DATA MINING LECTURE 5

Sketching, Locality Sensitive Hashing

Jaccard Similarity

- The Jaccard similarity (Jaccard coefficient) of two sets S_{1}, S_{2} is the size of their intersection divided by the size of their union.
- $\operatorname{JSim}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\left|\mathrm{S}_{1} \cap \mathrm{~S}_{2}\right| /\left|\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right|$.

$$
\begin{aligned}
& 3 \text { in intersection. } \\
& 8 \text { in union. } \\
& \text { Jaccard similarity } \\
& \quad=3 / 8
\end{aligned}
$$

- Extreme behavior:
- Jsim $(X, Y)=1$, iff $X=Y$
- $J \operatorname{sim}(X, Y)=0$ iff X, Y have no elements in common
- JSim is symmetric

Cosine Similarity

Figure 2.16. Geometric illustration of the cosine measure.

- $\operatorname{Sim}(X, Y)=\cos (X, Y)$
- The cosine of the angle between X and Y
- If the vectors are aligned (correlated) angle is zero degrees and $\cos (\mathrm{X}, \mathrm{Y})=1$
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and $\cos (X, Y)=0$
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Application: Recommendations

- Recommendation systems
- When a user buys or rates an item we want to recommend other items that the user may like
- Initially applied to books, but now recommendations are everywhere: songs, movies, products, restaurants, hotels, etc.
- Commonly used algorithms:
- Find the k users most similar to the user at hand and recommend items that they like.
- Find the items most similar to the items that the user has previously liked, and recommend these items.

Application: Finding near duplicates

- Find duplicate and near-duplicate documents from a web crawl.
- Why is it important:
- Identify mirrored web pages, and avoid indexing them, or serving them multiple times
- Find replicated news stories and cluster them under a single story.
- Identify plagiarism
- Near duplicate documents differ in a few characters, words or sentences

Finding similar items

- The problems we have seen so far have a common component
- We need a quick way to find highly similar items to a query item
- OR, we need a method for finding all pairs of items that are highly similar.
- Also known as the Nearest Neighbor problem, or the All Nearest Neighbors problem

SKETCHING AND LOCALITY SENSITIVE HASHING

Thanks to:
Rajaraman and Ullman, "Mining Massive Datasets"
Evimaria Terzi, slides for Data Mining Course.

Before we start: Hash Functions

- A hash function is a function that maps objects of arbitrary sizes (e.g., strings) to a space of fixed size (usually, integers).
hash
- Simple example: $h(x)=(a x+b) \bmod n$
- If two values are mapped to the same integer we say that we have a collision
- Hash functions are usually randomized
- E.g., values a, b are selected at random
- They are designed so that the probability of collision is very small.
- Perfect hash functions: map each valid input to a different hash value.
- Hash functions are used in Hash Tables to implement Dictionaries

Problem

- Given a (large) collection of documents find all pairs of documents which are near duplicates
- Their similarity is very high
-What if we want to find identical documents?

Main issues

- What is the right representation of the document when we check for similarity?
- E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
- We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
- If we wanted exact match it would be ok, can we replicate this idea?

Three Essential Techniques for Similar Documents

1. Shingling : convert documents, emails, etc., to sets.
2. Minhashing : convert large sets to short signatures, while preserving similarity.
3. Locality-Sensitive Hashing (LSH): focus on pairs of signatures likely to be similar.

The Big Picture

Shingles

- A k-shingle (or k-gram) for a document is a sequence of k characters that appears in the document.
- Example: document = abcab. $\mathrm{k}=2$
- Set of 2-shingles = \{ab, bc, ca\}.
- Option: regard shingles as a bag, and count ab twice.
- Represent a document by its set of k-shingles.

Shingling

- Shingle: a sequence of k contiguous characters

```
a rose is a rose is a rose
a rose is
rose is a
    rose is a
ose is a r
se is a ro
e is a ros
is a rose
    is a rose
s a rose i
a rose is
a rose is
```


Shingling

- Shingle: a sequence of k contiguous characters
a rose is a rose is a rose
a rose is
rose is a
rose is a
ose is a r
se is a ro
e is a ros
is a rose
is a rose

$$
\begin{aligned}
& \text { s a rose i } \\
& \hline \text { a rose is } \\
& \hline \text { a rose is }
\end{aligned}
$$

Working Assumption

Documents that have lots of shingles in common have similar text, even if the text appears in different order.

- Careful: you must pick k large enough, or most documents will have most shingles.
- Extreme case $k=1$: all documents are the same
- $k=5$ is OK for short documents; $k=10$ is better for long documents.
- Alternative ways to define shingles:
- Use words instead of characters
- Anchor on stop words (to avoid templates)

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.

$$
h: V^{k} \rightarrow\{0,1\}^{64}
$$

- Represent a doc by the set of hash values of its k shingles.
- Shingle s will be represented by the 64-bit integer $h(s)$
- From now on we will assume that shingles are integers
- Collisions are possible, but very rare

Fingerprinting

- Hash shingles to 64-bit integers

Set of Shingles

Hash function
Set of 64-bit integers

a rose is
rose is a
rose is a
ose is a r
se is a ro
e is a ros
is a rose
is a rose
s a rose i
a rose is

(Rabin's fingerprints)	1111
	2222
	3333
	4444
	5555
	6666
	7777
	8888
	9999
	0000

Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
- Common shingles over the union of shingles
- $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$.
- Although we use the documents as our driving example the techniques we will describe apply to any kind of sets.
- E.g., similar customers or items.

Signatures

- Problem: shingle sets are still too large to be kept in memory.
- Key idea: "hash" each set S to a small signature Sig (S), such that:

1. $\operatorname{Sig}(\mathrm{S})$ is small enough that we can fit a signature in main memory for each set.
2. $\operatorname{Sim}\left(S_{1}, S_{2}\right)$ is (almost) the same as the "similarity" of $\operatorname{Sig}\left(S_{1}\right)$ and Sig $\left(\mathrm{S}_{2}\right)$. (signature preserves similarity).

- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
- False negatives: Similar items deemed as non-similar
- False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
- Rows = the universe of all possible set elements
- In our case, shingle fingerprints take values in [0...264-1]
- Columns = the sets
- In our case, documents, sets of shingle fingerprints
- $M(r, S)=1$ in row r and column S if and only if r is a member of S.
- Typical matrix is sparse.
- We do not really materialize the matrix

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$
- $\operatorname{Sim}(X, Y)=\frac{3}{5}$

	\mathbf{X}	\mathbf{Y}
A	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $\mathrm{Y}=\{\mathrm{A}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

	\mathbf{X}	\mathbf{Y}
\mathbf{A}	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

At least one of the columns has value 1

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

	\mathbf{X}	\mathbf{Y}
A	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

Both columns have value 1

Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
- $\mathrm{h}(\mathrm{S})=$ the index of the first row (in the permuted order) in which column S has 1.
same as:
- $h(S)=$ the index of the first element of S in the permuted order.
- Use k (e.g., $k=100$) independent random permutations to create a signature.

Example of minhash signatures

- Input matrix

dem dim	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Random
Permutation

Example of minhash signatures

- Input matrix

dem dim	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Random
Permutation

\mathbf{D}
\mathbf{B}
\mathbf{A}
\mathbf{C}
\mathbf{F}
\mathbf{G}
\mathbf{E}

index	atem	S_{1}	S_{2}	S_{3}	S_{4}
1	D	0	1	0	1
2	B	1	0	0	1
3	A	1	0	1	0
4	C	0	1	0	1
5	F	1	0	1	0
6	G	1	0	1	0
7	E	0	1	1	1
		2	1	3	1

Example of minhash signatures

- Input matrix

dem dim	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Random
Permutation

		dem	S_{1}	S_{2}	S_{3}	S_{4}
C	1	C	0	1	0	1
D	2	D	0	1	0	1
G	3	G	1	0	1	0
F	4	F	1	0	1	0
A	5	A	1	0	1	0
B	6	B	1	0	0	1
E	7	E	0	1	1	1

3	1	3	1

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Signature matrix

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	2	1	2
h_{2}	2	1	3	1
h_{3}	3	1	3	1

We now have a smaller dataset with just k rows

- $\operatorname{Sig}(S)=$ vector of hash values
- e.g., $\operatorname{Sig}\left(S_{2}\right)=[2,1,1]$
- $\operatorname{Sig}(\mathrm{S}, \mathrm{i})=$ value of the i-th hash function for set S
- E.g., $\operatorname{Sig}\left(\mathrm{S}_{2}, 3\right)=1$

A Subtle Point

- People sometimes ask whether the minhash value should be the original number of the row, or the number in the permuted order (as we did in our example).
- Answer: it doesn't matter.
- You only need to be consistent, and assure that two columns get the same value if and only if their first 1 's in the permuted order are in the same row.

Hash function Property

$$
\operatorname{Pr}\left(\mathrm{h}\left(\mathrm{~S}_{1}\right)=\mathrm{h}\left(\mathrm{~S}_{2}\right)\right)=\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)
$$

- where the probability is over all choices of permutations.
-Why?
- Recall that the union $S_{1} \cup S_{2}$ contains the rows with at least one 1.
- These are the rows that we care about
- The first row in the permutation where one of the two sets has value 1 belongs to the union.
- We have equality if both sets have value 1, and this row belongs to the intersection

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Rows C,D could be anywhere they do not affect the probability

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = $\{A, F, G\}$

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$
- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = $\{A, F, G\}$

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

The question is what is the value of the first * element

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y		X	Y
A	1	1		0	0
B	1	0			
C	0	0			
D	0	0		0	0
E	0	1			
F	1	1			
G	1	1			

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

If it belongs to the intersection then $h(X)=h(Y)$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	c	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Every element of the union is equally likely to be the * element

$$
\operatorname{Pr}(h(X)=h(Y))=\frac{|\{A, F, G\}|}{|\{A, B, E, F, G\}|}=\frac{3}{5}=\operatorname{Sim}(X, Y)
$$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Similarity for Signatures

- The similarity of signatures is the fraction of the hash functions in which they agree.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Signature matrix						Actual	Sig
\approx	S_{1}	S_{2}	S_{3}	S_{4}	$\left(S_{1}, S_{2}\right)$	0	0
	1	2	1	2	$\left(S_{1}, S_{3}\right)$	3/5	2/3
	2	1	3	1	$\left(S_{1}, S_{4}\right)$	1/7	0
	3	1	3	1	$\left(S_{2}, S_{3}\right)$	0	0
					$\left(S_{2}, S_{4}\right)$	3/4	1
Zero similarity is preserved					$\left(S_{3}, S_{4}\right)$	0	0
High similarity is well approximated							

- With multiple signatures we get a good approximation
- Why? What is the expected value of the fraction of agreements?

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of $1 .$. .billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?
- ©
- Instead of permutations we will consider hash functions that map the N rows to N buckets
- Some collisions may happen, but with well chosen functions they are rare.

Approximating row permutations

Pick k=100 hash functions ($\mathrm{h}_{1, \ldots, \ldots, h_{k} \text {) }}$)
for each set S
for each row r that appears in S
for each hash function h_{i} compute $\mathrm{h}_{\mathrm{i}}(\mathrm{r})$
$h_{i}(r)=$ index of shingle r in permutation
for each hash function h_{i}
$\operatorname{Sig}(\mathbf{S}, \mathrm{i})=\min \mathrm{h}_{\mathrm{i}}(\mathrm{r})$;

Find the minimum index for hash function h_{i}

Sig(S, i) will become the smallest value of $h_{i}(r)$ among all rows (shingles) for which column S has value 1 (shingle belongs in S); i.e., $h_{i}(r)$ gives the min index for the i-th permutation

Approximating row permutations

Pick k=100 hash functions ($\mathrm{h}_{\left.1, \ldots, \mathrm{~h}_{\mathrm{k}}\right)}$) for each row r
for each hash function h_{i}
compute $\mathrm{h}_{\mathrm{i}}(\mathrm{r})$
for each column S that has 1 in row r contains shingle r if $h_{i}(r)$ is a smaller value than $\operatorname{Sig}(S, i)$ then
$\operatorname{Sig}(S, i)=h_{i}(r)$;
Find the shingle r with minimum index

Sig(S, i) will become the smallest value of $h_{i}(r)$ among all rows (shingles) for which column S has value 1 (shingle belongs in S); i.e., $h_{i}(r)$ gives the min index for the i-th permutation

Example

x	Row	S1	S2	h(x)	$g(x)$
0	A	1	0	1	3
1	B	0	1	2	0
2	C	1	1	3	2
3	D	1	0	4	4
4	E	0	1	0	1

$h(x)=x+1 \bmod 5 \quad g(x)=2 x+1 \bmod 5$

Row		
	S1	S2
E	0	1
A	1	0
B	0	1
C	1	1
D	1	0

$$
\begin{aligned}
& h(0)=1 \\
& g(0)=3
\end{aligned}
$$

$$
\begin{aligned}
& h(1)=2 \\
& g(1)=0
\end{aligned}
$$

$$
h(2)=3
$$

$$
g(2)=2
$$

$$
h(3)=4
$$

$$
g(3)=4
$$

$$
h(4)=0
$$

1

$$
g(4)=1
$$

2

$$
\begin{aligned}
& 2 \\
& 0
\end{aligned}
$$

Implementation - (4)

- Often, data is given by column, not row.
- E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute $h_{i}(r)$ only once for each row.

Finding similar pairs

- Problem: Find all pairs of documents with similarity at least $\mathrm{t}=0.8$
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10^{6} columns implies $5^{*} 10^{11}$ columncomparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- What we want: a function $f(X, Y)$ that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.
- A simple idea: X and Y are a candidate pair if they have the same min-hash signature.
- Easy to test by hashing the signatures.
! Multiple levels of Hashing!
- Similar sets are more likely to have the same signature.
- Likely to produce many false negatives.
- Requiring full match of signature is strict, some similar sets will be lost.
- Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
- Reduce the probability for false negatives.

Signature matrix reminder

Partition into Bands - (1)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.

Partitioning into bands

$n=b^{*} r$ hash functions Matrix Sig

Partition into Bands - (2)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table.
- Mini-signatures that hash to the same bucket are almost certainly identical.

Partition into Bands - (2)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table.
- Mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- l.e., they have at least one mini-signature in common.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Analysis of LSH - What We Want

Similarity s of two sets

What One Band of One Row Gives You

Similarity s of two sets

What b Bands of r Rows Gives You

Similarity s of two sets

Example: $b=20 ; r=5$

\boldsymbol{s}	$\mathbf{1 - (1 - s r}^{\mathbf{r}} \mathbf{b}^{\mathbf{b}}$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Figure 3.7: The S-curve

Suppose $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability $\mathrm{S}_{1}, \mathrm{~S}_{2}$ identical in one particular band:

$$
(0.8)^{5}=0.328
$$

- Probability $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are not similar in any of the 20 bands:

$$
(1-0.328)^{20}=0.00035
$$

- i.e., about $1 / 3000$-th of the 80%-similar column pairs are false negatives.
- Probability S_{1}, S_{2} are similar in at least one of the 20 bands:

$$
1-0.00035=0.999
$$

Suppose $\mathrm{S}_{1}, \mathrm{~S}_{2}$ Only 40\% Similar

- Probability S_{1}, S_{2} identical in any one particular band:

$$
(0.4)^{5}=0.01
$$

- Probability S_{1}, S_{2} are not identical in any of the 20 bands:

$$
(1-0.01)^{20}=0.81
$$

- False positive probability $=0.19$. But false positives much lower for similarities $\ll 40 \%$.

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions h: $\mathrm{R}^{\mathrm{d}} \rightarrow \mathrm{U}$ such that for any pair of objects p, q, for distance function D we have:
- If $D(p, q) \leq r$, then $\operatorname{Pr}[h(p)=h(q)]$ is high
- Close (similar) objects have high probability to be hashed together
- If $D(p, q) \geq c r$, then $\operatorname{Pr}[h(p)=h(q)]$ is small
- Distant (dissimilar) objects have small probability of being hashed together
- Then, we can find close pairs by hashing
- LSH is a general framework: for a given distance function D we need to find the right h

LSH for Cosine Distance

- For cosine distance, there is a technique analogous to minhashing for generating a Locality Sensitive Hashing functions
- Using random hyperplanes.

Random Hyperplanes

Pick a random vector v, which determines a hash function h_{v} with two buckets.

- $h_{v}(x)=+1$ if $v \cdot x>0$;
- $h_{v}(x)=-1$ if $v \cdot x<0$.
- LS-family $\mathbf{H}=$ set of all functions derived from any vector.
- Claim:
- $\operatorname{Prob}[h(x)=h(y)]=1-($ angle between x and $y) / 180$

Proof of Claim Look in the plane of x and y.

For a random vector v the values of the

y
$h_{v}(x) \neq h_{v}(y)$ when v falls into the shaded area.
What is the probability of this for a randomly chosen vector v?

$$
h_{v}(y)=+1
$$

$$
\begin{aligned}
& P\left[h_{v}(x) \neq h_{v}(y)\right]=2 \theta / 360=\theta / 180 \\
& P\left[h_{v}(x)=h_{v}(y)\right]=1-\theta / 180
\end{aligned}
$$

Signatures for Cosine Distance

- Pick some number of vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1 's and 1's that can be used for LSH like the minhash signatures for Jaccard distance.

Simplification

- We need not pick from among all possible vectors v to form a component of a sketch.
- It suffices to consider only vectors v consisting of +1 and -1 components.

