
DATA MINING

LECTURE 6
Dimensionality Reduction

PCA – SVD

(Thanks to Jure Leskovec, Evimaria Terzi)



The curse of dimensionality

• Real data usually have thousands, or millions of 
dimensions
• E.g., web documents, where the dimensionality is the 

vocabulary of words

• Facebook graph, where the dimensionality is the 
number of users

• Huge number of dimensions causes problems
• Data becomes very sparse, some algorithms become 

meaningless (e.g. density based clustering)

• The complexity of several algorithms depends on the 
dimensionality and they become infeasible (e.g. nearest 
neighbor search).



Dimensionality Reduction

• Usually the data can be described with fewer 

dimensions, without losing much of the meaning 

of the data.

• The data reside in a space of lower dimensionality



Example

• In this data matrix the dimension is essentially 3

• There are three types of products and three types of 

users

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1



Example

• Cloud of points 3D space:

• Think of point positions

as a matrix:

• We can rewrite coordinates more efficiently!

• Old basis vectors: [1 0 0] [0 1 0] [0 0 1]

• New basis vectors: [1 2 1] [-2 -3 1]

• Then A has new coordinates: [1 0]. B: [0 1], C: [1 -1]

• Notice: We reduced the number of coordinates!

1 row per point:

A

B

C 
A

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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Dimensionality Reduction

• Find the “true dimension” of the data

• In reality things are never as clear and simple as in this 

example, but we can still reduce the dimension.

• Essentially, we assume that some of the data is 

useful signal and some data is noise, and that we 

can approximate the useful part with a lower 

dimensionality space.

• Dimensionality reduction does not just reduce the 

amount of data, it often brings out the useful part of the 

data



Dimensionality Reduction

• Goal of dimensionality reduction is to 

discover the axis of data!

Rather than representing

every point with 2 coordinates

we represent each point with

1 coordinate (corresponding to

the position of the point on 

the red line).

By doing this we incur a bit of

error as the points do not 

exactly lie on the line

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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Why Reduce Dimensions?

• Discover hidden correlations/topics

• E.g., in documents, words that occur commonly 

together

• Remove redundant and noisy features

• E.g., in documents, not all words are useful

• Interpretation and visualization

• Easier storage and processing of the data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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Dimensionality Reduction

• We have already seen a form of dimensionality 

reduction

• LSH, and random projections reduce the 

dimension while preserving the distances



Data in the form of a matrix

• We are given 𝑛 objects and 𝑑 attributes describing 
the objects. Each object has 𝑑 numeric values 
describing it.

• We will represent the data as a 𝑛 × 𝑑 real matrix A.
• We can now use tools from linear algebra to process the 

data matrix

• Our goal is to produce a new 𝑛 × 𝑘 matrix B such that
• It preserves as much of the information in the original matrix 

A as possible

• It reveals something about the structure of the data in A



Example: Document matrices

n documents

d terms 

(e.g., theorem, proof, etc.)

Aij = frequency of the j-th

term in the i-th document

Find  subsets of terms that bring documents 

together



Example: Recommendation systems

n customers

d movies

Aij = rating of j-th

product by the i-th

customer

Find subsets of movies that capture the 

behavior or the customers



Linear algebra

• We assume that vectors are column vectors. 

• We use 𝑣𝑇 for the transpose of vector 𝑣 (row vector)

• Dot product: 𝑢𝑇𝑣 (1𝑛, 𝑛1 → 11) 
• The dot product is the projection of vector 𝑣 on 𝑢 (and vice versa)

• 1, 2, 3
4
1
2

= 12

• 𝑢𝑇𝑣 = 𝑣 𝑢 cos(𝑢, 𝑣)

• If ||𝑢|| = 1 (unit vector) then 𝑢𝑇𝑣 is the projection length of 𝑣 on 𝑢

• If 𝑢 = 𝑣 = 1 then 𝑢𝑇𝑣 is the cosine similarity of 𝑣 and 𝑢

• −1, 2, 3
4

−1
2

= 0 : orthogonal vectors

• Orthonormal vectors: two unit vectors that are orthogonal



Matrices

• An nm matrix A is a collection of n row vectors and m column 
vectors

𝐴 =
| | |

𝑎1 𝑎2 𝑎3

| | |
𝐴 =

− 𝛼1
𝑇 −

− 𝛼2
𝑇 −

− 𝛼3
𝑇 −

• Matrix-vector multiplication
• Right multiplication 𝐴𝑢: projection of 𝑢 onto the row vectors of 𝐴, or 

projection of row vectors of 𝐴 onto 𝑢.

• Left-multiplication 𝑢𝑇𝐴: projection of 𝑢 onto the column vectors of 𝐴, or 
projection of column vectors of 𝐴 onto 𝑢

• Example:

1 0 0
0 1 0

1
2
3

=
1
2



Change of basis

• By default a vector is expressed in the axis-aligned basis.
• For example, for vector [-1,2] we have:

•
−1
2

= −1
1
0

+ 2
0
1

• With a projection we can change the basis over which a 
vector is expressed.

√2

2

√2

2

−
√2

2

√2

2

−1
2

=

3√2

2
√2

2



Rank

• Row space of A: The set of vectors that can be written as a 
linear combination of the rows of A
• All vectors of the form 𝑣 = 𝑢𝑇𝐴

• Column space of A: The set of vectors that can be written as a 
linear combination of the columns of A
• All vectors of the form 𝑣 = 𝐴𝑢.

• Rank of A: the number of linearly independent row (or column) 
vectors
• These vectors define a basis for the row (or column) space of A

• All vectors in the row (column) space are linear combinations of the basis vectors

• Example
• Matrix A = has rank r=2

• Why? The first two rows are linearly independent, so the rank is at least 2, but all 
three rows are linearly dependent (the first is equal to the sum of the second and 
third) so the rank must be less than 3.



Rank-1 matrices

• In a rank-1 matrix, all columns (or rows) are multiples 
of the same column (or row) vector

𝐴 =
1 2 −1
2 4 −2
3 6 −3

• All rows are multiples of 𝑟𝑇 = [1,2, −1]

• All columns are multiples of 𝑐 =
1
2
3

• External product: 𝑢𝑣𝑇 (𝑛1 , 1𝑚 → 𝑛𝑚) 
• The resulting 𝑛𝑚 has rank 1: all rows (or columns) are 

linearly dependent

• 𝐴 = 𝑐𝑟𝑇



Eigenvectors

• (Right) Eigenvector of matrix A: a vector v such that 
𝐴𝑣 = 𝜆𝑣

• 𝜆: eigenvalue of eigenvector 𝑣

• A square symmetric matrix A of rank r, has r
orthonormal eigenvectors 𝑢1, 𝑢2, … , 𝑢𝑟 with 
eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑟.

• Eigenvectors define an orthonormal basis for the 
column space of A

• We can write: 

𝐴 = 𝑈Λ𝑈𝑇

𝐴 = 𝜆1𝑢1𝑢1
𝑇 + 𝜆2𝑢2𝑢2

𝑇 + ⋯ + 𝜆𝑟𝑢𝑟𝑢𝑟
𝑇



Singular Value Decomposition

𝐴 = 𝑈 Σ 𝑉𝑇 = 𝑢1, 𝑢2, ⋯ , 𝑢𝑟

𝜎1

𝜎2
0

0
⋱

𝜎𝑟

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑟

𝑇

• 𝜎1, ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟: singular values of matrix 𝐴

• 𝑢1, 𝑢2, … , 𝑢𝑟: left singular vectors of 𝐴

• 𝑣1, 𝑣2, … , 𝑣𝑟: right singular vectors of 𝐴

𝐴 = 𝜎1𝑢1𝑣1
𝑇 + 𝜎2𝑢2𝑣2

𝑇 + ⋯ + 𝜎𝑟𝑢𝑟𝑣𝑟
𝑇

[n×r] [r×r] [r×m]

r: rank of matrix A

[n×m] =



Singular Value Decomposition

• The left singular vectors are an orthonormal basis 
for the row space of A.

• The right singular vectors are an orthonormal 
basis for the column space of A.

• If A has rank r, then A can be written as the sum 
of r rank-1 matrices

• There are r “linear components” (trends) in A.
• Linear trend: the tendency of the row vectors of A to align 

with vector v
• Strength of the i-th linear trend: ||𝐴𝒗𝒊|| = 𝝈𝒊



Symmetric matrices

• Special case: A is symmetric positive definite 

matrix

𝐴 = 𝜆1𝑢1𝑢1
𝑇 + 𝜆2𝑢2𝑢2

𝑇 + ⋯ + 𝜆𝑟𝑢𝑟𝑢𝑟
𝑇

• 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0: Eigenvalues of A are also 

the singular values

• 𝑢1, 𝑢2, … , 𝑢𝑟: Eigenvectors of A are also the left 

and right singular vectors



Singular Values and Eigenvalues

• Singular Value Decomposition

𝐴 = 𝑈Σ𝑉𝑇

• The left singular vectors of 𝐴 are also the 
eigenvectors of the (symmetric) matrix 𝐴𝐴𝑇

𝐴𝐴𝑇 = 𝑈Σ2𝑈𝑇

• The right singular vectors of 𝐴 are also the 
eigenvectors of the (symmetric) matrix 𝐴𝑇𝐴

𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

• The singular values of matrix 𝐴 are also the 
square roots of eigenvalues of 𝐴𝐴𝑇 and 𝐴𝑇𝐴

𝜆𝑖 𝐴𝑇𝐴 = 𝜆𝑖 𝐴𝐴𝑇 = 𝜎𝑖
2



SVD properties

• Singular Value Decomposition has three useful 

properties that we will study now:

• It provides the important (principal) directions 

(dimensions) in the data – Principal Component 

Analysis

• It provides the best low rank approximation for our 

matrix

• It minimizes the reconstruction error (squared distance 

between real data points and their estimates)



Principal Component Analysis

• Goal: reduce the dimensionality while preserving 

the “information in the data”.

• In the new space we want to:

• Maximize the amount of information

• Minimize redundancy – remove the redundant 

dimensions

• Minimize the noise in the data.



Variability

• Information in the data: variability in the data
• We measure variability using the covariance matrix.

• Sample variance for variable X:

𝜎𝑋
2 =

1

𝑁
 

𝑖

𝑥𝑖 − 𝜇𝑋 𝑥𝑖 − 𝜇𝑋 =
1

𝑁
𝑥 − 𝜇𝑋

𝑇 𝑥 − 𝜇𝑋

• Sample covariance of variables X and Y 

𝜎𝑋𝑌
2 =

1

𝑁
 

𝑖

(𝑥𝑖 − 𝜇𝑋) (𝑦𝑖 − 𝜇𝑌) =
1

𝑁
𝑥 − 𝜇𝑋

𝑇 𝑦 − 𝜇𝑌

• High variance 𝜎𝑋
2 means high information in dimension (attribute) X

• We want to maximize the signal-to-noise ratio 
𝜎𝑠𝑖𝑔𝑛𝑎𝑙

2

𝜎𝑛𝑜𝑖𝑠𝑒
2

• High co-variance 𝜎𝑋𝑌
2 means high correlation between attributes X,Y, 

and thus high redundancy. 
• Ideally we want 𝜎𝑋𝑌

2 = 0 for all pairs X,Y



Example

• In the data below the data are essentially one-

dimensional, but what is the axis we should use?

• The direction in which the variance is maximized.

𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2

𝜎𝑛𝑜𝑖𝑠𝑒
2

The variance along the 

direction orthogonal to the 

main direction is small and 

captures the noise in the 

data 



Covariance matrix

• We are given the data matrix A, with 𝑛 rows and 𝑚
columns, where the rows correspond to data samples 

over a set of features defined by the columns.

• Remove the mean of each column from the column 

vectors to get the centered matrix  𝐴

• The matrix C =  𝐴𝑇  𝐴is the covariance matrix of the 

column vectors of  𝐴.

• We want to change the basis of the data so that the 

matrix becomes diagonal

• All the values are in the diagonal and the off-diagonal entries 

are zero



PCA: Principal Component Analysis

• We will project the rows of matrix  𝐴 onto a new

set of attributes (dimensions) such that:

• The attributes have zero covariance to each other (they 

are orthogonal)

• Each attribute captures the most remaining variance in 

the data, while orthogonal to the existing attributes

• The first attribute should capture the most variance in the data

• For matrix 𝐴, the variance of the rows of 𝐴 when 

projected to vector 𝑣 is given by 𝜎2 =  𝐴𝑣
2

• The first right singular vector of  𝐴 maximizes 𝜎2!



PCA and SVD

• PCA is a special case of SVD on the centered 

matrix.

• After projecting the centered matrix  𝐴 to the 

singular vectors in 𝑉 we have that the covariance 

matrix of the new dataset  𝐴𝑉 is:
 𝐴𝑉 𝑇  𝐴𝑉 = Σ

• We have achieved to make the matrix diagonal!

• Dimensionality reduction: Don’t keep all the 

singular vectors in 𝑉 just the 𝑘 first ones.



4.0 4.5 5.0 5.5 6.0
2

3

4

5

PCA

Input: 2-d dimensional points

Output:

1st (right) 

singular vector

1st (right) singular vector: 

direction of maximal variance,

2nd (right) 

singular 

vector

2nd (right) singular vector: 

direction of maximal variance, 

after removing the projection of 

the data along the first singular 

vector.



Singular values

1: measures data variance 

along the first singular vector.

2: measures how much of the 

data variance is explained by 

the second singular vector.
1

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right) 

singular vector

2nd (right) 

singular 

vector



Singular values tell us something about 

the variance

• The variance in the direction of the k-th principal component 

is given by the corresponding singular value σk
2

• Singular values can be used to estimate how many 

components to keep

• Rule of thumb: keep enough to explain 85% of the 

variation: 

85.0
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SVD and Rank-k approximations 

We keep the k most important singular vectors

The matrix 𝑈𝑘Σ𝑘𝑉𝑘
𝑇 is a rank-k approximation of A

The idea is that this is the part that has the useful information and noise is removed

This is also the best rank-k approximation (closest to the original A)



Rank-k approximations (Ak)

𝑼𝒌 ∶orthogonal matrix containing the top k left singular 

vectors of A.

𝑽𝒌: orthogonal matrix containing the top k right singular 

vectors of A.

𝜮𝒌: diagonal matrix containing the top k singular values of A

Ak is a rank-k approximation of A

n x d n x k k x k k x d

Ak is the best approximation of A



SVD as an optimization

• The rank-k approximation matrix 𝐴𝑘 produced by 

the top-k singular vectors of A minimizes the 

Frobenious norm of the difference with the matrix A

𝐴𝑘 = arg max
𝐵:𝑟𝑎𝑛𝑘 𝐵 =𝑘

𝐴 − 𝐵 𝐹
2

𝐴 − 𝐵 𝐹
2 =  

𝑖,𝑗

𝐴𝑖𝑗 − 𝐵𝑖𝑗
2

Explanation: The (𝑖, 𝑗) cell in 𝐴𝑘is close on average with the 𝑖, 𝑗 cell of 𝐴



What does this mean?

• We can project the row (and column) vectors of 

the matrix A into a k-dimensional space and 

preserve most of the information

• (Ideally) The 𝐴𝑘 approximation of matrix A, 

contains all the useful information, and what is 

discarded is noise

• (Ideally) The k dimensions reveal latent 

features/aspects/topics of the term (document) 

space.



Latent factor model

• Rows (columns) are linear combinations of k

latent factors

• E.g., in our extreme document example there are two 

factors

• Some noise is added to this rank-k matrix 

resulting in higher rank

• SVD retrieves the latent factors (hopefully).



An (extreme) example

• User-Movie matrix
• Blue and Red rows (colums) are linearly dependent 

• There are two prototype users (vectors of movies): blue and 
red
• To describe the data is enough to describe the two prototypes, and the 

projection weights for each row

• A is a rank-2 matrix

𝐴 = 𝑤1, 𝑤2
𝑑1

𝑇

𝑑2
𝑇

A =



SVD – Example: Users-to-Movies

• A = U  VT - example: Users to Movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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SVD – Example: Users-to-Movies

• A = U  VT - example: Users to Movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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SVD – Example: Users-to-Movies

• A = U  VT - example: Users to Movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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SVD – Example: Users-to-Movies

• A = U  VT - example: Users to Movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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similarity matrix



SVD – Example: Users-to-Movies

• A = U  VT - example: Users to Movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
44

SciFi-concept

Romance-concept

=

SciFi

Romance

x x

M
a
tr

ix

A
lie

n

S
e
re

n
it
y

C
a
s
a
b
la

n
c
a

A
m

e
lie

0.14 0.00

0.42 0.00 

0.56 0.00  

0.70 0.00  

0.00  0.60

0.00  0.75

0.00  0.30

12.4 0   

0       9.5

0.58   0.58  0.58 0.00  0.00 

0.00   0.00  0.00 0.71   0.71

1   1   1 0   0

3   3   3 0   0

4   4   4 0   0

5   5   5 0   0

0   0   0   4   4

0   0   0   5   5

0   0   0   2   2

Σ is the “concept strength” 

matrix



SVD – Example: Users-to-Movies

• A = U  VT - example: Users to Movies

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
45

=

SciFi

Romance

x x

M
a
tr

ix

A
lie

n

S
e
re

n
it
y

C
a
s
a
b
la

n
c
a

A
m

e
lie

0.14 0.00

0.42 0.00 

0.56 0.00  

0.70 0.00  

0.00  0.60

0.00  0.75

0.00  0.30

12.4 0   

0       9.5

0.58   0.58  0.58 0.00   0.00 

0.00   0.00  0.00 0.71   0.71

1   1   1 0   0

3   3   3 0   0

4   4   4 0   0

5   5   5 0   0

0   0   0   4   4

0   0   0   5   5

0   0   0   2   2

Movie 1

M
o
v
ie

 2

1st singular 

vector

Σ is the “spread 

(variance)” matrix



An (more realistic) example

• User-Movie matrix

• There are two prototype users and movies but 
they are noisy
• Missing ratings

• Ratings out of “character”

• This is the usual case for real data (lots of 
missing entries)

A = 
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SVD - Interpretation

‘movies’, ‘users’ and ‘concepts’:

• 𝑼: user-to-concept similarity matrix

• 𝑽: movie-to-concept similarity matrix

• : its diagonal elements: 
‘strength’ of each concept



Rank-k approximation

• In this User-Movie matrix

• We have more than two singular vectors, but the 
strongest ones are still about the two types.
• The third models the noise in the data

• By keeping the two strongest singular vectors we 
obtain most of the information in the data.
• This is the rank-2 approximation of the matrix A

A = 



Example

More details

• Q: How exactly is dim. reduction done?

• A: Compute SVD
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ǁMǁF = Σij Mij
2

ǁA-BǁF =  Σij (Aij-Bij)
2

is “small”



SVD for matrix reconstruction

• We will now see how we can use the fact that 

SVD gives the best rank-k approximation for a 

data matrix A.

• The idea is that we assume that the “true” matrix 

is rank-k, and rank is increased due to noise

• We use SVD to find the best rank-k 

approximation for A, and thus the best 

approximation of the “true” matrix



Application: Recommender systems

• Data: Users rating movies

• Sparse and often noisy

• Assumption: There are k basic user profiles, and 

each user is a linear combination of these profiles

• E.g., action, comedy, drama, romance

• Each user is a weighted combination of these profiles

• Assumption: The matrix with the true preferences

of the users for the movies is a rank-k matrix 𝐴𝑘



Model-based Recommendation Systems

• What we observe is a noisy, and incomplete version 
of this matrix 𝐴 ̃

• Given matrix  𝐴 and we would like to get the missing 
ratings that 𝐴𝑘 would produce

• Algorithm: compute the rank-k approximation  𝐴𝑘 of 
matrix  𝐴 and predict for user 𝑢 and movie 𝑚, the 
value  𝐴𝑘[𝑚, 𝑢].
• The rank-k approximation  𝐴𝑘 is provably close to the ideal 

matrix 𝐴𝑘 (under some model assumptions for the missing 
and noisy entries)

• Model-based collaborative filtering



Example

Missing ratings and noise
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Example

• Reconstruction of missing ratings

• This is the rank-2 approximation of the input 
matrix
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Latent Factor Models

• SVD also considers entries that are missing!

• Use specialized methods to find P, Q

• min
𝑃,𝑄

 𝑖,𝑥 ∈R 𝑟𝑥𝑖 − 𝑞𝑖
𝑇 ⋅ 𝑝𝑥

2

• Note:

• We don’t require cols of P, Q to be orthogonal/unit length

• P, Q map users/movies to a latent space
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Latent factors

• We can define different latent factor models that 

apply the same idea in different ways

• Probabilistic/Generative models.

• The latent factor methods work well in practice, 

and they are employed by most sophisticated  

recommendation systems



Another Application

• Latent Semantic Indexing (LSI):

• Apply PCA on the document-term matrix, and index the 

k-dimensional vectors

• When a query comes, project it onto the k-dimensional 

space and compute cosine similarity in this space

• Principal components capture main topics, and enrich 

the document representation



Another property of PCA/SVD

• The chosen vectors are such that minimize the sum of square 
differences between the data vectors and the low-dimensional 
projections

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right) 

singular vector



SVD is “the Rolls-Royce and the Swiss 
Army Knife of Numerical Linear 

Algebra.”*

*Dianne O’Leary, MMDS ’06



Computation of eigenvectors

• Consider a symmetric square matrix 𝑀

• Power-method:
• Start with the vector 𝑣 of all 1’s

• Compute 𝑣 = 𝑀𝑣

• Normalize by the length of 𝑣

• Repeat until the vector does not change

• This will give us the first eigenvector.

• The first eigenvalue is 𝜆 = 𝑣𝑇𝑀𝑣

• For the second one, compute the first eigenvector of 
the matrix 𝑀∗ = 𝑀 − 𝜆𝑣𝑣𝑇



Singular Values and Eigenvalues

• The left singular vectors of 𝐴 are also the 

eigenvectors of 𝐴𝐴𝑇

• The right singular vectors of 𝐴 are also the 

eigenvectors of 𝐴𝑇𝐴

• The singular values of matrix 𝐴 are also the 

square roots of eigenvalues of 𝐴𝐴𝑇 and 𝐴𝑇𝐴



Computing singular vectors

• Compute the eigenvectors and eigenvalues of the 

matrices 𝑀𝑀𝑇 and 𝑀𝑇𝑀


