +1
8: Zi  Zi + η ((Aij – <Zi ∙ Zj>Zj) + λ Ζi)
9: end for
10: until ||Z- Z’||2 <= ε
11: return Z

▪ Complexity O(|E|)
▪ Can be parallelized

η: learning rate, captures the extent at which
newly acquired information overrides old

Multi-hop approaches

76

Only considers direct connections

What about further neighbors?

Look further than the 1-step neighbors and learn by using information
from/for k-step neighbors

We will see two approaches
▪ GraRep: looks at probabilities of reaching a node
▪ HOPE: various metrics of similarity based on neighbors and paths

77

Path of length k =1
(direct link)

Path of length k = 2
(similar to common
neighbors)

GraRep

Path of length k = 3

Path of length k = 4

▪ Look at the paths that
connect the nodes

▪ More paths -- more
similar
o Probability from a

node to reach the
other

▪ Considers paths of
different lengths

S. Cao, W. Lu, Q.i Xu: GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015

78

Nearest neighborhoods more important

Maintain different k-step information differently in the graph representation

GraRep

But not all k-neighbors equally important

GraRep

79

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=

01001

00111

00010

10000

00110

A























=

20000

03000

00100

00010

00002

D























== −

01/2001/2

001/31/31/3

00010

10000

001/21/20

1ADP

Probabilistic adjacency matrix Pij the probability of transition from node i to
node j where the transition has length exactly 1

GraRep

80

𝑣2

𝑣3

𝑣4𝑣5

𝑣1













































==

01/2001/2

001/31/31/3

00010

10000

001/21/20

*

01/2001/2

001/31/31/3

00010

10000

001/21/20

*2 PPP

Nodes reachable in 1-step
from node 2

Nodes that reach node 4
in one step























=

005/125/121/6

1/301/61/20

10000

01/2001/2

1/2001/20

2P

𝑃𝑖𝑗
2 the probability of transition

form node i from node j when the
transition has length exactly 2

GraRep

81

𝑃𝑖𝑗
𝑘

: Transition probability from node i to node j where the

transition consists of exactly k steps

Basic idea:

• Train embeddings to predict k-hop neighbors.

• Approach based on skipgrams (How? Next week)

𝐿𝑘 = σ 𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝑃𝑖𝑗
𝑘 - 𝑧𝑖 ∙ 𝑧𝑗 ||

2

2. Concatenate the embeddings for the different k

1. Minimize the loss for a specific k

High-order Proximity Preserved
Embeddings (HOPE)

82

Learn two embeddings vectors
Z = |Zs , Zt|

Based on a high order proximity matrix S,

Sij = proximity(i j)

𝐿 = σ 𝑖,𝑗 ∈ 𝑉 𝑥 𝑉 ||𝑆𝑖𝑗 - 𝑧𝑖
𝑠 ∙ 𝑧𝑗

𝑡||2

M. Ou, P. Cui, J. Pei, Z.i Zhang, W. Zhu: Asymmetric Transitivity Preserving Graph Embedding. KDD 2016

HOPE

83

Local High Order Proximity

Common Neighbors (for directed
graphs, source-target)

SCN = A2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1























=













































00221

10120

10000

01001

10010

01001

00111

00010

10000

00110

*

01001

00111

00010

10000

00110

A2 =

Adamic-Adar

SAA = A D A
Similar but assigns a weight to the
neighbor = reciprocal of its degree
The more vertices a node is connected
to, the less important it is on evaluating
the proximity between a pair of nodes

HOPE

84

Global High Order Proximity

Katz
Sum over all paths of length l, using a decay parameter

𝑆𝐾𝑎𝑡𝑧 = ෍

𝑙=1

∞

𝛽𝑙 𝐴𝑙

Rooted Pagerank

SVD with some tricks to save computations

References
W. L. Hamilton, R. Ying, J. Leskovec: Representation Learning on Graphs:
Methods and Applications. IEEE Data Eng. Bull. 40(3): 52-74 (2017)

A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, A. J.
Smola: Distributed large-scale natural graph factorization. WWW 2013

S. Cao, W. Lu, Q.i Xu: GraRep: Learning Graph Representations with
Global Structural Information. CIKM 2015

M. Ou, P. Cui, J. Pei, Z.i Zhang, W. Zhu: Asymmetric Transitivity
Preserving Graph Embedding. KDD 2016

85

