DATA MINING LECTURE 12

Coverage

Approximation Algorithms

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has the product.
- We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
- We want the number of free products to be as small as possible

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has the product.
- We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
- We want the number of free products to be as small as possible

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has the product.
- We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
- We want the number of free products to be as small as possible

Dominating set

Our problem is an instance of the dominating set problem

- Dominating Set: Given a graph $G=(V, E)$, a set of vertices $D \subseteq V$ is a dominating set if for each node u in V, either u is in D, or u has a neighbor in D.
- The Dominating Set Problem: Given a graph $G=$ (V, E) find a dominating set of minimum size.

Set Cover

- The dominating set problem is a special case of the Set Cover problem
- The Set Cover problem:
- We have a universe of elements $U=\left\{x_{1}, \ldots, x_{N}\right\}$
- We have a collection of subsets of $U, S=\left\{S_{1}, \ldots, S_{n}\right\}$, such that $\cup_{i} S_{i}=U$
- We want to find the smallest sub-collection $C \subseteq S$ of S, such that $\cup_{S_{i} \in C} S_{i}=U$
- The sets in C cover the elements of U

An application of Set Cover

- Suppose that we want to create a catalog (with coupons) to give to customers of a store:
- We want for every customer, the catalog to contain a product bought by the customer (this is a small store)
- How can we model this as a set cover problem?

Applications

- The universe U of elements is the set of customers of a store.
- Each set corresponds to a product p sold in the store: $S_{p}=\{$ customers that bought $p\}$
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)

Applications

- The universe U of elements is the set of customers of a store.
- Each set corresponds to a product p sold in the store: $S_{p}=\{$ customers that bought $p\}$
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)

Applications

- The universe U of elements is the set of customers of a store.
- Each set corresponds to a product p sold in the store: $S_{p}=\{$ customers that bought $p\}$
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)

Applications

- Dominating Set (or Promotion Campaign) as Set Cover:
- The universe U is the set of nodes V
- Each node u defines a set S_{u} consisting of the node u and all of its neighbors
- We want the minimum number of sets S_{u} (nodes) that cover all the nodes in the graph.
- Many more...

Best selection variant

- Suppose that we have a budget K of how big our set cover can be
- We only have K products to give out for free.
- We want to cover as many customers as possible.
- Maximum-Coverage Problem: Given a universe of elements U, a collection S of subsets of U, and a budget K, find a sub-collection $C \subseteq S$ of size at most K, such that the number of covered elements $\cup_{S_{i} \in C} S_{i}$ is maximized.

Complexity

- Both the Set Cover and the Maximum Coverage problems are NP-complete
- What does this mean?
- Why do we care?
- There is no algorithm that can guarantee finding the best solution in polynomial time
- Can we find an algorithm that can guarantee to find a solution that is close to the optimal?
- Approximation Algorithms.

Approximation Algorithms

- For an (combinatorial) optimization problem, where:
- X is an instance of the problem,
- $\operatorname{OPT}(X)$ is the value of the optimal solution for X,
- $A L G(X)$ is the value of the solution of an algorithm ALG for X

ALG is a good approximation algorithm if the ratio of $O P T(X)$ and $A L G(X)$ is bounded for all input instances X

- Minimum set cover: input $X=(U, S)$ is the universe of elements and the set collection, OPT (X) is the size of minimum set cover, $A L G(X)$ is the size of the set cover found by an algorithm ALG.
- Maximum coverage: input $X=(U, S, K)$ is the input instance, OPT (X) is the coverage of the optimal algorithm, $\operatorname{ALG}(X)$ is the coverage of the set found by an algorithm ALG.

Approximation Algorithms

- For a minimization problem, the algorithm ALG is an α approximation algorithm, for $\alpha>1$, if for all input instances X ,

$$
\operatorname{ALG}(X) \leq \alpha O P T(X)
$$

- In simple words: the algorithm ALG is at most α times worse than the optimal.
- α is the approximation ratio of the algorithm - we want α to be as close to 1 as possible
- Best case: $\alpha=1+\epsilon$ and $\epsilon \rightarrow 0$, as $n \rightarrow \infty$ (e.g., $\epsilon=\frac{1}{n}$)
- Good case: $\alpha=O(1)$ is a constant (e.g., $\alpha=2$)
- OK case: $\alpha=0(\log n)$
- Bad case $\alpha=0\left(n^{\epsilon}\right)$

Approximation Algorithms

- For a maximization problem, the algorithm ALG is an α approximation algorithm, for $\alpha<1$, if for all input instances X,

$$
\operatorname{ALG}(X) \geq \alpha O P T(X)
$$

- In simple words: the algorithm ALG achieves at least α percent of what the optimal achieves.
- α is the approximation ratio of the algorithm - we want α to be as close to 1 as possible
- Best case: $\alpha=1-\epsilon$ and $\epsilon \rightarrow 0$, as $n \rightarrow \infty$ (e.g., $\epsilon=\frac{1}{n}$)
- Good case: $\alpha=O(1)$ is a constant (e.g., $a=0.5$)
- OK case: $\alpha=O\left(\frac{1}{\log n}\right)$
- Bad case $\alpha=O\left(n^{-\epsilon}\right)$

A simple approximation ratio for set cover

- Lemma: Any algorithm for set cover has approximation ratio $\alpha=\left|S_{\max }\right|$, where $S_{\max }$ is the set in S with the largest cardinality
- Proof:

$$
\begin{aligned}
& \text { - } \operatorname{OPT}(X) \geq N /\left|S_{\max }\right| \Rightarrow N \leq\left|S_{\text {max }}\right| O P T(X) \\
& \cdot \operatorname{ALG}(X) \leq N \leq\left|S_{\max }\right| O P T(X)
\end{aligned}
$$

- This is true for any algorithm.
- Not a good bound since it may be that $\left|S_{\max }\right|=O(N)$

An algorithm for Set Cover

-What is a natural algorithm for Set Cover?

- Greedy: each time add to the collection C the set S_{i} from S that covers the most of the remaining uncovered elements.

The GREEDY algorithm

GREEDY(U,S)

$\mathrm{X}=\mathrm{U}$
$C=\{ \}$
while X is not empty do

The number of elements covered by S_{i} not already covered by C.

For all $S_{i} \in S$ let gain $\left(S_{i}\right)=\left|S_{i} \cap X\right|$
Let S_{*} be such that $\operatorname{gain}\left(S_{*}\right)$ is maximum
$C=C \cup\left\{S_{*}\right\}$
$X=X \backslash$.
$S=S \backslash$.

Greedy is not always optimal

- Adding Coke to the set is useless.
- We need Milk (or Coffee) and Beer to cover all customers

Approximation ratio of GREEDY

- Good news: GREEDY has approximation ratio:

$$
\begin{aligned}
& \alpha=H\left(\left|S_{\max }\right|\right)=1+\ln \left|S_{\max }\right|, \quad H(n)=\sum_{k=1}^{n} \frac{1}{k} \\
& \operatorname{GrEEDY}(X) \leq\left(1+\ln \left|S_{\max }\right|\right) \text { OPT }(X), \text { for all } X
\end{aligned}
$$

Maximum Coverage

- Greedy is also applicable here

$$
\begin{aligned}
& \text { GREEDY(U,S,K) } \\
& X=U \\
& C=\{ \} \\
& \text { while }|C|<K
\end{aligned}
$$

The number of elements covered by S_{i} not already covered by C.

For all $S_{i} \in S$ let gain $\left(S_{i}\right)=\left|S_{i} \cap X\right|$
Let S_{*} be such that $\operatorname{gain}\left(S_{*}\right)$ is maximum
$C=C \cup\left\{S_{*}\right\}$
$X=X \backslash$.
$S=S \backslash$

Approximation Ratio for Max-K Coverage

- Better news! The GREEDY algorithm has approximation ratio $\alpha=1-\frac{1}{e}$

$$
\operatorname{GREEDY}(X) \geq\left(1-\frac{1}{e}\right) \operatorname{OPT}(X) \text {, for all } \mathrm{X}
$$

- (e is the basis of the natural logarithm)
- The coverage of the Greedy solution is at least 63% that of the optimal

Proof of approximation ratios

- We will now give a proof of the approximation ratios for the SET-COVER and the MAX-COVERAGE
- We start with MAX-COVERAGE
- Definitions:
- OPT: size of the optimal solution
- b_{i} : number of covered elements at iteration i of Greedy
- a_{i} : number of newly covered elements at iteration i
- $c_{i}=O P T-b_{i}$: difference between solution size of Optimal and Greedy solutions at iteration i.
- Lemma: $a_{i+1} \geq \frac{c_{i}}{K}$
- Proof:
- For $i=0$, it is simple to see since one of the K sets in the optimal solution has size at least $\frac{O P T}{K}$.
- For larger i

- Lemma: $c_{i+1} \leq\left(1-\frac{1}{K}\right)^{i+1}$ OPT
- Proof: By induction on i.
- Basis of induction: $c_{0} \leq\left(1-\frac{1}{K}\right)$ OPT
- Use the fact that $c_{0}=O P T$, and $b_{1}=a_{1}$
- Inductive Hypothesis: $c_{i} \leq\left(1-\frac{1}{K}\right)^{i} O P T$
- Inductive step: $c_{i+1} \leq\left(1-\frac{1}{K}\right)^{i+1}$ OPT
- Use the inductive hypothesis and that $b_{i+1}=\sum_{j=1}^{i+1} a_{j}$ and $c_{i+1}=c_{i}-a_{i}$
- Theorem: The Greedy algorithm has approximation ratio $\left(1-\frac{1}{e}\right)$
- Proof:

$$
c_{K} \leq\left(1-\frac{1}{K}\right)^{K} O P T \leq \frac{1}{e} O P T
$$

- The size of the Greedy solution is b_{K}

$$
b_{K}=O P T-c_{K} \geq\left(1-\frac{1}{e}\right) O P T
$$

Proof for SET COVER

- In the case of SET COVER, we have that $O P T=$ n
- Let k^{*} be the size of the optimal solution.
- We know that after i iterations: $c_{i} \leq\left(1-\frac{1}{k^{*}}\right)^{i} n$.
- After $t=k^{*} \ln \frac{n}{k^{*}}$ iterations $c_{t} \leq k^{*}$ elements remain to be covered
- We can cover those in at most k^{*} iterations
- Total iterations are at most $k^{*}\left(\ln \frac{n}{k^{*}}+1\right) \leq k^{*}(\ln n+1)$

Lower bound

- The approximation ratio is tight up to a constant - Tight means that we can find a counter example with this ratio

- $\operatorname{OPT}(X)=2$
- GREEDY $(X)=\log N$
- $\alpha=\frac{1}{2} \log N$

Another proof of the approximation ratio for MAX-K COVERAGE

- For a collection of subsets C, let $F(C)=\left|\cup_{S_{i} \in C} S_{i}\right|$ be the number of elements that are covered.
- The set function F has two properties:
- F is monotone:

$$
F(A) \leq F(B) \text { if } A \subseteq B
$$

- F is submodular:

$$
F(A \cup\{S\})-F(A) \geq F(B \cup\{S\})-F(B) \text { if } A \subseteq B
$$

- The addition of set S to a set of nodes has greater effect (more new covered items) for a smaller set.
- The diminishing returns property

Optimizing submodular functions

- Theorem:

If we want to maximize a monotone and submodular function F under cardinality constraints (size of set at most K),

Then, the greedy algorithm that each time adds to the solution C, the set S that maximizes the gain $F(C \cup$

Other variants of Set Cover

- Hitting Set: select a set of elements so that you hit all the sets (the same as the set cover, reversing the roles)
- Vertex Cover: Select a set of vertices from a graph such that you cover all edges (for every edge an endpoint of the edge is in the set)
- There is a 2-approximation algorithm
- Edge Cover: Select a set of edges that cover all vertices (for every vertex, there is one edge that has as endpoint this vertex)
- There is a polynomial algorithm

OVERVIEW

Class Overview

- In this class you saw a set of tools for analyzing data
- Frequent Itemsets, Association Rules
- Sketching
- Recommendation Systems
- Clustering
- Singular Value Decomposition
- Classification
- Link Analysis Ranking
- Random Walks
- Coverage
- All these are useful when trying to make sense of the data. A lot more tools exist.
- I hope that you found this interesting, useful and fun.

