Online Social Networks and
Media

Network Measurements and Models



Measuring and Modeling Networks

There are networks everywhere

What do they look like?

— How do you measure and describe a billion node
network?

What are the process that generate them?
— Can we create models for real-life networks?
These two questions are related: We need to

measure the characteristics that we want to
model



Before we start

* Wait, there is a model for generating graphs!
* The Erd6s-Renyi Gy, ,, random graph model:

— n : the number of vertices
— p : probability of generating an edge

 for each pair (i,j), generate the edge (i,j) independently
with probability p

* Avery well studied model in graph theory!

— As we will see, not good enough in our case



Measuring Networks

Degree distributions and power-laws
Clustering Coefficient

Small world phenomena
Components

Motifs

Homophily



Degree distributions

f
B f,. = fraction of nodes with degree k
= probability of a randomly
selected node to have degree k
fo 4---

k degree



It all started with some Greeks

* Faloutsos, Faloutsos, Faloutsos, “On the power-

law relationships of the internet topology”,
SIGCOMM 1999.
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Figure 6: The outdegree plots: Log-log plot of frequency f; versus the outdegree d.

* Degree dlstrlbutlons for the internet graph



Power-law distributions

 The degree distributions of most real-life networks follow a power law
p(k) =Ck™

* Right-skewed/Heavy-tail distribution
— there is a non-negligible fraction of nodes that has very high degree (hubs)
— scale-free: no characteristic scale, average is not informative

* In stark contrast with the random graph model!
— Poisson degree distribution, z=np

0 =L
p( )_Ee

— Concentrated around the mean
— the probability of very high degree nodes is exponentially small



Power-law signature

* Power-law distribution gives a line in the log-log plot

log p(k) = -a logk + logC

frequency log frequency

degree

N\

log degree

* a . power-law exponent (typically 2 < a < 3)
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Power-laws appear in all networks!
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And not only in

networks!

minimum exponent
quantity Tmin [l

ia)  frequency of use of words 1 2.20(1)
(b} number of citations to papers 100 3.04(2)
i) number of hits on web sites 1 2.40(1)
id) copies of books sold in the US| 2000000 3.51(16)
i) telephone ealls received 10 2.22(1)
if)  magnitude of earthquakes 3.8 3.04(4)
ig) diameter of moon craters 0.01 3.14(5)
ih) intensity of solar flares 200 1.83(2)
i) intensity of wars 3 L.80(9)
i) net worth of Americans F600m 2.00(4)
ik) frequency of family names L0000 1.094(1)
il)  population of US cities 40000 2.30(5)

TABLE 1 Parameters for the distributions shown in Fig. 4.
The labels on the left refer to the panels in the figure. Expo-
nent values were calculated using the maximum likelihood
method of Eq. (5) and Appendix B, except for the moon
craters (g), for which only cumulative data were available. For
this case the exponent quoted is from asimple least-squares fit
and should be treated with cantion. Numbers in parentheses
give the standard error on the trailing figures.
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Measuring power-laws

How do we create these plots? How do we measure the power-law
exponent?

Collect a set of measurements:

— E.g., the degree of each page, the number of appearances of each word in a
document, the size of solar flares(continuous)

Create a value histogram
— For discrete values, number of times each value appears

— For continuous values (but also for discrete):
* Break the range of values into bins of equal width
* Sum the count of values in the bin
* Represent the bin by the mean (median) value

Plot the histogram in log-log scale
— Bin representatives vs Value in the bin



Discrete Counts
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Measuring power laws
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Logarithmic binning

 Exponential binning
— Create bins that grow exponentially in size

— In each bin divide the sum of counts by the bin length
(number of observations per bin unit)
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Cumulative distribution

Compute the cumulative distribution

— P[X=x]: fraction (or number) of observations that
have value at least x

— It also follows a power-law with exponent a-1
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Pareto distribution

e A random variable follows a Pareto
distribution if

P[X > X] =C X_B X Z Xin

* Power law distribution with exponent a=1+f3



Zipf plot

There is another easy way to see the power-
law, by doing the Zipf plot
— Order the values in decreasing order

— Plot the values against their rank in log-log scale
* i.e., for the r-th value x, plot the point (log(r),log(x,))

— If there is a power-law you should see something
like a straight line



Zipf’'s Law

A random variable X follows Zipf’s law if the r-th largest
value x, satisfies

X, ~rY
Same as Pareto distribution

P[X > x|~ x7""
X follows a power-law distribution with a=1+1/y
Named after Zipf, who studied the distribution of

words in English language and found Zipf law with
exponent 1
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Computing the exponent

e Maximum likelihood estimation

— Assume that the set of data observations x are
produced by a power-law distribution with some
exponent a

* Exact law: p(x) = a—l( - )_a

Xmin \Xmin
— Find the exponent that maximizes the probability
P(a|x)

1
a=1+ n{ZIn L}
i=1

) N

min

Proof in M. E. J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics.



Collective Statistics (M. Newman 2003)

netwaork type n m z £ a | ot o v | Ref(s).
film actors undirected 440913 2HE516 482 115.43 3.45 248 | 020 0.78 0208 | 20, 416
company directors undirected TET3 5EA02 14.44 4.60 — || 0.59 0.58 0276 105, 223
math coauthorship undirected 253239 496 489 3.92 T.57 — || 015 0.34 0120 107, 182
physics coauthorship undirected E2 000 245300 0.27 6.10 — || D45 0.56 0363 | 311, 313

% biclogy coanthorship undirected 1520251 11 803 064 15.53 4.02 — || 01088 .60 0127 | 311, 313

& | telephone call graph undirected AT 000 000 S0 000 000 4.16 2.1 B, 0
emall messages directed 50012 86300 1.44 4.095 LEj2.0 0.16 136
email address books directed 16 881 5T 029 3.88 522 — || 017 0.13 ooz | o321
student relationships | undirected 573 477 L.G66 16.01 — || 0005 0,001 —0.029 | 45
sexual contacts undirected 2810 3.2 265, 266

oz | WWW nd.sdu directed 260 504 1407135 .55 1127 [|21/24 || 011 0.29 —0.067 14, 34

-% WWW Altavista directed 2005 540046 | 2130000 000 10.46 1618 [|21/27 74

E | citation network directed TEI 230 6716108 B.57 3.0/ 51

‘E Roget's Thesaurus directed 1022 5103 4.09 4.87 — || 013 015 0157 | 244

7 | waord co-cocurrence undirected 460902 17 000 000 T0.13 2.7 .44 119, 157
Internet undirected 10 607 31002 5.08 3.3 2.5 || 0U025 0.39 —0.189 86, 148

= | power gnd undirected 40941 6504 267 18.04 — || 0.0 0080 0002 | 416

% train routes undirected 58T 19603 66,79 2.16 - 0.69 —0.033 | 366

T | software packages directed 1439 1723 1.20 2.42 L&/1.4 || 0070 0082 —0.016 | 318

T‘E software classes directed 1277 2213 1.61 1.51 — || 0023 ERINEE —0.11%9 | 395

| electranie circuits undirected 24 0a7 51248 4.34 11.05 3.0 || 0nao10 0030 —0.154 155
peer-to-peer nebwork undirected Ba0 1296 1.47 428 2.1 0012 0011 —0.366 | 6, 354
metabaolic network undirected TGS 1686 0.64 2.56 22 || 0a0gn 0.67 0240 | 214

E protein interactions undirected 2115 2240 212 6.80 24 || 0072 0,071 —0.156 | 212

_E] marine food web directed 135 598 4.43 2.05 — || 0.6 0.23 —0.263 | 204

5 | freshwater food web directed 02 0a7 10.54 1.90 — || D20 0087 —0.326 | 272
neural network directed a7 2350 7.68 3.07 — || 018 0.28 —0226 | 4186, 421

TABLE I1 Basic statistics for a number of published neterorks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distributicon if the distribution follows a pawer law (or “= if not; infout-degres

exponents are given for directed graphs); clustering coefficient 1 from Eq. (3); clustering cosfficient & fram Eq. (6); and degree correlation coefficient v, Sec. ITLF.
Tha last ~alivmn dives the cdtaticoniai e the netarork i1 the FiELaorankhy Blanlk entries indicats nnavailsble dats



Power Laws - Recap

e A (continuous) random variable X follows a power-
law distribution if it has density function

p(x)=Cx"“

* A (continuous) random variable X follows a Pareto
distribution if it has cumulative function

P[X > X: =CxP? power-law with a=1+f

* A (discrete) random variable X follows Zipf’s law if
the the r-th largest value satisfies

X =CrY power-law with a=1+1/y

r



Average/Expected degree

* For power-law distributed degree

—ifa =2, itis a constant

a—1

ElX] = a—mein

—ifa< 2, it diverges

* The expected value goes to infinity as the size of the
network grows

e The fact that a > 2 for most real networks
guarantees a constant average degree as the
graph grows



The 80/20 rule

* Top-heavy: Small fraction of values collect

most of distribution mass

W

fraction of wealth

1_

o =21
o =22
o =24
\af:z.?
o =35
e L
02 04 06 08

fraction of population P

* This phenomenon becomes
more extreme when a < 2
1% of values has 99% of mass

* E.g.name distribution



The effect of exponent
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Generating power-law values

* Asimple trick to generate values that follow a
power-law distribution:

— Generate values 7 uniformly at random within the
interval [0,1]

— Transform the values using the equation
X = Xpin(1 — 1)~/ (@D

— Generates values distributed according to power-
law with exponent o



Clustering (Transitivity) coefficient

* Measures the density of triangles (local
clusters) in the graph

* Two different ways to measure it:

Ztriangles centeredat nodei

C) — _
) triples centeredat nodei

e The ratio of the means



Example

c) — 3 :E
1+1+6 8




Clustering (Transitivity) coefficient

* Clustering coefficient for node i

C - triangles centeredat nodei
" triples centeredat nodei

co-1c
N

* The mean of the ratios



Example

1 C(z):1(1+1+1/6):1—3
5 30
3
2 > C(l):é
8

* The two clustering coefficients give different
measures

e Cincreases with nodes with low degree



Collective Statistics (M. Newman 2003)

network type n ™ z £ o o o) " Refis).
film actors undirected 440013 2E516 482 118.4% 348 243 0.0 0.78 0208 | 20, 418
company directors undirected TET3 55302 14.44 460 — | 0.59 0.88 0276 105, 323
math ccauthorship undirected 253330 406 489 3.02 T.5T — | 015 0.84 0,120 107, 152
physics coauthorship | undirected 52000 2453800 0.27 .10 — | 045 0.56 0463 | 311, 313

% biclogy coauthorship | undirected 15301251 11 802 064 15.53 4.02 — | 0088 | 060 0127 | 311, 313

# | telephone call graph undirected AT 000 000 S0 000 00 a.16 21 B, 9
email messages directed EO012 86300 1.44 4.05 L5/2.0 0.16 136
email address books directed 16 881 57020 3.38 522 — | 017 0.1% o002 | a2
student relationships | undirected 573 477 166 | 1601 — | 0ans | 0001 —0.020 | 45
sexual contacts undirected 2810 a2 265, 266

o | WWW nd.adu directed 260 504 1497135 555 | 11.27 [ 21/24 n.11 0.29 —0.067 14, 34

-% WWW Altavista directed 203 5409046 | 2 130000 000 10.46 | 1618 [ 2.1/27 74

E | citation network directed TE3 339 6716108 B.AT 3.0/ a51

'-g Roget's Thesaurus directed 1022 5103 4.9% 4.87 — | 013 0.15 0167 | 244

7 | word co-ccourrence undirected 460902 17 000 00 T0.13 2.7 0.44 119, 167
Internet undirected 10697 41902 5.098 331 2.5 0035 | 059 —0.189 86, 148

= | power grid undirected 4941 G504 267 | 1804 — | 010 0,080 0003 | 416

E’] train routes undirected 58T 19603 (6. 79 216 - 0.69 —0.033 | 366

T | software packages directed 143% 1723 1.20 2.42 16/1.4 0070 | 0082 —0.016 | 318

j'g acftware classes directed 1377 2213 1.61 1.51 — | 0033 | 0012 —0.11% | 395

= | electranic circuits undirected 24097 53248 4.34 | 1105 340 0010 | 0.030 —0.154 156
peer-to-peer network undirected Ba0 1296 147 4.28 2.1 0012 0.011 —0.366 6, 364
metabaolic network undirected TES 3686 0.64 2.56 2.2 nos0 | 067 —0240 | 214

E protein interactions undirected 2115 2240 212 .50 24 noTz2 | 0071 —0.156 | 212

_E] marine food web directed 135 508 4.43 2.05 — | 016 023 —0263 | 204

5 | freshwater food web directed 02 297 10,84 1.90 — | 020 0087 —0426 | 272
neural netwark directed a7 2359 7.68 207 — | 018 0.28 —0226 | 416, 421

TABLE Il Basic statistics for a number of published neterorks. The propertiss measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution fallows a power law (or “=" if not; infout-degres

exponents are given for directed grapha'}; clustering coefficient 1" from Eq. i3); clustering coefficient ) from Eq. (6); and degree correlation cosfficient r, Sec. IILF.
The last column gives the citation(s) for the netwcrk in the bibliography. Blank entries indicate unavailable data.



Clustering coefficient for random graphs

* The probability of two of your neighbors also being neighbors
is p, independent of local structure
— clustering coefficient C=p
— when the average degree z=np is constant C =0(1/n)

Table 1: Clustering coefficients, C', for a number of different networks; n is
the number of node, z is the mean degree. Taken from [146].

Network m z C C for
measured | random graph
Internet [153] 6,374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 | 352 || 0.1 0.00023
power grid [192] 4,941 2.7 0.080 0.00054
biology collaborations [140) 1,520,251 | 15.5 0.081 0.000010
mathematics collaborations [141] || 253,339 3.9 0.15 0.000015
film actor collaborations [149] 449,913 | 1134 0.20 0.00025
company directors [149] 7.673 14.4 0.59 0.0019
word co-occurrence [90) 460,902 | 70.1 0.44 0.00015
neural network [192] 282 14.0 0.28 0.049
metabolic network [69] 315 28.3 0.59 0.090
food web [138] 134 8.7 0.22 0.065




Small worlds

Millgram’s experiment: Letters were handed out to people in
Nebraska to be sent to a target in Boston

People were instructed to pass on the letters to someone they
knew on first-name basis

The letters that reached the destination followed paths of
length around 6

Six degrees of separation: (play of John Guare)

Also:

— The Kevin Bacon game
— The Erdds number



Measuring the small world phenomenon

d;; = shortest path between iand j

Diameter: d=maxd.
ij

Characteristic path length:

1

l= E di- Problem if no path between two nodes
]

n(n' 1)/2 i>j

Harmonic mean

1
E_l _ d-l
n(n-1)/2§ y

Also, distribution of all shortest paths



Effective Diameter

* Disconnected components or isolated long
paths can throw off the computation of the
diameter.

* Effective diameter: the interpolated value
where 90% of node pairs are reachable

Effective
Diameter

# reachable pairs

11111111111

* Computation:

— f(d): for integer d, the fraction of pairs in the graph that
have distance less or equal to D

~ f(0):forreal xid — 1 < x < d, f(x) = HLED

— Effective Diameter: the real value x such that f(x) = 0.9




Collective Statistics (M. Newman 2003)

network type n ™ z £ o o o) " Refis).
film actors undirected 440013 2E516 482 118.4% 348 243 0.0 0.78 0208 | 20, 418
company directors undirected TET3 55302 14.44 460 — | 0.5 0.88 0276 105, 323
math ccauthorship undirected 253330 406 489 3.02 T.5T — | 0as 0.84 0,120 107, 152
physics coauthorship | undirected 52000 2453800 0.27 .10 — | 045 0.56 0463 | 311, 313

% biclogy coauthorship | undirected 15301251 11 802 064 15.53 4.02 — | 0aos8 | 060 0127 | 311, 313

# | telephone call graph undirected AT 000 000 S0 000 00 a.16 21 B, 9
email messages directed EO012 86300 1.44 4.05 L5/2.0 0.16 136
email address books directed 16 881 57020 3.38 522 — | 0a7 0.1% o002 | a2
student relationships | undirected 573 477 166 | 1601 — | 0ans | 0.001 —0.020 | 45
sexual contacts undirected 2810 a2 265, 266

o | WWW nd.adu directed 260 504 1497135 555 | 11.27 | 2.1/24 n.11 0.29 —0.067 14, 34

-% WWW Altavista directed 203 5409046 | 2 130000 000 10.46 | 1618 | 2.1/2.7 74

E | citation network directed TE3 339 6716108 B.AT 3.0/ a51

'-g Roget's Thesaurus directed 1022 5103 4.9% 4.87 — | 013 0.15 0167 | 244

7 | word co-ccourrence undirected 460902 17 000 00 T0.13 2.7 0.44 119, 167
Internet undirected 10697 41902 5.098 331 2.5 0035 | 059 —0.189 86, 148

= | power grid undirected 4941 G504 267 | 1504 — | 0an 0,080 0003 | 416

E’] train routes undirected 58T 19603 (6. 79 216 - 0.69 —0.033 | 366

T | software packages directed 143% 1723 1.20 2.42 16/1.4 0070 | 0082 —0.016 | 318

j'g acftware classes directed 1377 2213 1.61 1.51 — | 0033 | 0012 —0.11% | 395

= | electranic circuits undirected 24097 53248 4.34 | 1105 340 0010 | 0.030 —0.154 156
peer-to-peer network undirected Ba0 1296 147 4.28 2.1 0012 0.011 —0.366 6, 364
metabaolic network undirected TES 3686 0.64 2.56 2.2 nos0 | 067 —0240 | 214

E protein interactions undirected 2115 2240 212 .50 24 noTz2 | 0071 —0.156 | 212

_E] marine food web directed 135 508 4.43 2.05 — | 08 023 —0263 | 204

5 | freshwater food web directed 02 297 10,84 1.90 — | 020 0087 —0426 | 272
neural netwark directed a7 2359 7.68 207 — | nas 0.28 —0226 | 416, 421

TABLE Il Basic statistics for a number of published neterorks. The propertiss measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution fallows a power law (or “=" if not; infout-degres

exponents are given for directed grapha'}; clustering coefficient 1" from Eq. i3); clustering coefficient ) from Eq. (6); and degree correlation cosfficient r, Sec. IILF.
The last column gives the citation(s) for the netwcrk in the bibliography. Blank entries indicate unavailable data.



Small worlds in real networks

For all real networks there are (on average) short paths
between nodes of the network.

— Largest path found in the IMDB actor network: 7

Is this interesting?
— Random graphs also have small diameter
(d=logn/loglogn when z=w(logn))

Short paths are not surprising and should be combined
with other properties

— ease of navigation

— high clustering coefficient



Connected components

* For undirected graphs, the size and
distribution of the connected components
— is there a giant component?

— Most known real undirected networks have a
giant component

* For directed graphs, the size and distribution
of strongly and weakly connected components



Connected components — definitions

* Weakly connected components (WCC)
— Set of nodes such that from any node can go to any node via an undirected path
e Strongly connected components (SCC)

— Set of nodes such that from any node can go to any node via a directed path.
— IN: Nodes that can reach the SCC (but not in the SCC)
— OUT: Nodes reachable by the SCC (but not in the SCC)




The bow-tie structure of the Web
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The largest weakly connected component contains 90% of the nodes



SCC and WCC distribution

 The SCC and WCC sizes follows a power law
distribution

— the second largest SCC is significantly smaller
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Another bow-tie

Who lends to whom




Web Cores

* Cores: Small complete bipartite
graphs (of size 3x3, 4x3, 4x4)

— Similar to the triangles for
undirected graphs
* Found more frequently than
expected on the Web graph

* Correspond to communities of
enthusiasts (e.g., fans of japanese
rock bands)




Motifs

* Most networks have the same characteristics
with respect to global measurements

— can we say something about the local structure of
the networks?

* Motifs: Find small subgraphs that over-
represented in the network



Example

* Motifs of size 3 in a directed graph

S SN >
[ D B B




Finding interesting motifs

 Sample a part of the graph of size S
* Count the frequency of the motifs of interest

 Compare against the frequency of the motif in
a random graph with the same number of
nodes and the same degree distribution



Generating a random graph

* Find edges (i,j) and (x,y) such that edges (i,y)
and (x,j) do not exist, and swap them

— repeat for a large enough number of times

degrees of i,j,x,y
G are preserved G-swapped



The feed-forward loop

* Over-represented in gene-regulation networks

— a signal delay mechanism X q\\\\\
e v & e 7

0.01 +

8 P b
£ 0.005
3

RIRIET:

Subnetwork size |\/|I|O et al. 2002




Middle — High School

Homophily

Love of the same: People tend to have friends with common interests
— Students separated by race and age




Measuring Homophily

If the fraction of cross-gender edges is
significantly less than expected, then there is
evidence for homophily

gender male with probability p
gender female with probability q

Probability of cross-gender edge?

#cross _gender _edges

<< 2
#edges P



Measuring Homophily

= “significantly” less than

" Inverse homophily

» Characteristics with more than two values:
* Number of heterogeneous edges (edge between
two nodes that are different)



Mechanisms Underlying Homophily:
Selection and Social Influence

Selection: tendency of people to form friendships with
others who are like then

Socialization or Social Influence: the existing social
connections in a network are influencing the individual
characteristics of the individuals

Social Influence as the inverse of Selection

Mutable & immutable characteristics



The Interplay of Selection and Social
Influence

Longitudinal studies in which the social connections and
the behaviors within a group are tracked over a period of
time

Why?

- Study teenagers, scholastic achievements/drug use
(peer pressure and selection)

- Relative impact?

- Effect of possible interventions (example, drug use)



The Interplay of Selection and Social
Influence

Christakis and Fowler on obesity, 12,000 people over a period of 32-years

People more similar on obesity status to the network neighbors than if
assigned randomly

Why?

(i) Because of selection effects, choose friends of similar obesity status,

(ii) Because of confounding effects of homophily according to other
characteristics that correlate with obesity

(iii) Because changes in the obesity status of person’s friends was exerting
an influence that affected her

(iii) As well -> “contagion” in a social sense



Tracking Link Formation in Online Data: interplay
between selection and social influence

= Underlying social network
= Measure for behavioral similarity
Wikipedia
Node: Wikipedia editor who maintains a user account and user talk page
Link: if they have communicated with one writing on the user talk page of the other

Editor’s behavior: set of articles she has edited

Neighborhood overlap in the bipartite affiliation network | N A ﬂ NB |
of editors and articles consisting only of edges between
editors and the articles they have edited | N A U NB |

FACT: Wikipedia editors who have communicated are significantly more similar in their
behavior than pairs of Wikipedia editors who have not (homomphily), why?

Selection (editors form connections with those have edited the same articles) vs Social
Influence (editors are led to the articles of people they talk to)



Tracking Link Formation in Online Data: interplay
between selection and social influence

Actions in Wikipedia are time-stamped
For each pair of editors A and B who have ever communicated,
o Record their similarity over time
o Time 0 when they first communicated -- Time moves in discrete units, advancing by one “tick”
whenever either A or B performs an action on Wikipedia
o Plot one curve for each pair of editors
Average, single plot: average level of similarity relative to the time of first interaction

0.03

_'i,,,,,acﬁ,,'gm,s fol | | ' Similarity is clearly increasing both before
0.025| L=~ baseline and after the moment of first interaction
(both selection and social influence)
0.02

Social influence:
continued slower

Not symmetric around time O (particular

£ iictase sty role on similarity): Significant increase
S 0.015 after first contact
s Toas before they meet
Selection: rapid
i in similari H 1 1 1
il e vk ety Blue line shows similarity of a random
pair (non-interacting)
0.005

S0 150 100 -s0 0 50 100 150 200
Number of edits after first communication
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NETWORK MODELS



What is a network model?

Informally, a network model is a process (radomized
or deterministic) for generating a graph of arbitrary
Size.

Models of static graphs

— input: a set of parameters 1, and the size of the graph n
— output: a graph G(1,n)

Models of evolving graphs

— input: a set of parameters I1, and an initial graph G,
— output: a graph G, for each time t



Families of random graphs

* A deterministic model D defines a single graph for
each value of n (or t)

* Arandomized model R defines a probability space
«G,,P>where G, is the set of all graphs of size n, and
P a probability distribution over the set G_ (similarly
for t)

— we call this a family of random graphs R, or a random
graph R



Why do we care?

* Creating models for real-life graphs is
important for several reasons

— Create data for simulations of processes on
networks

— Identify the underlying mechanisms that govern
the network generation

— Predict the evolution of networks



Erdos-Renyi Random graphs

Paul Erdds (1913-1996)




Erdos-Renyi Random Graphs

* The G, , model

— input: the number of vertices n, and a parameter
p,0<p<l

— process: for each pair (i,j), generate the edge (i,j)
independently with probability p

* Related, but not identical: The G, , model

— process: select m edges uniformly at random



Graph properties

* A property P holds almost surely (a.s.) (or for almost every

h), if |
Braph). lim P[G has P|=1

N—>00

* Evolution of the graph: which properties hold as the
parameters of the graph model change?

— different from the evolving graphs over time that we saw before

* Threshold phenomena: Many properties appear suddenly.
That is, there exist a parameter 0. (e.g., the probability p,)
such that for 6 < 0. the property does not hold a.s. and for
6 > 0. the property holds a.s.



The giant component

Let z=np be the average degree

If z < 1, then almost surely, the largest
component has size at most O(In n)

if z> 1, then almost surely, the largest
component has size O(n). The second largest
component has size O(In n)

if z=w(In n), then the graph is almost surely
connected.



The phase transition

* When z=1, there is a phase transition
— The largest component is O(n?/3)

— The sizes of the components follow a power-law
distribution.



Random graphs degree distributions

* The degree distribution follows a binomial
p(k)=B(n;k;p) = (::jpk(l B p)n—k

* Assuming z=np is fixed, as n—<=, B(n,k,p) is
approximated by a Poisson distribution

Zk

p(k)=P(kiz)=-—e"

* Highly concentrated around the mean, with a tail
that drops exponentially



Other properties

* Clustering coefficient
— C — p

 Diameter (maximum path)
—L=logn/logz



Phase transitions

Phase transitions (a.k.a. Threshold Phenomena, Critical
phenomena) are observed in a variety of natural or human
processes, and they have been studied extensively by Physicists and
Mathematicians

— Also, in popular science: “The tipping point”
Examples

— Water becoming ice

— Percolation

— Giant components in graphs

In all of these examples, the transition from one state to another
(e.g., from water to ice) happens almost instantaneously when a
parameter crosses a threshold

At the threshold value we have critical phenomena, and the
appearance of Power Laws

— There is no characteristic scale.



Random graphs and real life

* A beautiful and elegant theory studied
exhaustively

 Random graphs had been used as idealized
network models

* Unfortunately, they don’t capture reality...



Departing from the ER model

 We need models that better capture the
characteristics of real graphs
— degree sequences
— clustering coefficient
— short paths



Graphs with given degree sequences

* The configuration model
— input: the degree sequence [d,,d,,...,d ]

— Process:
* Create d. copies of node |
e Take a random matching (pairing) of the copies

— self-loops and multiple edges are allowed

e Uniform distribution over the graphs with the
given degree sequence



Example

Suppose that the degree sequence is

4 1 3 2

O O O O
Create multiple copies of the nodes

§66o » 065 e

Pair the nodes uniformly at random
Generate the resulting network

> s



Power-law graphs

* The critical value for the exponent a IS

a=3.4788..

* The clustering coefficient Is
3a-7
a-1

 When a<7/3 the clustering coefficient
Increases with n

Cocn™ B=




Graphs with given expected degree
sequences

* Input: the degree sequence [d,, d,, ... ,d_]
. m = total number of edges

* Process: generate edge (i,j) with probability
d;d;/m
— preserves the expected degrees
— easier to analyze



However...

* The problem is that these models are too
contrived

* |t would be more interesting if the network
structure emerged as a side product of a
stochastic process rather than fixing its
properties in advance.



Preferential Attachment in Networks

First considered by [Price 65] as a model for citation
networks (directed)
— each new paper is generated with m citations (mean)

— new papers cite previous papers with probability
proportional to their in-degree (citations)

— what about papers without any citations?
* each paper is considered to have a “default” a citations
* probability of citing a paper with degree k, proportional to k+a

Power law with exponent a = 2+a/m



Practical Issues

* The model is equivalent to the following:

— With probability m/(m+a) link to a node with
probability proportional to the degree.

— With probability a/(m+a) link to a node selected
uniformly at random.
* How do we select a node with probability
proportional to the degree in practice:

— Maintain a list with the endpoints of all the edges
seen so far, and select a node from this list uniformly
at random

— Append the list each time new edges are created.



Barabasi-Albert model

 The BA model (undirected graph)

— input: some initial subgraph G,, and m the number of
edges per new node

— the process:
* nodes arrive one at the time

* each node connects to m other nodes selecting them with
probability proportional to their degree

 if [d,,...,d.] is the degree sequence at time t, the node t+1 links to
node i with probability

d d

>.d " 2mt

* Results in power-law with exponent o = 3



The mathematicians point of view
[Bollobas-Riordan]

Self loops and multiple edges are allowed

For the single edge problem:

— At time t, a new vertex v, connects to an existing vertex u with
probability d

2t-1
— it creates a self-loop with probability
1

2t-1

If m edges, then they are inserted sequentially, as if
inserting m nodes

— the problem reduces to studying the single edge problem.



Preferential attachment graphs

* Expected diameter
— if m =1, the diameter is O(log n)
— if m > 1, the diameter is O(log n/loglog n)

* Expected clustering coefficient is small

elce]- m8—1 Iognzn




Weaknesses of the BA model

Technical issues:

— Itis not directed (not good as a model for the Web) and when directed it gives
acyclic graphs

— It focuses mainly on the (in-) degree and does not take into account other
parameters (out-degree distribution, components, clustering coefficient)

— It correlates age with degree which is not always the case

Academic issues
— the model rediscovers the wheel
— preferential attachment is not the answer to every power-law
— what does “scale-free” mean exactly?

Yet, it was a breakthrough in the network research, that popularized the
area



Variations of the BA model

 Many variations have been considered some
in order to address the problems with the
vanilla BA model
— edge rewiring, appearance and disappearance
— fitness parameters
— variable mean degree

— non-linear preferential attachment

 surprisingly, only linear preferential attachment yields
power-law graphs



Empirical observations for the Web graph

= In a large scale experimental study by @
Kumar et al, they observed that the
Web contains a large number of

small bipartite cliques (cores) O

= the topical structure of the Web a K., clique
3,2

Such subgraphs are highly unlikely in random graphs
They are also unlikely in the BA model

Can we create a model that will have high concentration of
small cliques?



Copying model

* Input:
— the out-degree d (constant) of each node
— a parameter O

* The process:
— Nodes arrive one at the time

— A new node selects uniformly one of the existing nodes as
a prototype

— The new node creates d outgoing links. For the i*" link

* with probability a it copies the i-th link of the prototype node

* with probability 1- a it selects the target of the link uniformly at
random



An example




Copying model properties

 Power law degree distribution with exponent
B = (2-a)/(1- a)
* Number of bipartite cliques of size i x d is ne”

 The model has also found applications in
biological networks

— copying mechanism in gene mutations



Small world Phenomena

* So far we focused on obtaining graphs with
power-law distributions on the degrees. What
about other properties?

— Clustering coefficient: real-life networks tend to
have high clustering coefficient

— Short paths: real-life networks are “small worlds”

 this property is easy to generate

— Can we combine these two properties?



Clustering Coefficient

* How can you create a graph with high
clustering coefficient?

g

* High clustering coefficient but long paths




Small-world Graphs

e According to Watts [W99]

— Large networks (n >> 1)

— Sparse connectivity (avg degree z << n)

— No central node (k. _ << n)

Max

— Large clustering coefficient (larger than in random
graphs of same size)

— Short average paths (~log n, close to those of
random graphs of the same size)



The Caveman Model [W99]

* The random graph
— edges are generated completely at random
— low avg. path length L < logn/logz
— low clustering coefficient C ~ z/n
* The Caveman model
— edges follow a structure
— high avg. path length L ~ n/z
— high clustering coefficient C~ 1-0(1/z)

 Can we interpolate between the two?



Mixing order with randomness

Inspired by the work of Solmonoff and Rapoport
— nodes that share neighbors should have higher probability to be connected
Generate an edge between i and ] with probability proportional to R;

( 1 if m, >z
. m;; = number of common
m,; : neighbors of i and |
Rij=<(7jj (1-p)+p fO<m,<z
p if m.=0 p = very small probability
i

\

When a — oo, edges are determined by common neighbors
When a = 0, edges are independent of common neighbors

For intermediate values we obtain a combination of order and
randomness



Algorithm

e Start with a ring
* Fori=1..n

— Select a vertex ] with probability proportional to R;
and generate an edge (i,))

* Repeat until z edges are added to each vertex



Clustering coefficient — Avg path length
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Watts and Strogatz model [WS98]

Start with a ring, where every node is connected to the next z
nodes

With probability p, rewire every edge (or, add a shortcut) to a
uniformly chosen destination.

— Granovetter, “The strength of weak ties”

order randomness

p=0 O<p<l1 p=1



Clustering Coefficient — Characteristic Path

Length
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Graph Theory Results

* Graph theorist failed to be impressed. Most of
these results were known.



Network models and temporal evolution

* For most of the existing models it is assumed
that

— number of edges grows linearly with the number
of nodes

— the diameter grows at rate logn, or loglogn

 What about real graphs?
— Leskovec, Kleinberg, Faloutsos 2005



Densification laws

In real-life networks the average degree
increases! — networks become denser!
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More examples
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What about diameter?

* Effective diameter: the interpolated value
where 90% of node pairs are reachable
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Effective diameter
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Densification — Possible Explanation

e Existing graph generation models do not capture the
and

 Can we find a simple model of behavior, which
naturally leads to observed phenomena?

 Two proposed models
— Community Guided Attachment — obeys Densification

— Forest Fire model — obeys Densification, Shrinking
diameter (and Power Law degree distribution)



Community structure

e Let’s assume the —

community structure
* One expects many Science Arts

within-group \ \

usl

friendships and fewer C Math Drama

™

M
Cross-group ones / ‘ ; ‘/

Self-similar university
community structure

e How hard is it to cross
communities?



Fundamental Assumption

* The cross-community linking probability of nodes

at tree-distance h (the height of the least common
ancestor) is scale-free

* We propose cross-community linking probability:

f(h)=c™"

where: c > 1 ... the Difficulty constant

h ... tree-distance



Densification Power Law

Theorem: The leads
to with exponent

a =2 —log,(c)

a ... densification exponent E(t) oc N(t)“
b ... community structure branching factor
c ... difficulty constant

=
RARR



Difficulty Constant

e Theorem:

a =2 —log,(c)

* Gives any non-integer Densification
exponent
e |f c=1:easyto cross communities

— Then: a = 2, quadratic growth of edges — near
clique

e |f c =Db: hard to cross communities

— Then: a =1, linear growth of edges — constant
out-degree



Room for Improvement

e Community Guided Attachment explains
* |ssues:

— Requires explicit
— Does not obey

e The "Forrest Fire” model



“Forest Fire” model — Wish List

* We want:

— no explicit Community structure
— Shrinking diameters
— and:

* “Rich get richer” attachment process, to get heavy-
tailed in-degrees

e “Copying” model, to lead to communities

* Community Guided Attachment, to produce
Densification Power Law



“Forest Fire” model — Intuition

How do authors identify references?

> W

Find first paper and cite it
Follow a few citations, make citations
Continue recursively

From time to time use bibliographic tools (e.g.
Google Scholar) and chase back-links



“Forest Fire” model — Intuition

e How do people make friends in a new
environment?
1. Find first a person and make friends
2. From time to time get introduced to his friends
3. Continue recursively

* Forest Fire model imitates exactly this process



“Forest Fire” —the Model

A node arrives
Randomly chooses an “ambassador”

Starts burning nodes (with probability p) and
adds links to burned nodes

“Fire” spreads recursively

O
O

O



Forest Fire in Action (1)

* Forest Fire generates graphs that Densify
and have Shrinking Diameter
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Forest Fire in Action (2)

* Forest Fire also generates graphs with
heavy-tailed degree distribution
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Forest Fire model — Justification

* Densification Power Law:
— Similar to Community Guided Attachment

— The probability of linking decays exponentially
with the distance — Densification Power Law

 Power law out-degrees:
— From time to time we get large fires

* Power law in-degrees:
— The fire is more likely to reach hubs



Forest Fire model — Justification

* Communities:
— Newcomer copies neighbors’ links

* Shrinking diameter
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